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Abstract— Fast reliable spectrum sensing (SS) is a crucial problem in the cognitive radio systems. To address this 
issue, cyclostationarity-based detection methods, which are generally more complex but more reliable than energy 
detection methods, have been proposed. This paper presents a new method to detect the presence of the second-order 
cyclostationarity in the OFDM-based primary user (PU) signals. The proposed method has a low computational 
complexity, while it presents a performance close to the well-known GLRT-based Dandawaté-Giannakis's method. 
Moreover, since the proposed low-complexity method is robust against the noise uncertainty, it can be a good 
alternative to the energy detection method. We further propose some cooperative spectrum sensing methods to 
improve the detection performance. Extensive simulation results confirm the superiority of the proposed schemes. 

Keywords- Cooperative, Cyclostationarity-Based, Low-Complexity Spectrum Sensing,  Soft Combination. 

I. INTRODUCTION 
Traditional non-beneficial usage of available 

bandwidths, along with the increase in demand for 
higher data rates, leads to the development of novel 
techniques for flexible and efficient access to the 
licensed frequency bands. To avoid causing a 
destructive interference, secondary users (SUs) should 
reliably detect the presence of primary users (PUs). 
Therefore, the ability to perform reliable spectrum 
sensing is crucial to SUs. However, the signals 
received by cognitive radios usually are effected by 
the fading impairments of radio-frequency channels, 
and consequently, SUs should be able to detect very 
week signals in very low SNR situations [1]. 

A common detector that needs no prior knowledge 
about the PU signal is the well-known energy detector 

(ED). But, because of the so-called noise uncertainty 
drawback in EDs family [1], they cannot perform well 
in low-SNR conditions. However, in wireless networks 
there is usually some information about the modulation 
properties of the primary signal [2]. These properties 
could be exploited in the design of detectors that have 
acceptable performance in very low SNRs. One 
popular approach is the cyclostationary (CS) detection 
method [2, 3], which operates much better than energy 
detection, but is generally more complex [4]. These 
detectors can inherently distinguish PUs from SUs as 
well as interferers, if they exhibit dissimilar cyclic 
features. This important requirement could not be 
satisfied by conventional energy detectors [5, 6]. 

One of the key challenges in CS-based spectrum 
sensing is the computational complexity associated 
with CS detection algorithms. In fact, there is a trade-



off among the complexity, the required sensing-time 
and the probability of detection of CS detector. The 
CS detector that recently has been proposed in the 
literature is the multi-cycle detector [7, 8], which is 
based on Dandawaté-Giannakis' algorithm [9]. But the 
main drawback of this approach is its complexity of 
implementation. To meet the sensing-time and 
complexity requirements, in this paper, we propose a 
novel multi-cycle sensing scheme by exploiting the 
second-order cyclostationarity of the OFDM-based 
primary signals. The proposed method drastically 
reduces the implementation complexity, while 
maintaining a comparable detection performance to 
multi-cycle method of [7]. 

In order to further alleviate the impact of 
shadowing and fading impairments, cooperative 
spectrum sensing (CSS) methods are proposed in the 
literature [10, 7]. In this paper, we propose a novel 
cooperative sensing method for fusing the test 
statistics is suggested. Also this method requires more 
communication bandwidth, but has better detection 
performance compared with existing methods. 

This paper is organized as follows. In Section II, 
the system model is briefly introduced. Section III 
presents the proposed and the GLRT-based spectrum 
sensing methods. In addition, computational 
complexities of the proposed, GLRT-based and energy 
detection methods are compared. In section IV, 
cooperative spectrum sensing methods are proposed. 
Extensive simulation results are conducted in Section 
V. Finally, the conclusions are drawn in Section VI. 

II. SYSTEM MODEL AND PRELIMINARIES

In this paper, we assume that CR receives the 
primary signal through Rayleigh fading channel. The 
baseband discrete-time model is given by: 

Mnnwnhsnx ,1,=],[][=][             (1) 

where 2(0, )c hh N :  and 2[ ] : (0, )c ww n N   are 
circularly symmetric complex Gaussian (CSCG) 
random processes, representing time-invariant 
frequency-nonselective Rayleigh fading exposed by 
the channel between PU and CR, and AWGN channel, 
respectively. In addition, ][ns  and ][nx  are 
respectively the PU signal and the received signal at 
CR. Moreover, 0=  and 1=  correspond to 0H
and 1H  hypotheses, respectively. 

