
Domain Ontology to Distinguish Different

Types of Rootkits

Ahmad Salahi
(Corresponding Author)

Information Security Department

Research Institute for ICT

Tehran, Iran

salahi@itrc.ac.ir

Javad Enayatizadeh

Information Security Department

Research Institute for ICT

Tehran, Iran

j_enayati@comp.iust.ac.ir

Received: January 11, 2017 - Accepted: May 19, 2017

Abstract— Rootkit is an auxiliary tool for sniffing, stealing and hiding, so it has become the key component in almost

all successful attacks. Analysis of rootkits will provide system administrators and security software managers the

ability to detect and prevent a computer being compromised. Ontology will provide detailed conceptualization to

represent the rootkit concepts and its relationships to other security concepts in cyber-attack domain. In this paper we

presented an ontology for rootkits which contains many concepts relating to security, cyber-attacks and operating

systems. We divided rootkits according to four attributes, and expanded the ontology for rootkits accordingly. This

ontology can be used to distinguish different types of rootkits
Keywords: Ontology, Rootkit, Malware, Security

I. INTRODUCTION

Harm caused by malware is a serious problem in

information system domain. Although there are a lot

of security software to detect malware, but they can't

guarantee a perfect detection and removal of malware.

Malware authors make use of extremely sophisticated

hiding techniques to prevent malware being detected

According to [3], Malware is a malicious code that

has potential to harm any machine which executes it

or the network over which the machine

communicates. Malwares include virus, worm, botnet,

spyware, backdoor, Trojan horse, rootkit and exploits

[4]. Today malware is used to steal business, financial

and sensitive personal information for the benefit of

others. We focus on rootkit, because once a malicious

program is installed on a system, it is essential to

remain hidden to avoid detection and be hidden from

the user. The term rootkit, in the field of computer

security is used to define a set of programs which are

used by a cracker to conceal his/her activities on a

compromised computer and make it possible to return

undetected in future.

 If we consider a rootkit as a “Trojan Horse” and

according to [1], it can be divided into four

categories, Direct masquerades (pretend to be normal

programs), Simple masquerades(do not masquerade

as existing programs, but masquerade as possible

programs), Slip masquerades (have names

approximating existing names), Environmental

masquerades(already-running programs that not

obvious for the user). The rootkit can be direct

masquerade and environmental masquerade because it

tries to hide its existence on an infected computer by

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
4-

11
]

 1 / 8

https://ijict.itrc.ac.ir/article-1-32-en.html

modifying program binaries or legitimate code and

hooking call tables such as the Interrupt Descriptor

Table (IDT) and the System Service Descriptor Table

(SSDT) to hijacking the kernel's control flow [5]. We

should notice that a cracker must already have root

access before installing a rootkit because a rootkit just

makes it easier for a cracker to gain root level access

some other time.

The term ontology can be explained in many different

ways, for our research activities ontology defines

basic terms and relations compromising the

vocabulary of a topic area as well as the rules for

combining terms and relations to define extensions to

the vocabulary [2]. Therefore our ontology includes

concepts, concept taxonomies, relationships between

concepts, and properties that describe concepts.

As mentioned earlier, the malwares are important in

information security. There are different malwares

that cause different malwares by different concepts

and relationships between them.

The detection of malwares is one of the security

challenges. There are several methods for detection of

these malwares that use signatures and heuristics.

The malwares can be combined that makes detection

of malwares more complex.

Several knowledge representations are proposed for

malwares that are based on taxonomies that almost all

of them don’t support optimal attack detection for

complex malwares.

"Ontology is a formal, explicit specification of a

shared conceptualization that is characterized by high

semantic expressiveness required for increased

complexity."[27]

Ontology is a technology that can create objects,

concepts and relation between them. Ontology is used

for detection and prevention of different malwares it

provides a knowledge presentation for malwares that

produce a reasoning framework.

Protégé [26] is an open source platform that provides

a growing user community with a suite of tools to

construct domain models and knowledge-based

applications with ontology.

In this paper we use Protégé to create ontology for

root kits that are used for detection we propose an

ontology base behavior analysis for rootkits. We

provide information about rootkits.

II. RELATED WORKS

Malwares are serious problem for the security of
networks that led to widespread investigations of
malwares. The detection of malwares was done by
different antivirus software.

