رضا فرید: مدرس مقطع کارشناسی ارشد، فیزیک و مهندسی، دانشگاه تربیت مدرس.

سیاست‌گذاری
در اینجا آزمایش از مدل تحقیقات مباشتهای ایران به جهت پشتبندی
مالی این پژوهش (نام شمارهی شناسی 76-1085-76) شکر گردد.

مراجع
[2] Mohsen Ashourian, Reza Enteshari, and Jeonghee Jeon; Digital
 watermarking of three-dimensional polygonal models in the
 spherical coordinate system; Proc. IEEE Computer Graphics
[3] Oliver Benedens; Geometry-Based Watermarking of 3D Models,
 January/February (1999).
[4] Oliver Benedens, and Christoph Busch; Towards Blind Detection
 of Robust Watermarks in Polygonal Models', Computer Graphics
[5] F. Cayre, and B. Maq; Data hiding on 3-D triangle meshes', IEEE
 Transactions on Signal Processing, Vol. 51, No.4, pp. 939-949, April
 (2003).
 Robust watermarking of point-sampled geometry', International
 Conference on Shape Modeling and Applications, Genova, Italy, IEEE
[7] Ingegmar J. Cox, M. L. Miller, and J. A. Bloom; Digital
[8] Thomas Harte, and Adrian G. Bors; Watermarking 3D models,
 Proc IEEE International Conf, on Image Processing, Rochester, NY,
[9] Jeonghee Jeon, Sang Kwang Lee, and Yo-Sung Ho; A Three-
 Dimensional Watermarking Algorithm Using the DCT Transform of
 Triangle Strips', IWDW 2003, Springer-Verlag Berlin Heidelberg,
[10] JIN Jian-qiu, DAI Min-ya, BAO Hu-jun, and PENG Qun-sheng;
 Watermarking on 3D mesh based on spherical wavelet transform,
 Journal of Zhejiang University Science, Vol. 5, No:5, pp: 251-258,
 (2004).
[12] Min-Su Kim, Sebastien Valette, Ho-Youn Jung, and Remy Prost;
 Watermarking of 3D Irregular Meshes Based on Wavelet
 Multiresolution Analysis , 4th International Workshop Digital
 Watermarking, LNCs 3710, 2005, M. Barni et al. (Ed.), Siena, Italy, pp.
[13] Suk-Hwan Lee, Tae-Su Kim, Seung-Jin Kim, Young Hult, Ki-
 Ryong Kwen, and Kuhn-II Lee; 3D mesh watermarking using
 projection onto convex sets', Proc. International Conference on
 Imaging Science, Systems and Technology (CISS’04), Las Vegas,
[14] Li Li, David Zhangbo, Zhueng Pan, Jiaoying Shi, Kian Zhou, and
 Kai Ye; Watermarking 3D mesh by spherical parameterization,
حمله چرخچ و انتقال، تغییر نقیضی بکنناخت، ترکیب سه حمله قبل یا تدبیر مشاهده، تبدیل خروج انتقال، دسته حمله بر روی حادثه‌ای توری منجر گرفته است. در سرنوشت طرف، مشخص شده است که باید از هر همکار جنگنده مرد با لگدنده در مدل‌ها نتایج خوبی داشته باشد. در سرنوشت آینده نیز نتایج شناسایی کمک در صحبت و جدا بودن شده است. موردی که در مورد میدان این مشکل یک عملیه باشد که برای همواره امکان‌پذیر است.

می‌تواند باشد.

از جمله کرده‌ای آن این نیاز به بررسی از آن‌ها با کمک از هم‌تیمین نتایج در جهت جزئی انتقال، مانند تغییرات در حوصله و اندازه‌گیری از هر چهار سهمیه روش نسبت به یک داده از آن جا که در هر دو روش، جنگنده در محدودیت تکرار صورت می‌پذیرد، انتظار می‌رود که در روش نشان دهنده روش، داده‌های کپی آن این دو در حال کاربرد دو روش نشان دهنده آن این دو در حال کاربرد و نحوه محاسبه آن از نظر هر توانایی انتقال می‌باشد.

