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Abstract—Regression modeling in sensor networks is a difficult task due to (i) the network data is distributed among 
the nodes and (ii) the restricted capabilities of the sensor nodes, such as limited power supply and bandwidth capacity. 
Recently, some distributed approaches have been proposed based on gradient descent and Nelder-Mead simplex 
methods. Although in these methods, the energy consumption is low, but the accuracy is still far from the centralized 
approach. Also, they suffer from a high latency. In this paper, a two-fold distributed approach has been proposed for 
doing regression analysis in wireless sensor networks. After clustering the network, the regressor of each cluster is 
learned by the integration of particle swarm optimization and harmony search. Afterwards, cluster heads collaborate 
to construct the global network regressor using a weighted averaging combination rule. The experimental results 
show the proposed approach improves the accuracy and latency significantly while its energy consumption is 
considerably acceptable in comparison with its popular counterparts.

Keywords-sensor networks; distributed regression; particle swarm optimization; harmony search; multiple classifier 
systems.

I. INTRODUCTION

Wireless sensor networks consist of many sensor
nodes which are spatially distributed in an area. 
Remote monitoring is the main task of a sensor 
network in which each sensor node is required to 
capture some phenomena of interest. Instead of 
transmitting raw measurements, the sensor nodes can 
use their own capabilities to carry out local 
computations and only transmit useful information. In-
network information processing can decrease the 
amount of data transmissions and substantially 
prolongs the network lifetime. This is because the 
communication has been found to be the most 

important factor in consuming the power of each 
sensor node rather than data processing.

Increasing the amount of the collected data in the 
network requires developing some efficient techniques
in order to extract the useful information. Gathering all
the collected data in a fusion center, known as the 
centralized approach, needs a huge data transmission
which causes remarkable decreasing in the network 
lifetime. For this reason, distributed data analysis has 
been considered as one of the interesting, and of 
course, a challenging task in the sensor networks. 
Particularly, regression modeling has been addressed
in this paper. Like other well-known machine learning 
approaches, regression methods [1] work basically in a
centralized environment where both data and



processing are centrally available. In a wireless sensor 
network, data is distributed among the nodes as well as
the processing resources. Hence, employing common 
regression techniques in such an environment is not
straightforward. Besides that, the limitations of the 
sensor nodes, such as restricted power supply and 
bandwidth capacity [2], are accomplished the 
difficulty of doing regression over sensor networks. 

Recently, some efforts have been done for
regression analysis in sensor networks which try to 
learn the network model using an indirect optimization
based strategy [3, 4], in which a learning problem is 
considered as an optimization one. The idea of these 
approaches is to learn the network model
incrementally through a pre-established Hamiltonian
path among the nodes. An incremental version of the 
gradient descent optimization technique, denoted as 
IG, has been proposed by [5]. In IG, firstly, a 
Hamiltonian path is established among the nodes and 
then, one iteration of the gradient descent is mapped
into a network cycle. An accurate final regressor might
be achieved after passing many network cycles. In [6],
IG has been improved in terms of the accuracy and
latency, by clustering the network and employing
incremental gradient within the clusters. By setting up
the Hamiltonian path among the cluster heads, the
convergence rate is increased [7]. An incremental
optimization approach based on Nelder-Mead Simplex
method, denoted as IS, has been proposed in [8] and
[9] which has been integrated with boosting and re-
sampling techniques, respectively. Their results show
better accuracy and convergence rate compared to the
gradient-based counterparts. However, the accuracy of 
all distributed approaches is still far from the
centralized approach. Also, both of the gradient and
Nelder-Mead Simplex based approaches suffer from a
high latency due to traversing the network, node by 
node.

So, improving the accuracy and latency are our
main motivation to move to a new distributed 
approach for doing regression analysis over sensor
networks. In this paper, we have proposed a
distributed evolutionary based approach which
integrates two efficient optimization methods, particle
swarm optimization (PSO) and harmony search (HS), 
to learn the network regressor.

