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Abstract— Artificial immune systems have been proven to be efficient in pattern recognition, data clustering and data
classification. The proposed method is a novel artificial immune classifier called aiCLS based on aiNET. Artificial
immune network (aiNET) is an efficient data analysis and clustering algorithm capable of clustering simple datasets
through complex ones. Hidden capabilities of aiNET for supervised learning were significantly considered by aiCLS.
The proposed method takes a local optimization approach to classification problem. It generates local optimum cells
to recognize any given training antigen. Concatenation of these cells results in a global optimum classifier. The novelty
of aiCLS has been discussed from both computational and immunological aspects. From the computational aspect,
aiCLS is a fast one-shot learner algorithm with regard to the proposed “iterative clonal selection”. From the
immunological aspect, aiCLS introduces a novel clonal suppression method called “dissimilarity proportional clonal
suppression (DPCS)”, which increases data reduction and convergence to local optimum for any given antigen. DPCS
alters convergence through a greedy suppression, which takes antibody-antigen affinity into account. The
experimental results show that aiCLS outperforms artificial immune recognition system (AIRS) on UCI benchmark
datasets in both classification accuracy and data reduction.
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I. INTRODUCTION

Artificial immune systems are natural inspired soft
computing paradigm. The immune system of
vertebrates has been the source of this inspiration
which aims at recognizing the pattern of pathogens
(antigens) to limit the damage they may cause.
Therefore, the concepts and metaphors of artificial
immune system have been defined primarily based on
pattern recognition (1,2). After that, artificial immune
systems have been applied in a wide variety of domain
areas, such as pattern recognition, classification,

optimization, data analysis, computer security and
robotics(3).

Artificial immune systems can be intuitively
classified through their application domains and
employed metaphors. From the application point of
view, artificial immune systems have been used in a
wide range of applications from network security to
robotics (3). In this paper, the most relevant
applications such as data analysis, optimization and
classification are mentioned. CLONALG was one of
the first machine learning and optimization algorithms
which employed immune concepts (4). Then it was
extended by employing immune network metaphor to



aiNET, which is a data clustering and data analysis
algorithm (5). Another immune clustering algorithm,
called RLAIS (or RAIN), employs immune network
theory (6). While aiNET models immune cells as
antibody, RLAIS introduces an artificial concept
called Artificial Recognition Ball (ARB). ARB is a set
of B-Cells with identical antibody, in which the
number of B-Cells determines antibody stimulation.

Due to the intrinsic association between data
clustering and data classification and capabilities of
RLAIS, AIRS has been developed as a data
classification algorithm based on RLAIS (7). AIRS is
a stable and robust classifier that produces around
average results (8). The first version of AIRS did not
apply the principle of dissimilarity proportional
mutation (9); however, the recent version of the
algorithm overcame its deficiencies. In addition, it
removed unnecessary computational complexities
while maintaining classification accuracy of the
algorithm (10).

SAIS is another classifier algorithm based on
immune concepts. It is different from other immune
algorithms in many ways (11). SAIS models immune
cells as B-Cell; but only one B-Cell is taken into
account so that each class is modeled as a hyper sphere
instead of multiple hyper spheres. SAIS ignores
immune networks both similarity proportional cloning
and dissimilarity proportional mutation. However,
removal of these concepts and metaphors results in
generation of a compact immune classifier which
outperforms AIRS in half of in common datasets.

Classification application of artificial immune
systems is not limited to general domain classifier
algorithms such as AIRS and SAIS. There are some
other domain specific classifier algorithms which have
been introduced in literature (12,13,14). Although the
aiNET algorithm is characterized as a clustering
algorithm, it is also applied in classification problem.
(15,16). The present authors examined the concerned
aspects with regard to the significant lack of research
in generating supervised learning algorithm based on
aiNET.

This paper attempts to address the above-
mentioned deficiencies. With regard to the capability
of aiNET in modeling simple to complex clusters, it is
considerable that aiNET can be used as a classifier
algorithm. This work was motivated by previous
researches of the authors. In (17) and (18), aiNET has
been applied in classification problems though
acceptable results have been achieved; however, it was
still far from the optimum level and computational
costs has been high to be a general domain classifier.
Therefore, an extension of aiNET, named aiCLS is
proposed as a general domain classifier algorithm.

The proposed artificial immune classifier (aiCLS)
is a classifier algorithm, which adopts all immune
metaphors and concepts employed in aiNET; however,
it’s different from aiNET in two aspects: 1)- the

proposed method is a one-shot learning algorithm so
that the learning process will be faster and there isn’t
more maximum iterations parameter; 2)- clonal
suppression of aiNET replaced with a novel
Dissimilarity Proportional Clonal Suppression
(DPCS), which takes antigen-antibody affinity into
account at clonal suppression process. DPCS is a
population control mechanism that results in greater
data reduction and greater efficiency.

The remainder of the paper is organized as follows: a
summary of the related works is discussed in Section
2. Section 3 describes the proposed method. Section 4
presents experimental results and concluding remarks
are given in Section 5.

II. RELATED WORKS

In this section, the most relevant works reported in
the literature are first presented. This paper skipped
the detailed discussion of natural immune concepts
and interested readers can refer to (3) and (19) for
more information on immune systems. This section
starts with a brief review of both versions of AIRS
algorithm, followed by the introduction of some
artificial immune inspired classifiers. The section ends
with the discussion of standard aiNET as a clustering
algorithm and classifier aiNET used in the literature.