These anti-viruses use signatures based methods that
describe the probabilities of specific malicious
behaviors. These signatures are static and can be
obtained from using behavior of malwares with
experts of information technology. Unfortunately, with
a small change of malware it will be not be detectable
by the same signature. Thus, this static software
cannot be used for unknown malwares [14-15].

Today, there are a lot of zero day malwares that sniff,
steal and change the information. These malwares
cannot be detected by antiviruses.

In recent years, several works for the behavior
detection of zero days’ malwares have been done.
These works study the behavior of different malwares.

Rootkit is a kind of malware that uses stealth methods
to hide itself from being discovered by system
administrators. E. Lacombe and F. Raynal [15] define
rootkits as “a set of modifications that allow an
attacker to maintain along the time a fraudulent control
of the information system". First Rootkits were
introduced at the end of 80’s. Rootkits are very hard to
detect by usual anti-viruses. Jianxiong Wang
introduces a rule-based approach for the rootkit
detection because a rootkit can change some data
structures of a system by hiding itself[16].Woei-Jiunn
Tsaur and Yuh-Chen surveyed the weaknesses of
current detectors, and also discussed possible remedies
and solution for detecting the proposed subtle
rootkits[17]. Shu Zhou and Chenglong Cao suggested
a rootkit detection mechanism based on the hidden
registry information, and designed a Windows rootkit
detection method based on cross-view [18]. Endong
Wang, Long Xin, Zhongyuan Wu, Weiqing Dong
and Xiaoshe Dong proposed a method of Root kit
detection based on KVM (Kernel-based Virtual
Machine) by using virtualization technology [19]. Hai
Bi suggested a method of integrity detection and
restoration based on kernel file, which is proved to
ensure correct implementation of the kernel function
[20]. Watters, P. and Xinwen Wu proposed a new
rootkit classification system and tested their system on
a sample of rootkits that use inline function hooking
[21].

Yu-Jie Hao, Yan Zhang, Zhi-Peng Lu and Rui Zhang,
according to the analysis of hiding technology of
malicious programs proposed a new idea of detecting
malware based on the raw data [22].

The ontology is a new theory in network security that
can be used to detect relation between different
attacks. Andrew Simmons [6] has defined ontology
for network security attacks and reviewed threats,
vulnerabilities and failure modes. Kim, Luo and Kang
[7] introduced ontology that describes type of security
information including algorithms, protocols,
mechanisms, objectives and credentials. John D.
Howard [9] designed a common language that
includes terms and taxonomies for gathering,
exchanging and comparing different computer security
incidents. Denker, Nguyen, and Ton [8] express
security related information for all types of resources.
Hsiu-Sen Chiang, Woei-Jiunn Tsaur [10] proposed
ontology about mobile malware behavior for
organizations and end users to increase their
knowledge about mobile malware. Tala Tafazzoli and
Seyed Hadi Sadjadi [4] used fuzzy logic to present
relationship between concepts of malware.

Jun Han described WS security threats and stated that
they have to be analysed and classified systematically
in order to allow the development of better distributed
defensive mechanisms for WS using F/IDS [22].
Modern rootkits do not elevate access, but rather are

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
4-

11
]

 2 / 8

https://ijict.itrc.ac.ir/article-1-32-en.html

used to make another software payload undetectable
by adding stealth capabilities.

In the next section, we describe the proposed ontology
for rootkit.

III. KEY CONCEPTS OF PROPOSED ROOTKIT

ONTOLOGY

In this section, by using ontology, we classify

different rootkits and discuss different structures of

rootkits.