The idea of the proposed approach, HDP 
henceforth (Harmony Search-Distributed PSO), is to 
learn the network model in two folds. This approach is 
an extension of our recently published paper in [10]. 
Firstly, the network is partitioned into several clusters 
and the regressor of each cluster is learned, separately.
To learn a cluster regressor, a swarm of particles is 
dedicated to the cluster, and then distributed among 
the cluster nodes to form several sub-swarms, one per 
cluster node. The cluster swarm is then optimized
through optimization of the sub-swarms using the PSO 
algorithm. The main challenge in this scheme is to
guarantee the convergence of the sub-swarms to the
corresponding cluster regressor. In order to deviate
with this problem, the HS algorithm has been
employed in the cluster head and the final cluster 
regressor is obtained after the completion of
improvisation process. Secondly, the cluster heads
collaborate to construct the global model,

incrementally. We have compared the proposed
approach, with its popular counterparts regarding to
the accuracy, latency, and energy efficiency.

Section 2 provides a brief background on the 
regression analysis, particle swarm optimization, and 
harmony search. Section 3 describes our assumptions
and formulates distributed regression problem in
sensor networks. The proposed approach is introduced
in section 4. The evaluation and experimental results 
are discussed in section 5 and the last section is
concluding remarks.

II. PRELIMINARIES

A. Regression Modeling
The task of supervised learning is to extract a

function from a training data set DS = {(x1, y1), ..., (xN,
yN)}. Every data point consists of some independent
input variables (or features) and the desired dependent 
output variable (or label). If the output takes its value 
from a discrete space, the learning problem is 
classification; otherwise it is called regression. In 
regression, it is assumed that a model defined up to a 
set of parameters x as:
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where g(.) is the model, y is a real-valued label, and 
is a parameter [11]. If the form of g(.) is known, the 
regression is called parametric in which the learning 
program has to optimize , such that the 
approximation error be minimized:
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where * is the optimal parameter of the model, (xi, yi)
is i-th data point, and N is the size of the training data 
set. In non-parametric regression, there is not any pre-
specified model and the predictions are conducted
based on similarities among the data points [11]. In
this paper we focus on doing distributed parametric 
regression in wireless sensor networks. 

B. Particle Swarm Optimization (PSO) 
There are some optimization techniques which 

inspired from nature. The PSO algorithm is a
population-based search algorithm based on the
simulation of the social behavior of birds within a 
flock [12]. The movement of particles in search space 
is based on their associated velocity vectors at every 
time step z:
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where pij, pbestij, and gbestj are the position of the 
particle i, the best position founded by the particle i,
and the best particle encountered in the swarm, in 
dimension j, respectively. The parameter w, which is
called as inertia weight, stands for exploration-
exploitation trade-off. The parameters c1 and c2 are
two positive acceleration constants to scale cognitive 
and social components, respectively, and r1(z) and 
r2(z) are two uniform random numbers at time step z.



Every particle can move to a new position by adding 
up its new velocity vector to its current position:
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The equations (3) and (4) are updated iteratively by 
the particles until the stopping condition is met. The
PSO algorithm has a superior performance for 
exploring real-valued search spaces, e.g. regression 
analysis [15, 16]. It has been widely used in many 
optimization problems in wireless sensor networks 
(e.g. [13, 14]). However, up to our knowledge, it has 
not been used for learning the network data model.

C. Harmony Search (HS) 
Harmony Search conceptualizes a behavioral

phenomenon of music players in improvisation 
process [17]. The HS algorithm is a population based
optimization technique. In HS, the individuals are 
denoted by harmonies which are located in Harmony 
Memory (HM). After HM initialization, new 
harmonies could be generated based on either 
considering the HM or permissible range of each 
decision variable. The steps of HS algorithm are as
following [18]: 

1. Initialize the optimization problem and algorithm 
parameters.

2. Initialize the harmony memory.
3. Improvise a new harmony from HM.
4. Update HM.
5. Repeat the steps 3 and 4 until the termination 

criterion is satisfied.