A. Artificial Immune Recognition System (AIRS)
AIRS is one of the first supervised artificial immune
systems (7). The main algorithm revised in (10) and
some unnecessary computational complexities were
removed from it and the mutation subroutine changed
to dissimilarity proportional mutation. These changes
did not reduce efficiency of the first version of
algorithm. Hence, it reduced computational
complexity and increased data reduction in some
datasets.
As a successor of RLAIS, AIRS models immune cells
as Artificial Recognition Ball (ARB). Each ARB
consists of an antibody (feature vector coupled with
its class) and a scalar value which determines the
number of resources. The number of resources is
considered as a measure of fitness; higher number of
resources means higher fitness. This fitness
measurement is later used in a competition for
resources to make a fitness proportional selection in
population control mechanism.
The revised version of AIRS is different from that of
the primary AIRS in two aspects; 1)- AIRS2 employs
dissimilarity proportional mutation; 2)- some
unnecessary computational complexities are removed
from the algorithm, which include mutating class of
ARB, complex stopping condition of cell proliferation
et Figure 1 illustrates the summary of AIRS
algorithm.



1. Initialization

2. For each antigen

2-1. ARB generation: select the best matching memory

cell and generate ARB. Clone and mutate ARB.

2-2. Resource allocation: allocate resources to ARBs;

number of resources is proportional to similarity (the

closer they are to antigen, the more the resources)

2-3. Resource competition: if the allocated resources

are more than available resources, remove resources

from the least similar ARB. ARBs with no resources

will be deleted.

2-4. Cell proliferation: Clone ARBs proportional to

similarity and mutate them proportional to

dissimilarity.

2-5. Stopping condition: If ARBs' similarity to antigen

has not met certain criteria, repeat 2-2 to 2-5.

2-6. Memory cell introduction: if new ARB is closer to

antigen than the best matching cell, add a new ARB to

memory cells set; if similarity of the new ARB and the

best matching cell is more than a certain threshold,

the best matching cell removes the best matching cell.

Figure 1. Summary of AIRS2 algorithm

B. Other Artificial Immune Inspired Classifiers
Simple Artificial Immune System (SAIS) is a novel
immune inspired supervised learning algorithm.
Almost none of the immune metaphors have been
employed by SAIS. However, its classification
accuracy is more than AIRS in some cases (11). This
algorithm has a global optimization approach for the
classification problem. In other words, instead of
generating optimized B-cell for each antigen, SAIS
generates a B-cell for the whole class. So, it models
the whole class as a single hyper sphere and reduces
classification accuracy on complex datasets in
comparison with algorithms such as AIRS, which
model the class as multiple hyper pheres.
Attribute Weighted Artificial Immune System
(AWAIS) is another immune inspired classifier.
AWAIS employs more immune metaphors than SAIS
but still it does not take the immune network into
account (20). The results reported for this algorithm
in literature are limited to Wine dataset. So, one
cannot judge its classification capabilities.
The above named methods are general domain
classifiers, which employ immune metaphors. Many
domain specific classifiers have been also reported in
the literature, such as remote sensing image classifiers
(12), spam detection (13), anomaly detection (21) and
so on.

C. Artificial Immune Network (aiNET)
Artificial Immune Network (aiNET) is a data
clustering algorithm (5) extended from CLONALG
(4). Network theory is employed in aiNET to generate
a population control mechanism, which is based on
limiting the minimum distance of any antibody pair.
The output of aiNET is an edge-weighted graph

composed of a set of nodes and a setoff edges. Each
node is an antibody and each edge has a weight.
Weight is affinity (similarity) between the node pair
(5). Due to employing network theory population
control mechanism, aiNET can be used to cluster a
wide variety of datasets from simple to complex. The
key parameter of this population control is
suppression threshold (σs). The suppression threshold
controls the specificity of cells' smaller value of σs,
makes more antigen specific cells and larger value
makes generalized cells. Figure 2 is the summary of
aiNET algorithm.
Standard aiNET is a clustering algorithm but it has
been used as a classification algorithm, too. In (15),
two aiNETs have been used to discover clusters in
two classes of cancer outcome prediction. In terms of
immunology, nodes of aiNET are internal images of
antigens (training data). Therefore, clustering each
class’s training data using aiNET results in the
generation of internal images of training data. Internal
images could be defined as a compressed form of
training data. Internal images preserve shape of
cluster and the number of cells in internal images is
less than antigens (training data). After the training
process, internal images (also, known as memory
cells) are ready to classify test data. Classification
could be done through a variety of methods.

III. ARTIFICIAL IMMUNE CLASSIFIER (AICLS)
The proposed method is an extension and
modification of aiNET. In other words, aiCLS is an
aiNET, which optimized for supervised learning and
classification problem. These modifications reduces
computational complexity of aiNET and preserves all
the concepts and metaphors employed in aiNET, such
as immune network, mutation proportional to
dissimilarity and similarity proportional cloning.

1. Randomly generate initial antibodies

2. While stopping condition didn’t met

2-1. For each antigen

2-1-1. Calculate affinity (similarity) of all antibodies

and antigen and select n best matches

2-1-2. Affinity maturation: clone proportional to affinity

(similarity), mutate proportional to distance

(dissimilarity)

2-1-3. Calculate affinity of new antibodies and antigen

2-1-4. Natural death: eliminate cells whose affinity is

interior to Natural Death Threshold (σd)

2-1-5. Calculate Ab-Ab affinity and eliminate self-

recognize cells (affinity < σs)

2-1-6. Add the remaining antibodies to the network

2-2. Calculate affinity of each two memory cells in

network and eliminate self-recognize cells (affinity < σs)