A. Rootkit types

In most information systems there are mechanisms to

protect data and functionality from malicious

behavior and fault. Operating systems provide

different level of access to resources. These levels are

called rings. The inner most ring is called Ring 0 and

this level is the most protected which interacts most

directly with the physical hardware such as the CPU

and memory. Linux and windows only use two rings,

kernel level and user level. According to this

categorization as shown in figure [1] there are

generally two main types of rootkits: user-mode and

kernel-mode. User-mode rootkits run within the

environment and security context of a user on the

system and kernel-mode rootkits operate within the

operating system at the same level as drivers for

hardware. There are some different types of rootkits

such as:

Hybrid rootkit: It combines the easiness

characteristics of the user-mode and stability

characteristics of the kernel-mode. This allows a

rootkit which has access to all procedures that have

access to the user-mode and all data structures in the

kernel-mode. FU is a hybrid rootkit which has

components operating in the kernel mode and the user

mode and utilizes Direct Kernel Object Manipulation

(DKOM) to hide processes, device drivers, and ports

and alter process properties. The FU rootkit can hide

processes, elevate process privileges, fake out the

Windows Event Viewer so that forensics is

impossible, and even hide device drivers. It does all

this by Direct Kernel Object Manipulation. (25)

Firmware rootkit: Uses platform firmware or devices

to create a persistent malware image in hardware,

such as the system bios, a network card or hard drive.

Therefore the rootkit can hide itself in firmware and

reinstall itself when the computer restarts. The most

interesting feature is that even if security software

identifies and removes it; it can install itself again,

when the computer is switched on. For example in

March 2009, researchers Alfredo Ortega and Anibal

Sacco published details of a BIOS-level Windows

rootkit that was able to survive disk replacement and

operating system re-installation. [24]

Virtual rootkit: The early works of Goldberg and

Popek have defined some of the hardware

requirements to be able to run a hypervisor, i.e. the

software that controls different physical systems and

virtual machines. The capability to host a hypervisor,

also known as virtual machine monitors (VMM). This

kind of rootkit is almost invisible and prevents being

detected by security software through hiding rootkit

software in virtual machine environments. There are

two rootkit architectures based on virtual machines,

namely full virtualization and partial virtualization.

Fig. 1. Different types of rootkits.

B. Persistent rootkits

There are two types of rootkits: hard resident and

memory resident.

Hard resident: In order to remain in host after a

reboot, a rootkit must physically alter the data of the

hard drive to automatically start itself up. For

example by adding auto start entry to the registry, it

can be loaded into memory and executed

automatically.

Memory resident: It just exists in memory and is not

capable of automatically running again after the

system has been restarted. Therefore it makes rootkits

a lot harder to detect because they have no physical

trace of their existence on the hard drive.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
4-

11
]

 3 / 8

https://ijict.itrc.ac.ir/article-1-32-en.html

Fig. 2. Different types of persistent rootkits

C. Propagation

Kernel-level access is usually installed by a dropper

component that may come to the system from

different sources. Rootkits usually employ attacks

against platforms and applications such as Microsoft

Windows, Linux and Mac OS. We should notice that

rootkits can't propagate by themselves. Indeed,

rootkits are just one component of a blended threat

that consists of a dropper, loader and rootkit. The

dropper is the code that gets the rootkit's installation

to start and the loader loads the rootkit into memory.

In the following sections, we discuss how rootkits can

reach to a victim system. Fig [3] shows the relation

between propagation and other objects in this

ontology.

Social engineering: The oldest and most effective

method for propagation of rootkits across a network is

trust relationship. Social engineering is a term that

describes a non-technical kind of intrusion that relies

on human interaction to trick people to break

computer security procedures. Crackers use this

technique thorough email attachments, website, peer-

to-peer network and phishing to install a rootkit on

victim systems.

File Execution: This is the most straightforward

method for rootkit infection. Today, crackers

compromised systems through social engineering

techniques to make users click an infected file that

maybe renames or embedded within another file, such

as Microsoft Office Documents, PDFs, Zips and other

popular file types.

DLL Injection: DLL injection refers to a method for

attackers to manipulate programs and processes to

execute another program. DLL injection provides a

manner for attributing the malicious .dll to running

processes. Processes are tasks that are being handled

by the operating system. DLLs are Dynamic Link

Libraries, i.e. they are shared code that may be

executed by a running process. There are two kinds

of injection: static and dynamic injection. Static

injection occurs prior to program execution. Dynamic

injection occurs when processes are loaded into

memory. It provides a way to piggy back the

malicious code onto a process. This gives attacker

two advantages: secrecy and trust. By DLL injection,

trusted applications can be exploited. Rootkits use

DLL injection to inject code into a process that has

some privileges.

D. Goals

A rootkit is designed to enable continued privileged

access to computer and hide its process and programs

from normal methods of detection. Therefore we

divided these goals into two categories: Data theft and

Concealment. Fig [4] shows all aspects of goals.