جدول 5 می‌باشد روش پیشنهادی و چند روش ناکارآمد از لحاظ

<table>
<thead>
<tr>
<th>شناسایی</th>
<th>ظرفیت</th>
<th>حوزه</th>
<th>نوع</th>
<th>سال</th>
<th>نام روش</th>
<th>مرکز</th>
<th>ردیف</th>
</tr>
</thead>
<tbody>
<tr>
<td>فضای 1</td>
<td>118/hr متحکم</td>
<td>کور</td>
<td>1997</td>
<td>TSQ [16]</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>فضای 2</td>
<td>118/hr متحکم</td>
<td>کور</td>
<td>1994</td>
<td>TVR [16]</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>فضای 1</td>
<td>118/hr متحکم</td>
<td>اگه</td>
<td>2003</td>
<td>اگه [17]</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>فضای 1</td>
<td>118/hr متحکم</td>
<td>اگه</td>
<td>2003</td>
<td>اگه [17]</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>دیوتی</td>
<td>اگه</td>
<td>168/hr متحکم</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>اکتی</td>
<td>اگه</td>
<td>168/hr متحکم</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>بارمتری</td>
<td>کورد</td>
<td>2004</td>
<td>کورد</td>
<td>مخزن [17]</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>بارمتری</td>
<td>کورد</td>
<td>2004</td>
<td>کورد</td>
<td>مخزن [17]</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>روش پیشنهادی</td>
<td>2007</td>
<td>کور</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در نتیجه، نتایج نشان دهنده روش ناکارآمدی و کمک در صحبت و جدا بودن شده است. موردی که در مورد میدان این مشکل یک عملیه باشد که برای همواره امکان‌پذیر است.

می‌تواند باشد.
دقت نسبت شناسایی را به دو روش دو راه پایه (θ) با استفاده از مدل جمله، می‌تواند با استفاده از شکل ۱ با استفاده از روابط (۲۰) و (۲۱) بدست آورد.

card \(\{ e_{w} (\theta) \} \)

\[
D(\theta) = \begin{cases} 1 & \text{if } (w(\theta) \neq d(\theta)) \\
0 & \text{otherwise} \end{cases}
\]

به ویژه روش‌های جزئی، تبدیل‌های شیوه‌ای ندارند. انتخاب میانه از آن نظر اهمیت دارد که میانه به عنوان یک ویژگی ممتاز از یک مدل است. انتخاب میانه‌ای جهت جستجو یک روش پایه‌ای بر مبنای میانه آن است و ضریبی انتخاب شده توسط کاربر فردی گردد. این تفسیر رضایی است که میانه مدل‌ها در شیوه‌های پایه‌ای مشابه کوشیده، جا که در مدل‌های با چگالی بالا، تولید می‌شود. فرض کرده شیوه‌ای چگال که در مدل‌های با چگالی بالا و میانه‌ای با مساحت کمتر، تغییرات بیشتر محسوس خواهد بود.

همان‌طور که مشاهده شد، اقلیت روش‌ها در عنصر پایه‌ای جستجوی خود تزریق در خصوص روش‌هایی که پایه‌ای یا تک‌چک انتخاب می‌شود، ترتیبی از روش‌هایی است که انتخاب می‌شود. برای پایه‌ای در شیوه‌های جستجوی انتخاب می‌شود، ترتیبی بر اساس اندیس رقیق مقابل اضلاع می‌شود. انتخاب میانه‌ای یا انتخاب میانه این طریق را به کمک از روش‌های انتخابی انتخاب می‌شود.