2-3. Reproduce some random cells and add them to the

network

Figure 2. Summary of aiNET algorithm



There are two main different aspects between aiNET
and aiCLS: 1)- aiCLS is a one-shot algorithm and is
faster than aiNET; 2)- aiCLS employs a novel clonal
suppression method called Dissimilarity Proportional
Clonal Suppression to increase efficiency of
algorithm and for rapid convergence.
It is clear that just a single pass through the data does
not guarantee the generation of optimal cells to
classify or cluster the data (11). There are two
different approaches to optimal cell generation. The
most popular approach is to process data consequent
iterations for a certain number. This approach has
been used by aiNET. It randomly generates memory
cells before the first iteration and then, during the first
iteration, affinity maturation process generates closer
memory cells to antigen. Memory cells generated in
the first iteration will be used in the following
iteration as initial memory cells so that any iteration
slightly increases affinity of memory cells and this
process continues until a certain stopping condition,
such as the maximum number of iterations, is met.
Another approach is a one-shot learning (10),
meaning that the algorithm passes any selected
antigen to the training process just once; however, it
is not the same as the one-pass. In this approach,
training for an antigen is kept on consequently until a
certain stopping condition is met. The stopping
condition of these methods is a certain affinity
criterion, not the maximum number of iterations. This
process led the immune cells to the local optimum for
each antigen. Therefore a population control
mechanism was needed to suppress redundant
immune cells while maintaining optimum immune
cells required recognizing antigen.
If suppressing subroutines of the algorithm maintains
the optimum cells found for an antigen through
learning process for other antigens, the algorithm
results in the optimum memory cells. However, if it
eliminates the immune cells of an antigen without any
appropriate replacement, it results in biasing for the
latest antigens. However, computational complexity
of the one-shot approach is less than iterative
approach if and only if the iterations needing the
satisfied stopping condition of affinity maturation are
less than the maximum iterations of iterative
algorithm.
The proposed method is a one-shot learning
algorithm. Since network suppression of aiNET
applied once for iteration, after training on all
antigens, aiCLS cannot employ it as a main
population control mechanism. Hence, in the one-shot
learning, network suppression proceeds just once at
the final stage of algorithm. Therefore, newly
generated cells are accumulated on the immune
network and size of network rapidly increases during
the clonal selection process. Therefore, in order to
control population and maintaining diversity and local
optimum cells generated through affinity maturation,
a novel suppression method has been proposed.
Immune network theory declares two stimulating
terms and one suppressing term. Recognizing antigen
and other antibodies stimulates antibody and being
recognized by other antibodies which suppress it (3).

Clonal suppression of aiNET is based on antibody-
antibody affinity (5). Although all antibodies, which
survive clonal selection, can recognize antigen, their
antigen affinity is not the same. Therefore, aiNET
may eliminate most stimulated antibody which leads
to ignoring antibody-antigen affinity in clonal
suppress.
Dissimilarity proportional clonal suppression
(DPCS), proposed as a population control mechanism
in this paper, takes both antibody-antibody affinity
and antibody-antigen affinity into account. For any
two antibodies that recognize each other, DPCS
eliminates antibody with lower affinity to antigen. In
addition, to prevent exponential growth of immune
network, the best matching cells selected as the initial
cells for the current antigen are moved from immune
network to clone before clonal suppression. This
process is a local network suppression that is included
in DPCS. DPCS will be explained in Section 3-2.
The proposed algorithm can be thought as a five stage
algorithm. Data normalization and generation of seed
cells takes place in the initialization stage. The second
stage generates initial antibodies. These initial
antibodies go through iterative clonal selection to
generate optimum antibodies in stage three. These
stages are followed by dissimilarity proportional
clonal suppression in stage four. Whenever these four
stages are achieved for all antigens, network
suppression, as the final stage, eliminates self-
recognizing memory cells.
Once the training process is completed, the memory
cells will be available to classify test data. The class
of most similar memory cell to the test data will be
selected as a class of test data. Figure 3 illustrates the
summary of the training process of aiCLS.

A. Definitions
In this section, a brief definition of concepts and
metaphors of immune systems are introduced. In
addition, Table I shows conceptual association
between concepts of immune systems and aiCLS.
Antibody: B-Cell receptor, Y-shaped receptor
molecules bounds on the surface of a B-Cell with the
primary role of recognizing antigen of Pathogens.
Antigen: A small portion of pathogens, molecules
which should be recognized by immune system.
Affinity: Degree of binding of an antibody to an
antigen. Affinity has been declared as both similarity
and dissimilarity in the literature. However, in this
paper, affinity was declared as similarity and distance
is measurement of dissimilarity. By the way, to avoid
confusion, similarity and dissimilarity have been used
frequently instead of affinity and distance,
respectively.
Clonal Selection: Process of selecting the best
matching cells, cloning, somatic hyper mutation and
selecting surviving cells
Somatic hyper mutation: High probability mutation
proportional to dissimilarity
Affinity maturation: Mutation followed by survival
selection



1. Initialization and data normalization

2. For each antigen

2-1. Generate initial antibodies

2-2. Generate optimum antibody through iterative

clonal selection

2-3. Dissimilarity proportional clonal suppression

3. Network suppression

Figure 3. Summary of aiCLS algorithm

TABLE I. MAPPING BETWEEN AICLS AND IMMUNE SYSTEM
CONCEPTS

Immune
System The Proposed Method

Antibody
Combination of feature

vector and its affinity to the
currently processing antigen

Antigen Set of feature vectors of
training data

Distance Euclidean distance between
antibody and antigen

Affinity 1 – Distance

Memory cell Combination of feature
vector and its relevant class

B. Overview of aiCLS
The proposed method consists of five main stages;
each stage consists of some detailed steps. Figure 3
shows main stages of aiCLS algorithm while Figure 4
illustrates all steps of the algorithm in detail. The
remainder of this section describes main stages in
more detail; then, followed by description of data
classification is done using aiCLS.

1) Initialization
The primary step of algorithm is data normalization.
Normalization method highly depends on distance
measurement. Distance of any two normalized vectors
has to be between 0 and 1 inclusively and none of
attributes of feature vectors may exceed the range [0,
1]. In this paper, Euclidean distance has been used as
dissimilarity measurement; therefore, the following
equation was employed to normalize the data:

ii

ii
i MinMax

MinfF
−

−
=   (1) 

N
fG i

i =  (2) 

where F is an N dimensional feature vector consisting
of (f1, f2, …, fN) and Maxi and Mini are possible
maximum and minimum values of i-th feature in F,
respectively.
Once normalization is done, generation of initial
antibodies can be preformed. Although it is an
optional step and could be ignored by setting Seed
Count to zero, Seed Count is the parameter that
determines the quantity of randomly selected antigens
and their class attribute should be passed to memory
cells in the initial step.