Generating a new harmony is called improvisation. In 
step 3, to improvise a new harmony vector with d
decision variables, ),...,,( 21 dxxxx , some 
probabilistic rules should be considered as depicted in 
Figure 1. The HS algorithm presents some advantages 
over the other optimization techniques [19] such as: 

 HS imposes a fewer mathematical requirements. 
 HS can handle discrete variables as well as 
continuous ones. 

 HS generates a new harmony after considering all of 
the existing harmonies in HM. 

The HS has successfully been used in many 
optimization problems, and some of its variants have 
also been introduced [18, 19], recently.

III. ASSUMPTIONS AND PROBLEM STATEMENT

A. Assumptions 
We consider a sensor network with n sensor nodes 

which are spatially distributed in a bi-dimensional
area. The sensor nodes can localize themselves by 
performing a localization algorithm [20]. Also,
suppose the network has been partitioned into C
clusters, designating a cluster head for each one, CHc
(c=1,…,C). Since clustering is not the subject of this 
paper, we assume the network has been clustered via a 
well-known clustering algorithm [21]. The 
communication model of the network has been 
depicted in Figure 2.

B. Distributed Regression in Sensor Networks 
Suppose the nodes capture some spatiotemporal

measurements. Every sensor node i stores each 
measurement as a quadruple <xi, yi, ti,j, li,j>, where 
(xi,yi) is the location of node i, and li,j is the captured 
phenomenon of interest (e.g. temperature) by node i at

Figure 1. A new harmony is improvised using three probabilistic 
rules based on HMCR, PAR, and (1-HMCR) probabilities.

Figure 2. Communication model of the network

the epoch number ti,j. The objective is to fit a model,
gnet(x,y,t| ), on the network data such that given an 
arbitrary location (x, y) and an epoch number t, g(.)
predicts the label l as the output as accurate as
possible. In other words, the learning program aims to 
optimize the coefficients vector of the model, i.e. , so
that the approximation error is minimized:
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where m is the number of the measurements for each 
node. The Eq. (5) can be rewritten as [5]:
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In order to minimize the Eq. (5), all the network data
is needed which is distributed among the nodes. In [5],
every sensor node i is responsible to minimize its own 
gi(.) respect to its local data set. Therefore, the 
centralized processing required to compute the Eq. (5) 
can be converted into distributed processing. The 



solution will be completed when some collaborations
are formed between the nodes. In the gradient and 
Nelder-Mead Simplex based approaches, this last step 
is resolved by setting up a Hamiltonian path among 
the nodes. In the next section, we will explain a
different evolutionary based approach to overcome 
shortcomings of these approaches. 

IV. HDP APPROACH

Firstly, a swarm of particles is dedicated to each 
cluster in order to learn the relevant cluster regressor.
Then, the cluster head distributes the cluster swarm
among the cluster nodes and several sub-swarms are 
formed. Each cluster node tries to optimize its own
sub-swarm through employing the PSO algorithm.
Next, each cluster node sends its best particle to the 
corresponding cluster head. Receiving the best 
particles, the cluster head creates a harmony memory
and runs the HS algorithm to obtain the cluster
regressor. When all the cluster heads finish their
improvisation processes, they collaborate to build the 
global model, incrementally. The HDP is described in 
more details in the following steps.