Fig. 3. Different types of rootkit propagation

Data theft: A rootkit is used to steal information from
a host such as identity, financial information and click
fraud. Keylogger is immensely used in order to steal
information and broadcast recorded data from the host.
Software keyloggers capture keystrokes by running
procedures and can be further categorized into three
types: kernel based, hook based, and user space
method.

1-Kernel based: This type of keylogger is at the

kernel level and receives data directly from the input

device (typically, a keyboard). Codes are written in

the kernel to directly intercept key events from

hardware. It can be programmed to be virtually

undetectable by taking advantage of the fact that it is

executed on boot, before any user-level applications

start. Since the program runs at the kernel level, one

disadvantage to this approach is that it fails to capture

auto complete passwords, as this information is

passed to the application layer

2-Hook based: The program has access to kernel calls

and captures keystrokes by subscribing to keyboard

events detected by OS. This type of logging is

accomplished by using the Windows function

SetWindowsHookEx() that monitors all keystrokes.

The spyware will typically come packaged as an

executable file that initiates the hook function, plus a

DLL file to handle the logging functions. An

application that calls SetWindowsHookEx() is

capable of capturing even autocomplete passwords. It

is impossible for Anti-Virus software to remove

kernel-based and hook-based keyloggers because they

reside in/close to kernel and enjoy direct access to

keyboard resources.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
4-

11
]

 4 / 8

https://ijict.itrc.ac.ir/article-1-32-en.html

3-User space: This logs key by calling system API

that allows checking key state. GetAsyncKeyState is

an example of such API. In MSDN,

GetAsyncKeyState function determines whether a key

is up or down at the time the function is called, and

whether the key was pressed after a previous call to

GetAsyncKeyState.

Concealment: Concealment is the most important
part of a rootkit such as concealment of process
injection, device driver's entries, registry key, file,
communication link and process. Rootkit uses
hooking or modify some system binary files to
conceal its activity.

There are two types of hooks, (1) API hooking and

(2) System tables hooking.

 (1) API hooking: the term hooking covers a range of

techniques used to alter or augment the behavior of an

operating system, of applications, or of other software

components by intercepting function calls or

messages or events passed between software

components. Programs in user-mode communicate

with kernel through an application programming

interface (API). Most rootkits modify the address of

APIs in the important address table (IAT) of user

process in order to make sure the operating system

returns only filtered results. For example, it may hook

the APIs that are used by Windows Explorer to

display files and folders or the APIs that Task

Manager uses to shows its list of active processes.

 (2) System Tables hooking: Kernel mode rootkits

involve system hooking or modification in kernel

space. Kernel space is generally off-limits to standard

authorized (or unauthorized) users. One must have

the appropriate rights in order to view or modify

kernel memory. The kernel is an ideal place for

system hooking because it is at the lowest level and

thus, is the most reliable and robust method of system

hooking. The system call path through the kernel

passes through a variety of hook points.

As a system call’s execution path leaves user mode

and enters kernel mode, it must pass through a gate.

The purpose of the gate is to ensure user mode code

does not have access to kernel mode space, protecting

the kernel space. This gate must be able to recognize

the purpose of the incoming system call and initiate

the execution of code inside the kernel space and then

return results back to the incoming user mode system

call. The gate is effectively a proxy between user

mode and kernel mode.

 A popular hook point is to modify the System

Service Descriptor Table (SSDT) which is a function

pointer table in kernel memory that holds all the

addresses of the system call functions in kernel

memory. A system call is a function supplied straight

by the kernel and usable by all user-mode processes.

For example by modifying this table, the rootkit can

redirect execution to its code instead of the original

system call.

Some rootkits may modify system binary files to
change their functionality. For example, rootkit
changes ps utility (short for "process status") which
displays the current process running on a system to
hide the attacker's activity from the system
administrator.

Fig. 4. Rootkit's goals

IV. FAMOUSE ROOTKITS

In this section, we discuss some new famous rootkits

introduced in recent years and describe them

according to proposed ontology.