1. Data normalization: Distance of each two antigens should be

within [0, 1].

2. Generating seed cells: add a certain number (SeedCount) of

randomly chosen antigens to memory cell set (M).

3. For each antigen (Ag)

3-1. antibody set (AB) Generation

3-1-1. Select all memory cells from M where class of M is equal

to class of Ag and add it to MActive.

3-1-2. If MActive is empty, add Ag to AB. Else, for each m in M,

generate an Ab where feature vector of Ab is equal to feature

vector of M and affinity of Ab is zero; then, insert it to AB set.

3-1-3. Calculate and update affinity of each Ab in AB.

3-2. Select n best matching cells with the maximum affinity from

AB and add them to BestMatches and MCbest.

3-3. Clone best matches proportional to affinity and add new

cells to clone set.

3-4. Mutate clone proportional to distance.

3-5. Calculate and update affinity of each Ab in clone.

3-6. Eliminate each Ab in clone where affinity of Ab is less than

Natural Death Threshold (σd).

3-7. Select n best matching cells with the maximum affinity from

clone and add them to Best Matches to be used in the next

iteration of clonal selection.

3-8. While Average Affinity of Clone is less than Affinity

Threshold (TA), repeat 3-3 to 3-8.

3-9. Add MCbest to clone.

3-10. Eliminate memory cells of MCbest from M

3-11. Calculate distance of each two Ab in clone.

3-12. Dissimilarity proportional clonal suppression: for Abi and

Abj (i≠j) in clone; if distance of Abi and Abj is less than the

Suppression Threshold (σs), eliminate Ab with the minimum

affinity to antigen.

3-13. For each Ab in clone, generate m where antibody of m

equals to Ab and class of m equals to class of Ag, and add m to

M

4. Calculate distance of each mi and mj (i≠j) in M where class of

mi and mj is equal.

5. Network suppression: eliminate memory cells with less than

suppression threshold (σs) distance.

Figure 4. aiCLS Algorithm

Initialization of seed cells also could be performed by
using randomly generated memory cells; but, these
cells have to be in the range of normalized vectors.

2) Initial Antibody Generation
After initialization, training process begins from the
first antigen to the last one. In the very first step of
training process, all memory cells of the class
concerned with antigen are selected as active memory
cells. Antibodies of active memory cells are collected
in antibody set (AB). If there is no active memory
cell, initialization process adds the antigen as the
internal image of antigen to antibody set. At this point
AB is a set of antibodies, the affinity of which
attribute is zero. Thus, affinity calculation takes place



here; affinity of each antibody in AB with antigen is
calculated to update affinity attribute of antibody.
Note that, there is no antibody pool in aiCLS.
Therefore, aiCLS has no need to maintain the class of
antibodies because living antibodies are generated for
the current antigen and their class is the same as the
class of antigen.

3) Iterative Clonal Selection
The heart of aiCLS is iterative clonal selection. As
mentioned earlier, aiCLS is a one-shot learner.
Therefore, in one pass of algorithm, aiCLS has to
generate a set of high affinity antibodies for any given
antigen. So, regular clonal selection is extended to
iterative clonal selection, which continues affinity
maturation until meeting a certain stopping criterion.
Iterative clonal selection leads antibodies to a local
optimum solution for the antigen.
The proposed clonal selection is very similar to the
clonal selection used in [4] and [5]. Iterative clonal
selection starts with the selection of the best matches
for antigen. In other words, N antibodies with higher
affinity to antigen are selected. These selected
antibodies are called best matches. Since set of best
matches is supposed to change during iterative clonal
selection, its antibodies are also maintained in another
set, named MCbest , for further use in DPCS. The next
step clones best matches, proportional to antigen
affinity using Equation 3. The higher cell affinity
causes a larger number of clones. Since affinity is in
the range [0, 1], the number of clones is in the range 0
and clone rate parameter, inclusively.

NumClone = CloneRate - Affinity(Ab, Ag) * CloneRate (3)

Step 3-4 of the algorithm mutates any antibody in
clone. Mutation is done according to the directed
mutation introduced in (5), which is shown in
Equation 4; where Abm is mutated antibody, Ab is
antibody, Ag is antigen and α is mutation rate
calculated by Equation 5.

)( AgAbAbAb m −−= α   (4) 

MAgAbDistRand *),(*=α (5) 
 

In Equation 5, Rand is a uniform random number
between 0 and 1, Dist is the Euclidean distance and M
is hyper mutation rate or learning rate. The default
value of hyper mutation rate in aiNET is 4.0 and, as a
successor of aiNET, this value is adopted here. The
lower and higher values of hyper mutation rate reduce
and increase convergence speed, respectively. But,
the increasing rate of hyper mutation may result in
divergence.
Directed mutation is a dissimilarity proportional
mutation. Therefore, for high affinity antibodies, α is
small and, since cloning is similarity proportional, a
large number of clones are generated. Thus, many
antibodies are generated and each of them slightly
changes during mutation. Hence, exploitation is done
through cloning and mutation. In addition, for low
affinity antibodies, α is large and a small number of
clones that have been generated. Therefore, clonal
selection results in exploration; since there are a small
number of exploring cells, it would not lead

population to divergence. The next step calculates
antibody-antigen affinity for new antibodies and sets
affinity attribute of the new antibodies.
The following step in the standard clonal selection is
survival selection, which selects a percentage of high
affinity cells to survive and eliminate others. This step
is removed from iterative clonal selection to maintain
more diversity. Therefore, after affinity calculation,
natural death eliminates antibodies, whose affinity is
less than natural death threshold (σd). Natural death is
the last step in the standard clonal selection; however,
there are two more steps in the iterative clonal
selection. First of all, the best matches are selected
again from the antibodies remaining in the clone to be
used in the next iteration of clonal selection; then,
stopping criteria are considered. If average affinity of
antibodies in clone is more than or equal to affinity
threshold (TA), learning on this antigen is complete
and the next step will be Step 3-9. If stopping
condition did not occur, clonal selection process
would be continued and Step 3-3 to Step 3-8 would be
repeated; but this time, the best matches are the cells
selected from clone in Step 3-7. Therefore, in each
iteration of the clonal selection, initial cells are the
best cells of previous iteration. Therefore, iterative
clonal selection leads antibodies to a rapid greedy
local optimum convergence..
Affinity threshold (TA) determines how high affinity of
antibodies should be after iterative clonal selection.
So, this parameter has a significant effect on
efficiency of algorithm. While 4-2 discusses the effect
of this parameter in detail, it should be noted here that
the optimum value for this parameter is in the range
[0.9, 0.98] for all the tested datasets.