A. Learning the Regressors of Clusters 
For the sake of simplicity and clarity, we focus on

learning the regressor of a particular cluster, for 
example, cluster c. Let nc and gc denote to the size and 
regressor of the cluster c, respectively. Within the 
cluster c, the cluster nodes are required to optimize an
objective function, similar to that of Eq. (5), to learn gc
as:
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Each cluster node sc,i (i=1,…,nc) has to visit all the 
cluster data to compute the Eq. (8), while it has only 
access to its own local data set. In order to resolve this 
problem, re-sampling technique has been used [8]. Let 
each cluster node sc,i computes its local temporal data
model using a simple curve fitting method. These
temporal models can be computed by omitting the 
spatial part from gc. Afterwards, all the cluster nodes
send their local temporal models as well as their 
locations to the cluster head. Next, the cluster head
broadcasts this information to all its member nodes. At
this point, each cluster node regenerates those parts of 
the cluster data, which are not accessible for it, and 
appends them to its local data set. Using this 
technique, all the cluster nodes are given a nearly 
identical data view of the cluster data. Now, every 
cluster node will be able to compute the Eq. (8).
Although the fitness (RMS error) of each particle must
be evaluated based on the actual data points, the
difference between the actual data and regenerated 
ones is trivial respect to high accuracy of the local 
temporal models [8]. So, instead of transmitting the
actual data between the cluster nodes, which brings
remarkable energy consumption, the cluster nodes can
efficiently evaluate their particles based on the unified
in-cluster data view. In Figure 3, this step has been
shown as in-cluster data view unification. 

In order to create the cluster swarm, one may 
forces CHc to initialize the swarm and distribute the 
particles among the cluster nodes. But due to energy 
conservation considerations, we let CHc send only the 
initial parameters to the cluster nodes. For this 
purpose, CHc builds a driver message, containing two 
parameters PF (particle factor) and DV (domain 
vector), and sends the message to its member nodes. 

Figure 3. In-cluster optimization steps for learning one cluster 
regressor

The parameter PF denotes to the size of each sub-
swarm and DV includes the permissible range of each 
dimension. Receiving the driver message, each cluster 
node sc,i creates its own sub-swarm by the size of PF
and initializes its particles respect to DV. Then, sc,i
starts its local optimization process based on the PSO 
algorithm until the stopping condition is satisfied. At 
this point, sc,i sends its best particle, gbestc,i, to CHc.

Commonly, a number of particles’ migrations
should be performed among the sub-swarms to give a 
guarantee that the sub-swarms are finally converged to 
the cluster regressor. But these migrations might
impose undesirable communication overheads and 
energy consumptions. For this reason, instead of
performing explicit migrations, we have employed the
HS algorithm as it has almost the same functionality of
the migration strategy. As pointed out in section 2, the
third property of HS leads to improvise a new
harmony through consideration of all the harmonies.

Accordingly, we let CHc compose a harmony
memory using the received best particles. Afterwards,
the cluster head runs the HS algorithm, which can
simultaneously combine and improve the best 
particles, to obtain the final cluster regressor, i.e. gc. It 
is obvious that the size of the harmony memory, HMS,
equals to the size of the cluster, nc. The steps of in-
cluster optimization processes have been shown in
Figure 3. After obtaining all the clusters’ regressors,
the global model, gnet is built through the cluster 
heads’ collaborations.



B. Learning the Global Model 
Up to now, we have presented a bottom-up point 

of view from computing the local temporal models to
obtaining the clusters’ regressors. In order to construct 
the global model, it is helpful to make a top-down 
viewpoint. As a consequent, we will be confronted
with a multiple classifier system in which the ultimate 
goal is to obtain a more accurate learner by combining 
several base learners. A set of consistent classifiers
may be appeared in a system in the following ways 
[22]: 

 Different initializations 
 Different parameter choices 
 Different architectures 
 Different classifiers 
 Different training sets 
 Different feature sets 

In HDP, each cluster regressor is learned based on
the relevant cluster data. Thus, the presence of disjoint
training data sets, one per each cluster, is the reason to
have several regressors (real-valued classifiers) in our 
system. On the other hand, some combination rules 
have been proposed for combination of several base 
learners [23, 24]. Although choosing the best option
depends on the problem at hand, some efforts have
been done to make a comparison between the popular
combination rules [25]. The results show that the
weighted averaging rule can efficiently work in many
applications, practically. In addition, it can be simply 
applied in a distributed environment. Accordingly, we
have used the weighted averaging rule to combine the
clusters’ regressors to build the global model. To this
end, the weight of each cluster regressor is computed 
based on its RMS error on the cluster data. Within the
cluster c, CHc sends its regressor gc to the cluster 
nodes. The cluster node sc,i computes a partial RMS
error SEc,i for gc based on its local data set, and sends 
the result to the cluster head. Then, CHc computes the 
final RMS error of its regressor as:
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and, the initial weight of gc is computed as:
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These initial weights are normalized as:
c