Stuxnet: is a computer worm discovered in June 2010,

this worm can steal code and design projects and also

hide itself using a classic Windows rootkit. Stuxnet

has the ability to take advantage of the programming

software and also upload its own code to the PLC

(Programmable logic controller) in an industrial

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
4-

11
]

 5 / 8

http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Message_passing
http://en.wikipedia.org/wiki/Event_%28computing%29
http://en.wikipedia.org/wiki/Module
http://en.wikipedia.org/wiki/Module
https://ijict.itrc.ac.ir/article-1-32-en.html

control system that is typically monitored by SCADA

systems (Supervisory control and data acquisition). In

addition, Stuxnet then hides these code blocks, so

when a programmer using an infected machine tries to

view all of the code blocks on a PLC, they will not

see the code injected by Stuxnet. Stuxnet hooks the

programming software, which means that when

someone uses the software to view code blocks on the

PLC, the injected blocks are nowhere to be found.

Duqu: is a computer worm discovered on 1,

September, 2011. It is built on relatively old

technology but infections can lead to confidential

information theft, loss of intellectual property and

other risks associated with the presence of a

keylogger. Duqu rootkit protects a keylogger

component that gathers information from the infected

computers.

Flame: is a modular computer malware discovered in

2012. Flame can spread to other systems over a local

network (LAN) or via USB stick. It can record audio,

screenshots, keyboard activity and network traffic.

The malware determines what antivirus software is

installed, then customizes its own behavior to reduce

the probability of detection by that software [11].

Additional indicators of compromise include mutex

(mutex is a synchronization mechanism for enforcing

limits on access to a resource in an environment

where there are many threads of execution) and

registry activity, such as installation of a fake audio

driver which the malware uses to maintain persistence

on the compromised system [12].

V. EVALUTION OF THE ONTOLOGY

In this paper, we use OntoQA [28], an approach that

analyzes ontology schemas and their populations and

describes them through a well-defined set of metrics.

OntoQA, is a tool that evaluates ontologies related to

a certain set of terms and then ranks them according a

set of metrics that captures different aspects of

ontologies. Since there are no global criteria defining

how a good ontology should be, OntoQA allows users

to tune the ranking towards certain features of

ontologies to suit the need of their applications. We

use OntoQA to evaluate the quality of proposed

ontology on the different dimensions mentioned in

OntoQA.

The OntoQA framework is one of the metric based

approaches as well. OntoQA defines the quality of a

populated ontology as a set of five schema quality

features and nine knowledgebase (or instance-base)

quality features.

The quality of ontology classified to two groups:

schema and knowledgebase. The first category

evaluates ontology design and knowledge

presentation and the second category evaluates

instance data within the ontology and the effective

utilization of the knowledge modeled in the schema

[5]. In this section, we describe the different metrics

that can be used in two groups.

A. Schema Metrics
Schema Metrics describe the design of the proposed

ontology. These metrics are not used to correct the

proposed ontology. It can be used to measure the

richness, width, depth, and inheritance of an ontology

schema design.

There are three important metrics in schema metrics.

A.1 Relationship Richness

The relationship richness shows variant kinds of

relations in the ontology. The ontology with more

types of sets of relationship has more information in

comparison to inheritance relationships.

The relationship richness is shown as the percentage

of the non-inheritance relationships (P) between

classes compared to all of the possible connections

that can include inheritance and non-inheritance

relationships (H).

HP

P
RR




A.2 Inheritance Richness
The inheritance richness of the schema (IR)is defined

as the average number of subclasses per class.

C

H
IR 

A.3 Attribute Richness

The number of attributes that are defined for each

class can indicate both the quality of ontology design

and the amount of information pertaining to instance

data. The attribute richness (AR) is defined as the

average number of attributes (slots) per class. It is

computed as the number of attributes for all classes

(att) divided by the number of classes (C).

C

att
AR 

B. Knowledgebase Metrics
 The way data is placed within ontology is also a

very important measure of ontology quality because it

can indicate the effectiveness of the ontology design

and the amount of real-world knowledge represented

by the ontology. Instance metrics include metrics that

describe the KB (Knowledgebase) as a whole, and

metrics that describe the way each schema class is

being utilized in the KB.

The results of metrics calculation for ontology of

rootkit shown in Fig.5 are given in Table 1.