4) Dissimilarity Proportional Clonal Suppression
Population control is a challenge for evolutionary
algorithms including artificial immune systems. Two
population controls are used in artificial immune
systems. The mechanism used by (6) and (10) is a
ranking system based on artificial recognition balls
(ARBs) to eliminate low affinity cells. ARBs could be
thought as a feature vector and its rank in clone so
that the competition between ARBs in AIRS and
RAIN is the population control mechanism used to
eliminate low rank cells. By the way, AIRS eliminates
all cells but one in clonal selection. So, it reduces
diversity. Another well-known approach to this
challenge is the elimination of self-recognized cells.
The aiNET algorithm removes all cells, which
distance from another cell is less than a certain
threshold. This method preserves diversity but it may
eliminate high affinity cells.
Dissimilarity proportional clonal suppression (DPCS)
is a diversity preserving population control
mechanism, which eliminates low affinity antibodies.
DPCS eliminates low affinity antibodies recognized
by a higher affinity antibody. Therefore, high affinity
antibodies and low affinity antibodies, which are not
recognized by other antibodies, may survive clonal
suppression process. Hence, both exploration and
exploitation are possible at DPCS.
As was mentioned before, in order to prevent from the
rapid increment of Immune Network during the



learning process, DPCS is responsible for local
network suppression, too. This is done by eliminating
the best matching memory cells (MCbest) from
network and concatenating them in clone. So, these
cells have to join to antibody competition in order to
stay in the memory cell pool.
The primary step of DPCS is to concatenate clone
cells and MCbest. Then, DPCS eliminates MCbest from
memory cells' pool. The next step is the calculation of
distance of any antibody pairs. After that, for any
antibody pair, whose distance is less than suppression
threshold (σs), DPCS eliminates antibody with lower
affinity from antigen. Therefore, the best one of self
recognizing group of antibodies survives. After that,
Step 3-13 generates a memory cell from surviving
antibodies and adds it to memory cells' pool.
Here, the effects of local network suppression of
DPCS are mentioned. There are two possible
scenarios: 1)- consider that, MCbest has low affinity to
antigen. In this case, new antibodies have high
affinity to antigen (regarding the iterative clonal
selection). Therefore, new antibodies are close to
antigen and far from MCbest and MCbest causes DPCS
to survive. Therefore, DPCS would not lead cells for
biasing new data; 2) let both of new antibodies and
the best matches have high affinity to antigen. In this
case, the best one survives.
DPCS is the last stage in learning process for an
antigen. When DPCS is completed, aiCLS starts again
for the next antigen. If there is no more antigens,
network suppression reduces the size of network as
the final step of learning process of aiCLS.

5) Network Suppression
With regard to the local network suppression applied
for each antigen in DPCS, network suppression of

aiCLS is not a mass elimination of cells. However,
network suppression consists of two steps: the first
one is the calculation of inter cell distance of memory
cells which its concerned class is the same. After that,
for any of the same class memory cell pairs, the
distance is less than the suppression threshold (σs).
Network suppression eliminates one of them
randomly. Therefore, one cell out of a group of self-
recognizing cells survives (randomly selected). Note
that elimination of all self-recognizing cells results in
losing the efficiency of classifier because removing
all of them results in forgetting the corresponding
antigens.

6) Classifying Input/Test Data
Once the training process is done, classification is a
straightforward task. After calculating affinity of all
memory cells in memory cell pool and input data, the
class of memory cell with the highest affinity to input
data is the output of classification algorithm.

C. Comparative Analysis of Artificial Immune
Systems

This section presents a summary of the proposed
method and other artificial immune systems in a table.
Table II presents comparative analysis of the concepts
of some artificial immune systems.

IV. EXPERIMENTAL RESULTS

This section introduces experimental results of the
proposed method. In order to compare aiCLS with
other classifiers, a variety of machine learning
datasets were applied. The remainder of this section is
organized as follows. Subsection 1 describes test bed
of the algorithm. Subsection 2 analyses parameters of
algorithm from the viewpoint of efficiency and data
reduction. After that, the comparative analysis of data

TABLE II. COMPARATIVE ANALYSIS OF SOME AIS SYSTEMS

Immune
System aiCLS aiNET AIRS AIRS2 SAIS

Application
Domain Classification Clustering Classification Classification Classification

Immune
Network Yes Yes Yes Yes No

Clonal
selection Yes Yes Yes Yes No

Immune cell
model Antibody Antibody ARB ARB B-Cell

Immune cell
concept

Feature vector
and affinity Feature vector Feature vector,

class and rank
Feature vector,
class and rank

Multiple feature
vector

Memory cell
concept

Feature vector
and class Feature vector Feature vector

and class
Feature vector

and class
Multiple feature

vector
Number of

clones
Similarity

proportional
Similarity

proportional
Similarity

proportional
Similarity

proportional Constant value

Mutation Dissimilarity
proportional

Dissimilarity
proportional

Uniform
random

Dissimilarity
proportional

Uniform
random

Population
control

Ag-Ab affinity,
Ab-Ab affinity Ab-Ab affinity Ab-Ag ranking,

Ab-Ab affinity
Ab-Ag ranking,
Ab-Ab affinity N/A

One-shot Yes No Yes Yes No
Shape of each

class
Multiple

hypersphere
Multiple

hypersphere
Multiple

hypersphere
Multiple

hypersphere
Single

hypersphere



Classification accuracy is introduced in Subsection 3.
Followed by that, brief discussion on the comparative
analysis of data reduction and computation
complexity is given in Subsections 4 and 5.