The process ][nx  is said to be (second-order) 
cyclostationary (in the wide sense) if its mean and 
autocorrelation functions ( *
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are periodic with some period T  [9], [11]Hence, the 
autocorrelation function can be represented by Fourier 
series expansion [11], and with the assumption of its 
convergence, we can write * ( ; )
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conjugate cyclic auto-correlation function and the 
sum is taken over the integer multiples of 

fundamental frequencies (i.e. = { / }A m T , m
integer), called cycle frequencies  . Therefore, the 
cyclic characteristics of autocorrelation function can 
be completely described by its Fourier coefficients. 
These coefficients, which depend on the lag 
parameter  , are called Cyclic Autocorrelation 
Function (CAF) and can be calculated as 
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has been proved that the fundamental cycle frequency 
of OFDM signal is the inverse of the useful OFDM 
symbol length [12], that is sT1/ , where gus TTT =

, uT  and gT  denote the useful symbol length and 
cyclic prefix length, respectively. Authors in [12] 
proved that the OFDM signal has strong 
cyclostationarity at time-lag uT= .

III. NON-COOPERATIVE CYCLOSTATIONARITY 
DETECTION 

In this section, we derive some decision statistics 
for the considered hypothesis testing problem. A 
discrete-time unbiased and consistent estimation of 
the CAF of a random process ][nx  is given as [2]:  
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 In order to establish the decision statistic, we exploit 
some properties of the estimated CAF.  

A. Proposed Spectrum Sensing Method 
In this section, we propose a low-complexity 

cyclostationarity detection statistic based on estimated 
CAF properties of OFDM signals. As we know, when 
the lag parameter of estimated CAF sets to uT= ,
the CAF reveal local peaks at multiples of 
fundamental cycle frequency of OFDM signal, that is 

2,1,=,/ kTk u . At the other cycle 
frequencies, the magnitude of CAF should be small in 
compared with local peaks. This property is 
demonstrated in Fig. 1, where the signal is an IEEE 
802.11a WLAN OFDM. The cross section view of 
Fig. 1 for constant uT=  is shown in Fig. 2. This 
figure reveals that the amplitude of peaks decrease as 
k  increases.  

Based on mentioned property, we propose the 
following multi-cycle test statistic: 
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where k  is chosen so that the uk Tk )/(   does not 

belong to the set of cycle frequencies uTk/ . For 
example, it can be an arbitrary (non-integer) number  



Fig 1. Three dimensional view of 
*

ˆ
xx

R  for OFDM signal. 

Fig  2. Magnitude of estimated CAF for OFDM signal, at the lag 

parameter uT= .

in the interval )(0.25,0.75 . When the signal is 
present, the denominator approaches zero, while the 
numerator increases. Hence, the statistic will be 
increased, and detector will decide 1H .

In order to perform binary hypothesis testing, we 
require the distribution of the test statistic under null 
hypothesis testing. Under 0H , we have 

][=][ nwnx , where  20,][ cNnw  . Using the 
central limit theorem [13], we can obtain the 
asymptotic distribution of CAF under 0H . After 
some tedious but straightforward calculations, we get 
the following distribution under the null hypothesis 
(see Appendix A):  
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Since the estimated CAFs, )(ˆ
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are chi-square with 2  degrees of freedom. Due to the 
fact that the sum of the independent chi-square 
random variable is also a chi-square random variable 
whose degrees of freedom is the sum of the degrees of 
freedom of independent random variables, 
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square with 1)2(2 L  degrees of freedom under the 
null hypothesis testing. Then the distribution of the 
test statistic under the null hypothesis testing is  

0Hunder1)),1),2(2(2(2  LLFT                 (6) 

where ),( 21 ddF  denotes the F  distribution, 1d
and 2d  are the numerator and denominator degrees 
of freedom, respectively. The pdf of a F distributed 
random variable is given by [14] 
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where ),( vuB  is Beta function 
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where )(u  is Gamma function  
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Summarizing above discussions, we conclude the 
following low-complexity hypothesis test based on 
the second-order cyclostationary properties of OFDM 
signals:  
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1
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1
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where  xF ddF
1

)2,1(
  denotes the inverse cumulative 

distribution function of ),( 21 ddF  at point x . In 
Section V, we will evaluate the performance of the 
proposed detection method via simulation 
experiments. 