c
wŵ (12)

where:
C

i iw
1

Finally, the global model is computed as the linear
combination of the weighted regressors: 
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The only remaining issue is that computing in Eq. 
(12) needs to know the RMS errors of all the clusters’ 
regressors. Although it is possible to gather all the 
regressors as well as their initial weights in the fusion 
center, but it is more preferable to compute the 
equations (11)-(13), distributively, particularly when
the network grows in size. The global model can
simply be obtained through two traversing the cluster 
heads, starting from CH1 to CHC, and vice versa, as

Figure 4. The cluster heads collborate to build the final network model.

shown in Figure 4. Let u,v denote to the obtained 
regressor of the clusters u, u+1, …, v as:

i
v

ui ivu gŵ, (14)

As shown in Figure 4, at the end of the first traversing, 
is obtained by CHC. In the second traversing, each 

cluster head CHk receives and k+1,C from CHk+1,
computes kŵ and k,C according to Eq. (12) and (14), 
respectively, and sends as well as k,C to CHk-1. In
this way, the Eq. (13) is computed incrementally, and 
CH1 will be able to deliver gnet to the fusion center.

V. EVALUATION AND EXPERIMENTS
In order to demonstrate the effectiveness of the 

proposed approach, we have used available Berkeley 
Intel Lab data set [26] which has been known as a 
standard data set used in many research papers in the 
context of WSN (e.g. [27], [29, 30]). This network 
consists of 54 sensor nodes with 2 corrupted ones. 
Sensor nodes have captured four phenomena
temperature, humidity, light and voltage in each 
reading and expand them by date, time, epoch number,
node location, and node id to compose one record. In 
our simulation, we have chosen node location (x, y),
epoch number, and temperature from each record. It 
has been assumed that the network model is refreshed 
at the end of each day. Therefore, we have selected 
one-day measurements from the Berkeley data set
(between Feb. 28th and Feb. 29th, 2004). So, each 
sensor node has 2880 data points (m = 2880), and 
there are totally 52×2880=149,760 records in the
network in our experiments.

In the simulated network, the sensor nodes have 
been distributed in a two dimensional area, within the 
sensing 
to their real positions [26]. The network has also been 
partitioned into 5 clusters as shown in Figure 5.

We have followed [27] to choose a model for
fitting on the network data. They have suggested three 



polynomial models, and reported their RMS errors on 
the Berkeley data set. It has been found that a linear 
space with quadratic time model has the lowest RMS 
error as:

54
2

321)|,,( ttyxtyxg (15)

Accordingly, Eq. (15) has been chosen to fit on the 
network data. Before the learning process starts, the 

Figure 5. The simulated network

parameters of PSO and HS algorithms should be 
initialized by the cluster heads. The inertia weight, w,
varies dynamically from wmax to wmin according to a
linear decreasing strategy to allow the particles
explore in the initial search steps while favoring 
exploitation as time increases [28]:

)()( minmax
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p
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where i and pmax denote to the current iteration number 
and the maximum number of iterations of PSO,
respectively. It has experimentally been found that 
c1=c2=2.0 to be most suitable. The parameter PF is set
equally for each cluster. So, each cluster’s swarm has 
PF×nc (c=1,...,C) particles in total. As discussed in 
section 4, the size of the harmony memory is set to the 
size of each cluster. The parameters PAR and bw are 
dynamically varied according to Eq. (17) and (18) to 
improve the performance of the HS [18]:
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where hmax is the maximum number of iterations in HS 
and is set as [18]:
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The proposed approach has been compared with its 
three popular counterparts: the centralized, 
Incremental Gradient (IG), and Incremental Nelder-
Mead Simplex (IS) approaches. The results have been 
analyzed in terms of the latency, prediction accuracy, 
and energy efficiency. All the simulations have been 
done using Java programming atop Eclipse 
environment.