A. Test Bed
In order to determine the classification performance
of aiCLS, five benchmark datasets from UCI
repository were applied (22). These five datasets were
Wine, Iris, Sonar, Ionosphere and Pima Indians
Diabetes. Specifications of all datasets are shown in
Table III. Table IV demonstrates optimum parameters
used in the experimental results. At the end of this
text, if the value of a parameter was not mentioned
explicitly, the value form Table IV was used.
Benchmark datasets of test bed were different in
many aspects; number of classes, training method,
etc. Hence, it was a challenge for aiCLS. Sonar is a
high dimensional dataset, which was selected to
assess the effect of curse of dimensionality. Iris have
three classes, one of which is linearly separable and
the other two are not linearly separable; so,
performance of the proposed method on this dataset
determined capabilities of the method for
classification of non-linear classes. Wine is not a
challenging dataset and it is usually used for initial
tests of novel classification methods.
There are standard training and testing methods for
benchmark datasets. Four out of five datasets, which
were mentioned here, should be examined using K-
Fold cross validation. In a k-fold cross validation,
instances of dataset are divided into k disjoint sets.
Then, the concatenation of k-1 set is used as a training
set and another set is used to test the trained classifier.
Therefore, there were K training-test sets, each of
which would be the test set once. The average of
classification accuracy of all K training sets was
considered as a result. The results reported in this
paper are average of three given runs.

B. Analysis of Effect of Parameters
This subsection discusses the effect of parameters of
algorithm. Affinity threshold and suppression
threshold are the most effective parameters of aiCLS.
Therefore, 4-2-1 and 4-2-2 analyze effect of these
parameters and determines how their changes alter the
performance of classification. Then, 4-2-3 briefly
discusses other parameters.

1) Affinity Threshold Analysis
Affinity threshold (TA) is the parameter that
determines the time immune response is triggered.
Whenever the average affinity of antibodies in clone
exceeds TA, iterative clonal selection is completed and
immune response begins.
Considering the facts about TA, theoretically, it can be
concluded that smaller values of TA convert aiCLS to
a one pass algorithm and significantly reduce
efficiency. Figure 5 illustrates classification accuracy
and data reduction of aiCLS while TA changes from
very low value (0.5) through high (0.99);
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Table V shows both data reduction and classification
accuracy for TA in the range of [0.8,0.99].
Figure 5 indicates divergence for small values of
affinity threshold. Whenever aiCLS fails to converge,
it achieves low classification accuracy and low data
reduction. Small values of TA, causes early
satisfaction of stopping criteria of iterative clonal
selection and generation of low affinity antibodies.
Ionosphere for TA equals 0.8, results a good sample of
divergence of aiCLS.. Over 4500 memory cells were
generated and the accuracy was 90% while the best
obtained consequence was 126 memory cells and
95.8% accuracy achieved for TA was equal to 0.95.
The graphs of Figure 5 can be divided to three parts.
The first part of the graph is where increment of TA
results in slightly data reduction and almost no
improvement in accuracy (e.g. from 0.5 through 0.8
on Wine); the average number of execution of
iterative clonal selection is close to one at these
values. This part of graph demonstrates divergence.
After that, there is always a jump of accuracy in graph
and, at the same time, a big step in data reduction.
This part indicates start of convergence; after that,
there will be slight improvement in accuracy and
almost no change in data reduction of algorithm or
slight increment of data compared with the lower
values of TA. Until the third part of the graph, which
shows up only for some datasets. Datasets such as
Ionosphere and Iris, have a significant decrease in
accuracy in the last steps (TA = 0.99 for Iris).
Therefore, the learner is over fitted. The classifier is
too specialized for training data and loses its
generalization for input data.



TABLE IV. OPTIMUM PARAMETERS OF AICLS ALGORITHM FOR BENCHMARK DATASETS

Dataset Wine Iris Sonar Diabetes Ionosphere
Number of best matches (N) 10 5 1 1 7

Affinity Threshold (TA) 0.95 0.97 0.9 0.96 0.95
Suppression Threshold (σs) 0.08 0.06 0.04 0.05 0.07

Clonal Rate 10 10 10 10 10
Natural Death Threshold

(σd)
0.5 0.5 0.5 0.5 0.5

Number of Seed Cells 0 0 0 0 0

TABLE V. EFFECT OF AFFINITY THRESHOLD ON MEMORY CELL COUNT (M) AND CLASSIFICATION ACCURACY (P)

0.8 0.9 0.95 0.97 0.99
M P M P M P M P M P

Wine 112 90.3% 49.3 95.0% 66.4 98.2% 82.2 97.8% 109.8 98.1%
Iris 48.13 95.4% 24. 3 95.1% 26.9 97.3% 29.9 98% 35.8 96.1%
Sonar 419.7 90.4% 129.6 92.7% 151.6 93.7% 167.9 93.7% 182.7 93.9%
Diabetes 157 74.9% 109.8 75.2% 215.3 77.4% 259.7 78.3% 468.9 79.8%
Ionosphere 4531 90.1% 414.6 91.7% 126 95.8% 127 95.2% 136.3 94.5%

Figure 5. Effect of affinity threshold: classification accuracy and data reduction