B.  GLRT-based Cyclostationarity Sensing Method 
This subsection, briefly introduces the well-known 

Dandawaté-Giannakis's method [9] which is recently 
modified in [7]. This statistical test relies upon the 
asymptotic normality and consistency of second-order 
cyclic statistics, and detects the presence of cycles in 
second-order cyclic cumulates, without assuming any 



specific distribution on the transmitted data [9]. For 
more details, the reader is referred to [7, 9, 15]. 

Let we define a matrix consisting of CAF 
estimates at the cycle frequency   for different time 
lags:  
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where {}  and {}  denote the real and imaginary 
parts, respectively. It has been shown that 

* * *( , )lim
D

xx xx xxM
M r N r 


  , where =

D
 denote 

the convergence in distribution and *( , )
xx

N    is a 

multivariate normal distribution with mean vector 

and covariance matrix *xx
  [9]. Noted that 

*xx
r  is 

non-random, so the distribution of 
*ˆ

xx
r  under 0H

and 1H  differs only in the mean. 

The asymptotic complex normality of 
*ˆ

xx
r  allows 

proposing the following generalized likelihood ratio, 
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where *
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  is an estimation of the asymptotic 

covariance matrix of 
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In the above equation, the two covariance matrices 
Q  and P  are by:  
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where W  is a normalized spectral window of odd 
length T  and       jwkM

k
ekxkx

M
wF  

*
1=

1= .

Finally, the generalized log-likelihood test statistic for 
the binary hypothesis testing corresponding to signal 

][nx  is:
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where t  denotes the conjugate transpose of a matrix. 
To set a threshold for hypothesis testing, we need the 
asymptotic distribution of 

xZ . In [9], it is shown 
that, regardless of the distribution of the input data, 
the asymptotic distribution of the 

xZ  under the 

hypothesis 0H  is central chi-squared with N2
degrees of freedom (i.e. 2

2=lim N

D

x
M

Z 


). 

Furthermore, by detecting multiple cycle 
frequencies at the same time, S

jj 1=}{ , one can 
improve the performance of detection. For this end, 
we employ the following test statistics for CS feature 
detection problem [7]:  
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where EGCZ  is the corresponding multi-cycle test 

statistic, and S  is the number of cycles that we are 
interested in to detect. The CAF estimates for 
different candidate cycle frequencies are independent 
under 0H  [7], so the asymptotic distribution of 

EGCZ  is, 
2

| 0 2EGC H NS
Z �                                                   (17) 

Performance of the proposed scheme can be 
evaluated by calculating the probability of false 
alarm. In this case, the false alarm probability is 
calculated as bellow, 
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Where 2 ( )
r

F z
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 , ( , )g z  and (.)  are the 

cumulative distribution function of a chi-squared 
random variable with r  degree of freedom at the 
point z, the lower incomplete Gamma function and 
the complete Gamma function, respectively (the last 
equality can be found in [16]). 

Therefore the detection threshold is thz 

2
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 , and the resultant binary hypohesis test 

can be formulated as 
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C. Discussion on Computational Complexity 
In this section, we compare the computational 

complexities of the proposed, GLRT-based and  



Table  1. Comparison between approximated computational 
complexities of the proposed, GLRT-based and energy detection 

methods 

energy detection methods. The most time-consuming 
step in the GLRT-based algorithm is the estimation of  
the covariance matrix (13). Since this step is not 
needed in the proposed algorithm, it causes a 
significant reduction in computational complexity. As 
it can be seen in table. I, the computational 
complexity of the proposed method can be expressed 
as 2(1 (1 2) )logM M , where M  denotes the 
number of observation samples. In the above 
expression, it is assumed that the fast-Fourier 
transform (FFT) algorithm is used for computing the 
CAF and )(F . The term 2( 2)logM M  is for 

the computation of FFT and M  denotes the number 
of multiplications needed in CAF. 

However, the computational complexity of GLRT-
based method for one time-lag ( 1=N ) is given as 

2(1 (1 2) ) 4(2 1)logM M L T   . The term 

2(1 (1 2) )logM M  is for computation of CAF and 

the term TL 1)4(2   is due to the estimation of the 
covariance matrix. Note that the parameter T  is the 
length of the normalized window used in estimation 
of the covariance matrix. The parameter 12 L  is 
the number of cycle frequencies that used in the test 
statistic. 