A. Latency 
Usually, the latency is measured based on the 

running time. But it is not possible to measure the
latency of any WSN application in such a way. All the 
sensor network services can be divided into two broad 
categories: application layer and network layer 
services. The available services in the application layer 
are more divided into event-driven and data-centric

Table 1. The prediction accuracy comparision

Approach Centralized HDP IS IG

RMSE 2.536 3.804 5.059 21.549

applications. An event-driven application, e.g. target 
tracking, requires detecting and handling distinct 
events as well as making and keeping the exact 
ordering between messages. Thanks to sequential 
nature of the most of the event-driven applications, the 
latency can be exactly measured by computing the 
running time of the application. 

In the current problem, all the discussed 
approaches are data-centric where the algorithms are
derived based on the collected data, periodically. The 
efficiency of these applications depends on performing 
the large part of the processing in parallel. For 
example, in the centralized approach, most of the time 
is spent for transmitting the sensors readings from the 
sensor nodes to the fusion center, which is occurred in 
parallel. Also, in HDP method, all in-cluster 
optimizations are performed simultaneously within the 
clusters, as was shown in Figure 3. With regard to
such parallel processing steps, the running time cannot
measure the real delay of each approach for building 
the network model. For this reason, it is not common 
to measure the latency in data-centric applications in 
the context of WSNs ([3-10], [27]).

However, we followed from [6] to define the 
latency as the number of iterations to meet all the 
network data for the first time. For the centralized
case, this happens in the first iteration of the learning 
program, i.e. O(1). In both IG and IS algorithms, at 
least one network cycle must be met to visit the entire 
network data for the first time. This causes the latency 
to be in the order of the network size, i.e. O(n). In
HDP, the network nodes start their operations in
parallel. In other words, as soon as each cluster node
starts its optimization process based on the PSO, all
the network data are seen. Therefore, the latency of
HDP is O(1) which is equivalent to the centralized
one. 

B. Accuracy 
The RMS error of the final model has been used to

show the prediction accuracy of each approach. In 
order to avoid overfitting problem, we have adopted 
10 fold cross validation technique [31]. In the training 
phase, one-tenth of each sensor’s local data set has 
been used for the test, and the network model has been 
learned using the remaining data points. This process 
has been repeated ten times and the averaged results 
have been reported in Table 1. As all the data points
are available to the fusion center in the centralized
approach, a high accurate model can be achieved. In 



comparison to the centralized one, IG obtains an
average accuracy, while IS brings more accurate
model. As shown in Table 1, HDP clearly works better
than the IG and IS approaches and obtains an
acceptable accuracy in comparison with the
centralized approach. This happens thanks to
employing in-cluster optimizations based on the PSO
and HS algorithms, and consequently the high
accuracy of each cluster regressor. Also, applying a

Table 2. Nine scenarios for analyzing the behavior of HDP
Scenario No. PF HMS

1 3 cs
2 3 2×cs
3 3 3×cs
4 5 cs
5 5 2×cs
6 5 3×cs
7 10 cs
8 10 2×cs
9 10 3×cs

well-qualified combination rule leads to build a high
accurate final model as well.

In order to see the influence of the important
parameters on HDP, nine scenarios have been defined
as shown in Table 2. In each scenario, PF and HMS
parameters have been set to different values. Let cs
denotes to the cluster size in general. The parameter
PF has been set to 3, 5, and 10 and HMS has been set
to cs, 2×cs, and 3×cs in different scenarios. By setting
HMS to 2×cs and 3×cs, we mean two and three best
particles from each cluster node are sent to the
corresponding cluster head, respectively.