It should be noted here low values of affinity
threshold and natural death threshold depend on each
other in some aspects. Let values of TA and σd be
equal to 0.5. Thus, natural death eliminates all
antibodies with the affinity less than 0.5; then,
iterative clonal selection calculates average affinity of
clone. Therefore, if there is a living antibody,
stopping condition is met although antibodies still
have low affinity. More discussion of σd is held in 4-
2-3.
While the relationship of affinity threshold and
natural death threshold is the cause of divergence of
the first part of graphs in Figure 5, the relationship
between high values of affinity threshold and
suppression threshold causes over-fitting of classifier.
High affinity threshold reduces diversity of population
and generates self-recognizing antibodies, combined
with a high value of σs ; all of these cells are
eliminated and only the best one survives. This
process is repeated for the whole training antigens and
the result of training process is a set of antibodies,
which is too specialized to antigens and has no
generalization. Therefore, the generated classifier is
over-fitted and memory cells are increased in number.
A good example of the over-fitted classifier is Sonar
dataset when TA is 0.99. In this case, classification

accuracy on training data was 100% while, for test
data, it was less than 88% for an average of three
runs.
As a result of the experimental results and normalized
data, the best values for TA were in the range [0.9,
0.98] while the value of natural death stayed in [0.2,
0.6] and suppression threshold was in the range of (1-
TA) to 2*(1-TA), inclusively.

2) Suppression Threshold Analysis
Both network suppression and clonal suppression are
based on suppression threshold parameter. Therefore,
this parameter is the key in population control
mechanism. Suppression threshold could be defined
as the minimum distance of any given antibody pair.
Hence, lower values of σs result in smaller recognition
regions and generation of more memory cells and vice
versa; larger σs reduces the number of memory cells
and increases recognition region. Therefore, small σs
makes memory cells more localized and, similar to
the antigen and its larger values, it makes memory
cells more generalized. Localization leads the
classifier toward over-fitting and generalization
reduces classification accuracy on the overlapped
complex classes. Therefore, there is a trade-off
between number of memory cells and classification
accuracy.
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TABLE VI. EFFECT OF SUPPRESSION THRESHOLD (ΣS) ON MEMORY CELL COUNT (M) AND CLASSIFICATION ACCURACY (P)

0.4 0.5 0.6 0.7 0.8
M P M P M P M P M P

Wine 205.3 97.9% 154.3 98.1% 117 98.3% 94.7 98.2% 80.93 98.2%
Iris 45 97.5% 36.4 97.9% 28.9 98% 23 27.8% 20.2 96.1%
Sonar 129.6 92.7% 116.3 92.1% 114.3 91.2% 103.4 90.3% 94.5 89.6%
Diabetes 324.6 80.0% 259.7 78.3% 202.6 74.4% 163.1 73.4% 131.3 72.5%
Ionosphere 186.3 96.3% 168 96.5% 141.3 96.1% 126.6 95.8% 115.6 92.9%

Figure 6. Effect of suppression threshold (σs) on classification accuracy and data reduction

Figure 6 shows the effect of this parameter on
classification accuracy and data reduction and Table
VII illustrates numeric values of accuracy and data
reduction in the range of [0.4, 0.8].
Table VI gives the trade-off between data reduction
and classification accuracy. It can be observed that
increment of suppression threshold always increases
data reduction; however, increment of classification
accuracy is not guaranteed.

1) Analysis of Other Parameters
Here, effectiveness of other parameters of aiCLS is
discussed. Parameters such as clonal rate, number of
best matches (N), number of seed cells and natural
death threshold (σs), which have lower dependence on
input data were compared with the previously
discussed parameters. Therefore, the same values
were used for these parameters for all datasets, except
for one of them, which is number of best matches (N).
Number of best matches and clonal rate were both
effective in computational complexity of the
algorithm through altering the number of clones
generated in the clonal selection. Increment of the
number of clones increased computational complexity
of clonal selection; however, in addition, population
converged faster. Due to the experimental results, the
values less than five for clonal rate resulted in the
divergence or reduction of convergence speed since it
reduced size of population and led to the lack of
exploitation and exploration.
Number of best matches was also effective in
dissimilarity proportional clonal selection. It was
mentioned that this parameter was not completely
independent from input data. That was because of the
dependence of the parameter on suppression
threshold, which was a data-dependent parameter.
Small values of suppression threshold limited the
minimum distance of antibodies; therefore, larger
values of N increased the probability of biasing to

earlier antigens. Although the parameter had no
significant effect on classification accuracy, for best
achieving results, the value of N were determined
according to the value of suppression threshold.
Natural death threshold determined recognition
region. If the affinity of an antibody to the antigen is
less than σd, the antibody does not recognize antigen;
so it’s not stimulated and dies in natural death.
Theoretically, the value of this parameter can be
between the range of 0 and 1. Small values of σd
slightly increases computational complexity and large
values decreases diversity of population. Due to the
experimental results, value of σd was better to be set
lower than half of TA. The final parameter discussed
in this section is the number of seed cells. This
parameter increased accuracy and convergence speed
in some datasets, but it did not alter the results as
much as other parameters. Since the compared
algorithms did not employ this parameter in order to
have a fair comparison with other classifier method,
the value of the parameter was set to zero for all data
sets.

C. Comparative Analysis of Classification Accuracy
The results of aiCLS have been compared with three
artificial immune classifiers. The primary one was
AIRS2 (10). The most popular and highly cited one is
artificial immune supervised learning algorithm.
However, since the results of AIRS2 and the first
version of AIRS (7) are not completely equal, both
versions of AIRS have been included in the
comparative analysis. The third algorithm is SAIS, a
simple and compact immune classifier, which
outperformed AIRS in Diabetes and Iris but had lower
efficiency than AIRS in Ionosphere. Table VII shows
mean and standard deviation of classification
accuracy of aiCLS and other immune classifiers in
percentage.
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Table VII demonstrates that outperforms results other
immune classifiers on datasets of test bed. Note that,
the maximum difference between aiCLS and AIRS is
on Sonar dataset, which is a high dimension dataset;
meaning that aiCLS is more robust to the curse of
dimensionality. In addition, Table VIII compares
aiCLS and a variety of popular classifiers and some of
state-of-art classification methods such as C4.5+m+cf
(23) ,AdaBoost SVM (24).