It should be noted that in the proposed method, 
increasing the number of cycle frequencies employed 
in the decision statistic does not significantly increase 
the computational complexity. 

As a final remark, the computational complexity 
of the energy detection method can be expressed by 
M . In energy detection method, simply the 
autocorrelation of the signal is considered. Although 
this method has very low complexity, however, it has 
some challenging drawbacks (see section V-B). 

In order to palpable difference among 
computational complexity of this three methods, we 
get a practical example in third column of table. 1. 

There is a trade-off between computational 
complexity and performance. The performance of the 
proposed method is better than the energy detection 
and a bit worse than the GLRT-based method while 
computational complexity of the proposed method is 

TL 1)4(2   lower than the GLRT-based method 

and 2( 2)logM M  higher than the energy detection. 

IV. COOPERATIVE SPECTRUM SENSING METHODS

One of the most challenging issues in the secondary 
access of CRs to the licensed bands is the reliable 
detection primary users in low SNR conditions. To 
overcome this problem, cooperative spectrum sensing 
(CSS) methods are proposed in the literature. In this 
section, some CSS methods based on the proposed 
low-complexity cyclostationary detection is 
presented. It is assumed that each CR observes M
samples and then forms the proposed decision statistic 
(3). We assume that the secondary users are 
independent given 0H  or 1H  [7]. 

A.  Conventional Cooperative Spectrum Sensing 
Methods 

In centralized cooperative spectrum sensing, the 
fusion center decides about the presence/absence of a 
PU based on the decision statistics received from 
CRs. Different methods are proposed in literature for 
fusing the decisions statistics transmitted from CRs. A 
simple fusion rule is the summation of test statistics:  

n
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n
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=

                                                             
(19) 

The CDF of sT  can be obtained by numerical 
simulations or convolving the pdfs of different test 
statistics nT . However, we propose a simple but 
efficient threshold selection method in Appendix B. 

Another well-known fusion rule is the MAX rule:  

n
Sn

m TT max=
1,...,=                                                        

(20) 

The null distribution of the above test statistic is 
computed in Appendix C. 

B.  Proposed Cooperative Spectrum Sensing Methods 
In what follow, we propose a new method for the 

cooperative sensing. Suppose that each CR calculates 
the numerator and denominator of (3), separately. 
That is, for n th CR we have 
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After that (20) and (21) are computed at each CR, 
they are transmitted to the fusion center. Then, we 
constitute the following decision statistic at the fusion 
center: 
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The null distributions of nnomT ,  and ndenT ,  is chi-

square with 1)2(2 L  degrees of freedom. Thus, 

nnom
S

n
T ,1=  and 
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S

n
T ,1=  are distributed as 2

1)2(2 SL .



Fig 3. Theoretical versus simulated CDF of the proposed decision 
statistic under null hypothesis. Increasing the detection time 

improves the accuracy of the asymptotic distribution.  

Fig 4. Probability of detection versus SNR for different numbers of 
cycle frequencies. The sensing time is set to 1.6 ms (=32,000 
sample). 

Therefore, the null distribution of the proposed test 
statistic can be obtained as: 

).1),2(21)(2(2 SLSLFTproposed :
             

(24) 
Although the overhead of this method is twice the 
(18) and (19), but it will be shown that it has better 
performance than the others. Furthermore, since its 
null distribution has close-form expression, the 
threshold selection at the FC is straightforward. 

V. SIMULATION RESULTS

In this paper assumes that the primary user signal 
is OFDM signal. The baseband OFDM signal is given 
by [3] 
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(25) 

where knd ,  is the n th information symbol modulated 

on the k th carrier, cN  number of carrier, f  the 
carrier separation,   the unknown symbol timing and 

)(tgr  the rectangular pulse function of length sT .
In all of the simulations, the primary network is an 
IEEE 802.11 WLAN network. The number of 

Fig 5. Probability of detection for the proposed, GLRT-based and 
energy detection methods in a Rayleigh flat fading channel. The 

sensing time is set to 1.6 ms (=32,000 sample).