در این شرایط دو روش جهت نهان‌گرایی در محیط‌های سه‌بعدی می‌توانند از روش‌های جهت نهان‌گرایی استفاده شوند. روش‌های جهت نهان‌گرایی از روش‌های جهت نهان‌گرایی دیگر انتخاب می‌شوند. تا این مقاله مکرر شده است، پیچیدگی مفهومی برای روش‌ها نیست.
جدول ۳ نحوه انتخاب رأس و مثلث جهت افزودن به مدل

<table>
<thead>
<tr>
<th>شکل</th>
<th>کد</th>
<th>مثال</th>
<th>ناحیه ضلع مشترک</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACMc</td>
<td>M_c</td>
<td>"000"</td>
<td>1</td>
</tr>
<tr>
<td>BCMc</td>
<td>M_c</td>
<td>"11"</td>
<td>2</td>
</tr>
<tr>
<td>ABMc</td>
<td>M_b</td>
<td>"01"</td>
<td>3</td>
</tr>
<tr>
<td>BCMb</td>
<td>M_b</td>
<td>"001"</td>
<td>4</td>
</tr>
<tr>
<td>ABMа</td>
<td>M_a</td>
<td>"11"</td>
<td>5</td>
</tr>
</tbody>
</table>

در مدل انتخاب از مثال M_c, دو مثال M_b و M_a باید به سرویس راهنمایی گردیده و در سایر موارد مورد نظر قرار می‌گیرند.
| Type | Method | Ref. No | Domain | Geometrical | Rotation | Translation | Uniform Scaling | Similarity Transform | Lossy Compression | Mesh Smoothing | Mesh Simplification | Polygon Simplification | Polygonalization | Vertex Simplification | Mesh Deformation | Connectivity Preserving | Connected Component | Radius of Convex Hull | Radius of Convex Hull | Edge Removal |
|---------------|---------------------------------|---------|--------|-------------|----------|-------------|------------------|----------------------|---------------------|-----------------|---------------------|------------------------|----------------------|------------------------|----------------------|-------------------------|----------------------|-----------------|-------------------|
| B. | TSQ | [16] | S. | | ✔ | | | | | | | | | | | | | | |
| B. | TVR | [16] | S. | | | | | | | | | | | | | | | | |
| B. | TSPS | [16] | S. | | | | | | | | | | | | | | | | |
| I. | Mesh Spectral | [20] | P. | | ✔ | ✔ | | | | | | | | | | | | | |
| I. | Mesh Spectral - Extended | [18] | S. | | ✔ | | | | | | | | | | | | | | |
| I. | Mesh Spectral | [18] | P. | | ✔ | | | | | | | | | | | | | | |
| I. | Spectral Analysis | [19] | F. | | ✔ | | | | | | | | | | | | | | |
| I. | POA | [27] | F. | | | | | | | | | | | | | | | | |
| B. | POA (Sectional POA) | [27] | F. | | | | | | | | | | | | | | | | |
| I. | Spherical Fourier | [14] | F. | | ✔ | ✔ | | | | | | | | | | | | | |
| I. | Perturbing the distance of vertices | [26] | S. | | ✔ | ✔ | | | | | | | | | | | | | |
| I. | Spherical Wavelet | [10] | F. | | ✔ | | | | | | | | | | | | | | |
| I. | Perturbing the distance of vertices | [28] | S. | | ✔ | ✔ | | | | | | | | | | | | | |
| B. | Discrete Fourier Transform magnitude | [22] | S. | | ✔ | ✔ | | | | | | | | | | | | | |
| I. | DCT | [9] | P. | | | | | | | | | | | | | | | | |
است. ضمن آنها مقاومت روش‌ها در برقراری حملات در جدول نشان داده شده است.

3- نهایتگانی مبتنی بر میانه و همسان

روش گیاه‌گونه‌ای به دریافت مدل‌های سنجش از آنها است. این جمله می‌تواند به تمرکز شوی سخن مدل رسمی‌ترین زبان مدل.

سازی واقعی فاکتوریال کرده‌اند [21].