The final RMSE of each scenario has been shown
in Figure 6. It can be concluded that employing more
particles and harmonies bring higher accuracy. On the
other hand, creating more particles increases the
complexity of computation in each sensor node. So, a
trade-off should be considered between the accuracy
and computational complexity. Moreover, increasing
the size of the harmony memory in the cluster heads
imposes some additional communication overheads, as
more particles should be sent from the cluster nodes.
Therefore, there has to be another trade-off between
the accuracy and communication cost. These trade-
offs could be resolved according to the pre-defined
intervals for refreshing the network model. In other
words, more expensive settings can be used when a
huge number of measurements have been captured by
the network. In Table 1, we have reported the accuracy
of HDP according to the scenario 4.

C. Energy Efficiency
The total energy consumption of the sensor nodes

is dominated by the amount of communications [32].
Energy efficiency of four approaches has been
compared based on theoretical evaluation as well as
the experimental measuring.

We have followed [5] to evaluate the complexity
of data transmissions in each algorithm. Consider the
case where n sensor nodes are distributed in a unit
square area. Also, let L be the size of the parameter to

be learned, i.e. θ. For the sake of simplicity, it will be
assumed that the network is also partitioned into n

clusters with n sensor nodes per cluster [6], when
HDP is being evaluated. In the centralized approach,
every sensor node sends all its data points to the fusion
center over an average distance of O(1) [5]. So, the
communication requirements of this approach equals
to O(4×m×n×1), as shown in Table 3. In both IG and
IS algorithms, the parameter θ is passed between two

Figure 6. The influence of PF and HMS on the accuracy of HDP.

consecutive sensor nodes over an average distance of

)/log( 2 nnO . So, the communication requirements
of IG and IS algorithms per each cycle is O((n-1)×L×

)/log2 nn . In the last step, the final value of θ is
sent by the last sensor node on the Hamiltonian path to
the fusion center, leading to O(L×1) communications.
In HDP, there are three transmission types each of
which with a different average distance as following:

i. Transmission between a cluster head and its
member nodes over an average distance of
d1=O(1 n/ ).

ii. Transmission between two consecutive cluster
heads over an average distance of

d2=O( nn /log2 ).

iii. Transmission between the first cluster head and the
fusion center over an average distance of d3=O(1).

Now, the communication requirements of HDP can be
computed in five parts as following:

Part1. In-cluster data view unification: every cluster
node transmits a vector by the size of v (node’s
temporal model) and two real numbers (node’s
location) to the cluster head in O( n ×(v+2)×d1).

Part2. The cluster head broadcasts the temporal
models as well as nodes’ locations to the cluster nodes
in O((v+2)× n ×d1 ).

Part3. Learning the cluster’s regressor: The cluster
nodes send their best particles by the size of L to the
cluster head in O( n ×L×d1).

Part4. Computing the RMS error of the cluster’s
regressor:

• The cluster head broadcasts its regressor to the
cluster nodes in O(1×L×d1 ). 



 The cluster nodes send the partial squared error of 
the cluster’s regressor to the cluster head in
O( n ×1×d1).

Part5. Learning the global model: 

 In the first traversing the cluster heads, a real 
number is sent between two consecutive cluster 
heads in O(( n -1)×1×d2 ).  

Table 3. Communication order comparison

Approach Communication Order

Centralized )14( mnO

IG )1)/2log)1(( LnnLnIGcyclesO

HDP /)(log2)(1()32(3( 4 nnLnLnLO

IS )/2log)1()1(( LnnLnISCyclesO

 Through the second traversing, a parameter by the
size of L and a real number are sent between two
consecutive cluster heads in O(( n -1)×(L+1)× d2).

 The first cluster head sends the network model by 
the size of L to the fusion center in O(L×d3). 

The total communication requirements of HDP equals
to the sum of the first four parts multiplied by the 
number of the clusters, plus the last part as:

)5)4321(( PartPartPartPartPartnO

Table 3 compares the communication orders of
four approaches. For simplicity, instead of v, its upper 
bound L has been taken into account. As usually 
m>>L, IG is more energy efficient than the centralized 
one. In practice, IG needs to meet much more cycles
compared to IS to achieve an average accuracy. In our 
experiments, IG and IS met 40 and 1 cycles,
respectively. Thus, IG consumes substantially more
energy than IS. From Table 3, it can be concluded that 
the energy consumption of HDP falls between IG and 
IS approaches with (much) farther distance from IG. 