Fig 6. Probability of detection versus signal length for the 
proposed, GLRT-based and energy detection methods (AWGN 
channel with -20  dB).

 subcarriers 64=FFTN  of which 52=occN  are 

occupied and the cyclic prefix length 16=gN . The 
subcarrier modulation of OFDM signal is QPSK. The 
symbol rate and sampling rate are 250 KSym/Sec and  

sR =20 MHz, respectively. In all simulations, we 

employ the false-alarm rate of 0.01 and the time-lag 
of uT=  (the value of uT  can be computed as 

sFFTu RNT /= ). Cyclostationary features of an 
OFDM signal occurs in multiples of the symbol rate 

,...21,0,=,/= kTk s . Prior knowledge of gT
(cyclic prefix duration) and uT  is assumed. The local 
peaks of the estimated cyclic autocorrelation function 

)(ˆ
* 



xx
R  are occurred in uT=  and sTk/= . In 

this paper, a kaiser window length and   parameter 

are set to 2049  and 10 , respectively. The 
parameters employed for approximating the CDF are 

1000=H  and 0.5= . In this section, the plotted 
simulation curve are averages over 10,000 
experiment.  

A. Investigating the Asymptotic Distribution of the 
Proposed Decision Statistic 
The accuracy of the asymptotic distribution (6) 

under the null hypothesis is evaluated in Fig. 3. The  



Fig 7. Probability of detection versus SNR for the proposed, 
GLRT-based and energy detector methods over AWGN 

environments and in presence of interference. The sensing time is 
set to 1.6 ms (=32,000 sample). 

Fig 8. Probability of detection versus channel average SNR for 
different proposed soft cooperative methods over Rayleigh flat 
fading channels. The vector of local channel SNRs (in dB) at 

secondary users is defined as =[ 5, 4, 3, 2,       
1, 1, 2, 3, 4, 5]           where  is average 
SNR. The sensing time is set to 1.6 ms (=32,000 sample).

theoretical CDF curve is obtained from equation (3) 
with 5=L . The PU signals are assumed to be white 
Gaussian random variables. It is evident that if the 
detection time is sufficiently long, the simulation 
results should confirm the theoretical asymptotic 
distribution curves. 

B. Detection Performance Comparisons 
In this subsection, we investigate the performance 

of the proposed method and further compare it with 
the GLRT-based and energy detection methods. Fig. 4 
depicts the probability of detection versus SNR for 
different numbers of cycle frequencies. It is evident 
that as the number of cycle frequencies increases, the 
performance improves. 

In Fig. 5 we compare the detection performance of 
the three methods as a function of channel SNR. The 
energy detector is assumed to experiences 1 dB noise 
uncertainty. As mentioned in section III-C, increasing 
the number of cycle frequencies does not significantly 
heighten the computational complexity of the 
proposed method. Therefore, we use 9  cycle 
frequencies in detection process of the proposed and 
GLRT-based methods. The results reveal that while 

Fig  9. Accuracy comparison of proposed Gaussian approximation 
and numerical inversion method for white Gaussian noise. The 

sensing time is set to 1.6 ms (10 CRs in network). 

 our proposed method has much lower complexity than 
the GLRT-based method, it provides a comparable 
performance. Moreover, it has better detection 
performance than the ED method. 

Fig. 6 demonstrates the detection probability 
versus signal length for SNR =-20 dB. As we can 
see, increasing the sensing duration does not 
necessarily improve the performance of the energy 
detector (because of the so-called SNR-wall impact 
[17]).  

Fig. 7 depicts the performance of the proposed 
method in presence of an interfering signal. The 
interfering signal is an OFDM signal with 4-QAM 
subcarrier modulation ( = 200, = 200,FFT occN N

= 16gN ). The SNR of the interference is 5  dB. 
As it is evident, the energy detection cannot 
distinguish between a weak interfering signal and a 
PU signal. Furthermore, it cannot discriminate 
between primary users belonging to different primary 
networks with different transmission technologies.  

Fig. 8 depicts the performances of the soft 
cooperative sensing methods. Each employs 2  cycle 
frequencies for the detector proposed in (3). As we 
can see, the proposed cooperative method will have 
better detection performance compared to the other 
methods, at the expense of an increase in 
communication overhead of the secondary network. 
Also, the SUM method has better performance than 
the MAX method. 