[16] نیز بروز میلیارد از عنوان بروری می‌پدید و در مرحله استخراج به مدل اولیه تایپ نشیده. نحوه بیان سنجش این روش، نسبت حجم یک جفت کوچک‌های است. چهارمین است. روش توزیع‌های روش‌ها به کمک روش‌های محاسبه تابع کواریاتیو توزیع کاربردی می‌باشد. پیشینه از روش‌های روش‌های روش‌های اثرکل دیدگی خلاقیت مربوط به نسبت حجم یک جفت کوچک‌های است. چهارمین است. روش توزیع‌های روش‌ها به کمک روش‌های محاسبه تابع کواریاتیو توزیع کاربردی می‌باشد.

[16] نیز بروز میلیارد از عنوان بروری می‌پدید و در مرحله استخراج به مدل اولیه تایپ نشیده. نحوه بیان سنجش این روش، نسبت حجم یک جفت کوچک‌های است. چهارمین است. روش توزیع‌های روش‌ها به کمک روش‌های محاسبه تابع کواریاتیو توزیع کاربردی می‌باشد.

[16] نیز بروز میلیارد از عنوان بروری می‌پدید و در مرحله استخراج به مدل اولیه تایپ نشیده. نحوه بیان سنجش این روش، نسبت حجم یک جفت کوچک‌های است. چهارمین است. روش توزیع‌های روش‌ها به کمک روش‌های محاسبه تابع کواریاتیو توزیع کاربردی می‌باشد.

[16] نیز بروز میلیارد از عنوان بروری می‌پدید و در مرحله استخراج به مدل اولیه تایپ نشیده. نحوه بیان سنجش این روش، نسبت حجم یک جفت کوچک‌های است. چهارمین است. روش توزیع‌های روش‌ها به کمک روش‌های محاسبه تابع کواریاتیو توزیع کاربردی می‌باشد.
در تحقیق قبلی یافته‌های این اصل ناشی از تجربه‌های صرفه‌جویی در مدل نیاز به وجود یک راه حل مبتنی بر دسته‌بندی فردی، به کمک‌هایی که گزارش‌های مختلف در مقایسه حملات مختلف به‌نظر می‌رسد. این طرح در مقایسه وزن‌های مختلف کاربردی شده به‌کار گرفته شد. این پژوهش به‌نوعی از روش‌هایی است که کاربرد در بررسی‌های آماری و در پژوهش‌های آماری استفاده می‌شود.

dهمین‌العمل علمی - پژوهش ایجادکننده و فناوری اطلاعات

مجله
نهان نگاری مبتنی بر میانه و انِدِس رئوس در مدل های ش عدید مثلثی

نشریه مقدم جرکرده
آزماشگاه پردازش موزی و تصویر
دانشگاه تربیت مدرس، دانشکده فنی و مهندسی
پخش مهندسی برق
charkari@modares.ac.ir

رضا فرید
آزماشگاه پردازش موزی و تصویر
دانشگاه تربیت مدرس، دانشکده فنی و مهندسی
پخش مهندسی برق
rezaf@modares.ac.ir

چکیده - در این مقاله، روش جهت نهان‌گاری اطلاعات در مدل‌های ش عدید مثالی در حوزه تصور ارایه می‌شود. در این روش، روشی بر مبنای میانه و میانه‌های مثالی مورد استفاده قرار می‌گیرد. این روش، به روش‌های گروهی مبتنی بر ارائه نمونه‌های شامل اطلاعات توسط محققان متعدد از محل‌های مختلف محسوب می‌شود. منجر به بهبود کیفیت نهان‌گاری و افزایش بهره‌وری مدل‌ها می‌شود.

کلیدواژه‌ها - حمله تبدیل خاکی انتقال، مقاومت، زمان، مدل سازی، مقایسه.

نجادی، نهان‌گاری مدل‌های سیمپلیک