The total energy consumption of four approaches 
has also been measured through the simulation. To do 
this, a simple radio energy dissipation model has been 
used the same as in [33]. Based on this model, energy 
consumed by a sensor node to transmit an l-bit 
message over a distance d is given by:

dlEldlE fselecTX ),( (20)

and receiving an l-bit message expends:

elecRX ElE (21)

The parameter is set to 2 when transmission distance 
is within the transmission radius of the nodes. For the 
experiments in this paper, the parameters for the 
energy consumption model have been set as [34]:
Eelec=50 nJ/bit fs=10 PJ/bit/m2, and l=1000 bits. The 
transmission radius of all nodes is R=15 meters. It is 
assumed that all the transmissions are occurred within

the sensing range R, and hence is set to 2. Also, the 
initial energy of each sensor node is only 2.5 J.

The total energy consumptions of four approaches 
have been compared in Table 4. As it is expected, the 
centralized and IS approaches have the highest and the 
lowest energy consumptions, respectively. The amount 
of energy consumed by HDP is about 1/14 of IG and 
three times more than that of IS. Of course, it should 
be noticed that both IG and IS algorithms require a 
pre-processing step to establish a Hamiltonian path 
between the nodes which considerably imposes an
additional communication overhead. But, it has been

Table 4. Total energy consumption of four approaches

Approach Total Energy Consumption (J)

Centralized 17.56172
IG 0.21058

HDP 0.01593
IS 0.00527

Table 5. Network lifetime comparison

Approach #. of Processed Queries

Centralized 1
IG 310

HDP 1296
IS 6216

omitted in our experiments. The network lifetime has 
also been shown in Table 5. We have defined the 
network lifetime as the maximum number of the 
queries that the node with the highest communications 
runs out of energy after that. In the centralized one, the 
first node is dead at the beginning of the second query.
As shown in Table 5, the network lifetime of HDP is 
about 1/4 of the IS and 4 times more than that of IG.

VI. CONCLUSION
In this paper, a new distributed evolutionary based

approach, denoted as HDP, is proposed for doing
optimization-based regression in sensor networks. The
proposed algorithm considers a clustered network and
learns the regressor of each cluster, separately.
Learning the regressor of each cluster is sponsored by
a swarm of particles, initially distributed among the
cluster nodes, and performing the PSO algorithm on 
each sub-swarm. In order to guarantee the
convergence of the sub-swarms, the best of which is
sent to the cluster head. Afterwards, HS algorithm is 
applied on the received best particles and the cluster
regressor is obtained after completion of improvisation
process. Finally, the global model can be obtained 
through applying the weighted averaging combination 
rule on the clusters’ regressors. Thanks to cluster-level 
parallelism, the latency has been substantially 
decreased compared to IG and IS based approaches. 
Due to high accuracy of the clusters’ regressors, and 
also benefiting from a well-qualified combination rule, 
the accuracy has been improved. The HDP obtains a
model 82% and 24% more accurate than IG and IS 
approaches, respectively. However, in comparison
with the centralized case, the accuracy should be
improved even further. In practice, the energy 
consumption of HDP is respectively 1/1000 and 1/14 



of the centralized and IG, and is three times more than 
that of IS approaches.

Within a cluster, each node has to manage only a
few particles and the corresponding cluster head
should improvise a number of harmonies proportional 
to the cluster size. As both PSO and HS algorithms 
have simple exploration mechanisms and do not use 
expensive mathematical operations, the computational
cost of the in-cluster optimization step is not be a
major concern for the limited processing capabilities
of the sensor nodes. Regarding to the three discussed
metrics, the proposed approach seems to be an
efficient method for learning the network data model.
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