The accuracy of the approximated CDF proposed 
in (32), approximation with normal distribution, and 
simulated CDF is investigated for decision statistic 
(19) in Fig. 9. It is assumed that each CR calculates 
the decision statistic with 9  cycle frequencies. As it 
can be seen, the numerical inversion method is 
accurate, while the Gaussian approximation performs 
with lower accuracy.  

VI. CONCLUSIONS

In this paper, a fast reduced-complexity multi-
cycle cyclostationariy detector has been proposed and 
then its performance and computational complexity 
has been compared with well-known multi-cycle 
GLRT-based detector as well as energy detector. The 
analytical and simulation results have been shown 
that the computational complexity has been 



significantly reduced, while a slight degradation in 
detection performance is occurred, compared to the 
GLRT-based scheme. Also, we have shown that the 
proposed method is robust against the noise 
uncertainty problem, in contrast to the energy 
detection methods. The performance of the proposed 
method is better than the energy detection and a bit 
worse than the GLRT-based method while 
computational complexity of the proposed method is 
much lower than the GLRT-based method and higher 
than the energy detection. 

Different cooperative spectrum sensing methods 
has been analyzed in this paper. We further propose a 
cooperative detector that has better detection 
performance than the existing methods, at a cost of a 
little increase in communication overhead of the 
cognitive radio network. Finally, we have proposed a 
straightforward method for threshold selection at the 
fusion center. Particularly, we have formulated a 
general approach for calculating the null distribution 
of the decision statistic of the cooperative detectors. 
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APPENDIX A 
DISTRIBUTION OF ESTIMATED CAF 

The circularly symmetric Gaussian noise process 
][nw  can be represented by its real and imaginary 

parts as ][][=][ njwnwnw ir  , where each one is 
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In following, we will obtain the distribution of the 
real part. The distribution of the imaginary part can be 
similarly calculated. We can write  
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Using CLT, we have *
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APPENDIX B 
ESTIMATING THE NULL DISTRIBUTION OF 

SUM FUSION RULE 

Here, we propose two methods for approximating 
the null distribution of (19). With the assumption of 
10 or more CRs in network and by using CLT [14], 
we propose to approximate the distribution of (18) 
with a Gaussian pdf:  
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 where k  and 2

k  are mean and variance of k th 
SU's test statistic, respectively. Mean and variance of 
an F  random variable with 1d  and 2d  degrees of 
freedoms can be computed as [14]:  
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Alternatively, we propose the following more 
complex, but more accurate, method for 
approximating the null distribution. In fact, we 
propose to numerically invert the resulting 
characteristic function based on the method presented 
in [18]. Using the same line as [18], the cumulative 
distribution function )(yF  of random variable Y
with zero mean and unit variance can be 
approximated by:  
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 where (.)Y  is the characteristic function of Y. 
is a constant chosen such that the full range of 
distribution is represented. Furthermore, the 
characteristic function of a normalized variable 

)/(= YZ  is given by 
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Since (31) is defined for normalized random 
variable with zero mean and unit variance, the test 
statistic has to be normalized as well. We employ (30) 
and (31) expressions for computing the approximate 
CDF (32). On the other hand, the characteristic 
function of an F  random variable with 1b  and 2b
degrees of freedoms is defined as:  
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 Finally, the characteristic function of sT  can be 
obtained as:  
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APPENDIX C 
THE DISTRIBUTION OF THE MAXIMUM OF S 

INDEPENDENT F RANDOM VARIABLE 

Suppose S  independent random variables, each 
of them has an F  distribution with kd1,  and kd2,

degrees of freedom ( Sk ,1,2,=  ) for its 
nominator and denominator, respectively. The 
cumulative distribution function of an F  random 
variable with 1d  and 2d  degrees of freedom is given 
by:  
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 where ),( baIx  is a regularized incomplete Beta 

function defined as ( , ) = ( ; , ) ( , )xI a b B x a b B a b .

In this equation, ),;( baxB  is an incomplete Beta 

function with dtttbaxB bax 11
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CDFs of the individual random variables.  
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 Hence, CDF of the maximum of S  random variables 
with kd1,  and kd2,  numerator and denominator 

degrees of freedom for the k th random variable, is 
given by  
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We use the above equation for computing the 
intended CDF.    
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