TABLE VII. COMPARISON OF AICLS AND OTHER IMMUNE
CLASSIFIERS' CLASSIFICATION ACCURACY ON BENCHMARK DATA

Clas
sifier

Wine Iris Sonar Diabe
tes

Ionosph
ere

aiCL
S

98.2%
(1.2)

98.0%
(2)

92.7%
(6.2)

78.3%
(5.5)

95.8%
(1.2)

AIR
S2

- 96.0%
(1.9)

84.9%
(9.1)

74.2%
(4.4)

95.6%
(1.7)

AIR
S

- 96.7%
(3.2)

84.0%
(9.6)

74.1%
(4.4)

94.9%
(0.8)

SAI
S

97.1%
(4.7)

97.3%
(4.7)

- 77.4%
(5.7)

87.5%
(4.4)

TABLE VIII. COMPARISON OF AICLS AND OTHER CLASSIFIERS' RESULTS ON BENCHMARK DATA

Rank Wine Iris Sonar Diabetes Ionosphere
1 IncNet 98.9 Grobian 100 aiCLS 92.7 aiCLS 78.3 3-NN +

simplex
98.7

2 SSV opt-
prune

98.3 aiCLS 98.0 TAP MFT
Bayesian

92.3 Logdisc 77.7 3-NN 96.7

3 aiCLS 98.2 SSV 98.0 Naive MFT
Bayesian

90.4 IncNet 77.6 IB3 96.7

4 kNN 97.8 C-MLP2LN 98.0 SVM 90.4 DIPOL92 77.6 MLP + BP 96.0
5 SSV opt-

node
97.2 PVM 2-

rules
98.0 Best two-

layer
MLP+BP
12hidden

90.4 DPA 77.5 aiCLS 95.8

6 SAIS 97.1 SAIS(10-
fold)

97.3 AIRS2 84.9 SAIS 77.4 AIRS2 95.6

7 C4.5+m+cf 97.0 PVM 1-
Rule

97.3 MLP+BP,
12 hidden

84.7 SMART 76.8 AIRS 94.9

8 FSM 96.1 AIRS 96.7 MLP+BP,
24 hidden

84.5 GTO DT 76.8 C4.5 94.9

9 AIRS2 96.0 1-NN
Manhattan

84.2 kNN 76.7 RAIC 94.6

10 aiNET 96.0 AIRS 84 ASI 76.6 SVM 93.2
11 CART 96.0 MLP+BP,6

hidden
83.5 AdaBoost

SVM
76.6 Nonlinear

perceptron
92.0

12 FUNN 95.7 FSM-
method?

82.6 Fisher DA 76.5 DB CART 91.3

13 1-NN
Euclidean

82.2 MLP+BP 76.4 Linear
Perceptron

90.7

…
18 C4.5+m+cf 93.1 C4.5+m+cf 89.8
20 SAIS 87.5
…
25 AIRS2 74.2

D. Comparative Analysis of Data Reduction
Computational cost of the classification process is
O(m*n), where m is count of generated memory cells
and n is size of feature vector. Therefore, reducing the
count of memory cells increases classification speed.
Table IX compares data reduction capability of
aiCLS, AIRS2 and AIRS. It have been shown that
aiCLS outperforms AIRS in classification accuracy
and data reduction. Therefore, the classifier trained by
aiCLS is faster and more accurate than AIRS.

E. Computational Complexity
It has been mentioned that converting an iterative
algorithm to one-shot learning algorithm does not
guarantee reduction of computational complexity.

Computational cost of aiNET for each iteration is
O(p3), where p is length of input vectors (5).
Therefore, computational cost of aiCLS is O(p3*k),
where k is the average number of iterations of
iterative clonal selection required for meeting
stopping criteria. According to the experimental
results for benchmark datasets, average execution of
iterative clonal selection has been less than ten times.
Therefore, k is too smaller than p3 and it is ignorable
in the computational cost of aiCLS. Therefore, the
computational cost of aiCLS is assumed as O(p3).
Table X shows the average run of Iterative clonal
selection.



TABLE IX. COMPARISON OF DATA REDUCTION CAPABILITY OF AICLS AND OTHER IMMUNE CLASSIFIERS

Dataset Wine Iris Sonar Diabetes Ionosphere

Size 161 120 192 691 200

aiCLS: Memory cells 80.9/49% 28.9/76% 129.6/32.5% 259.7/62% 126.6/37%

AIRS2: Memory cells 30.9/74% 177.7/7% 273.4/60% 96.3/52%

AIRS: Memory cells 42.1/65% 144.6/25% 470.4/32% 140.7/30%

TABLE X. AVERAGE RUNS OF ITERATIVE CLONAL SELECTION

Dataset Wine Iris Sonar Diabetes Ionospher
e

Average
Iterations

(k)
3.7 4.5 1.6 4.1 3.9

V. CONCLUSION

A new artificial immune classifier (aiCLS) has been
proposed in this paper. Novelty of aiCLS lays in its
iterative clonal selection and dissimilarity
proportional clonal suppression (DPCS). For any
given antigen, iterative clonal selection generates
optimum antibodies, which was done through
successive cloning and affinity maturation until a
certain stopping criterion was met. Once the stopping
criterion has been met, iterative clonal selection is
completed and optimum antibodies are generated to
recognize the antigen. Since this process repeats for
any training antigens, aiCLS generates optimum
antibodies for all training antigens. Therefore,
classification process is supposed to be accurate if and
only if suppression process maintains these optimum
cells. Hence, DPCS stage is proposed to reduce
redundant self-recognizing antibodies while
maintaining optimum antibodies generated for the
antigen. Therefore, DPCS stage is effective in data
reduction, iterative clonal selection stage increases
convergence speed of algorithm and both of them are
effective in classification accuracy. The proposed
method outperforms the accuracy of famous
classifiers for the cited datasets found in UCI
repository. In addition, the results of aiCLS on Sonar
dataset determines that this method is significantly
more efficient than AIRS on the datasets with high
dimensional feature vector.
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