Table 1. Different metrics and their values for rootkit

ontology
Metric Value

Relationship Richness (RR)
 0.33

Inheritance Richness (IR)
 0.9

Attribute Richness (AR)
 0.5

Axioms (Triples) 20

Concepts 12

Object Properties 6

Data Properties 2

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
4-

11
]

 6 / 8

http://en.wikipedia.org/wiki/Malware
http://en.wikipedia.org/wiki/Local_network
http://en.wikipedia.org/wiki/Local_network
http://en.wikipedia.org/wiki/USB_stick
http://en.wikipedia.org/wiki/Screenshot
http://en.wikipedia.org/wiki/Keystroke_logging
http://en.wikipedia.org/wiki/Packet_capture
http://en.wikipedia.org/wiki/Antivirus_software
http://en.wikipedia.org/wiki/Mutex
http://en.wikipedia.org/wiki/Windows_Registry
https://ijict.itrc.ac.ir/article-1-32-en.html

VI. CONCLUSION

Rootkits are dangerous malwares that can steal,

modify and sniff the information of a system without

knowledge of administrator.

In this paper, we have presented ontology for rootkit

which shows the relationship between diverse

concepts, with the conceptualization drawn in figure

5. The next step, after getting feedback and refining

this proposal, we are going to customize our rootkit

ontology which can detect user-mode and kernel-

mode rootkits.

Fig. 5. Ontology of rootkit

REFERENCES

[1] H. Thimbleby, S. Anderson, P. Cairns, “A Framework for

Modeling Trojans and Computer Virus Infections,” The
Computer Journal, vol. 41, no.7 pp. 444-458, 1998.

[2] A. G´ omez-P´ erez, M. Fern´ andez-L´ opez, and O. Corcho,
ntological Engineering, 1st ed. London: Springer, 2004.

[3] Gruber, T., Towards Principles for the Design of Ontologies
used for Knowledge Sharing. International Journal of Human
-Computer Studies, 1995. 43(5/6): p.907 -928.

[4] Tala Tafazzoli and Seyed Hadi Sadjadi. Malware fuzzy
ontology for semantic web. IJCSNS International Journal of
Computer Science and Network Security, VOL.8 No.7, July
2008.

[5] Manuel Corregedor and Sebastiaan Von Solms, Implementing
Rootkits to Address Operating System Vulnerabilities

[6] Andrew Simmonds, Peter Sandilands, and Louis van Ekert,
An ontology for network security attacks, RAID 2003, LCNS
2820, Springer-Verlag,2003.

[7] Kim, A, Luo, J & Kang, M 2005 ‘Security Ontology for
Annotating Resources’, paper presented to the 4th
International Conference on Ontologies, Databases, and
Applications of Semantics, ODBASE 2005.

[8] Denker, G, Nguyen, S & Ton, A 2004 ‘OWL-S Semantics of
Security Web Services: a Case Study’, paper presented to SRI
International, Menlo Park, California, USA.

[9] John D. Howard, Thomas A. Longstaff, A common language
for computer security incidents, Sandia National Laboratories,
Sandia Report, 1998.

[10] Hsiu-Sen Chiang, Woei-Jiunn Tsaur, Ontology-based Mobile
Malware Behavioral Analysis

[11] A Complex Malware for Targeted Attacks". Budapest
University of Technology and Economics. 28 May 2012.
Archived from the original on 30 May 2012. Retrieved 29
May 2012.

[12] Flamer/sKyWIper Malware: Analysis. FireEye. Archived
from the original on 31 May 2012. Retrieved 31 May 2012.

[13] [12] M. Christodorescu, S. Jha, S.A. Seshia, D. Song, and
R.E. Bryant,“Semantics-aware malware detection,” in Proc.
the IEEE Symposium on Security and Privacy, Oakland,
California, pp. 32-46, May 2005.

[14] [13] J. A. Morales, P. J. Clarke, Y. Deng, and B. M. Golam
Kibria,“Testing and evaluating virus detectors for handheld
devices”,Journal in Computer Virology, vol. 2, no. 2, pp. 135-
147, 2006.

[15] E. Lacombe, F. Raynal, V. Nicomette, Rootkit modeling and

experiments under Linux, Journal in Computer Virology, vol.
4, no. 2, 2008, pp:137-157.

[16] Jianxiong Wang,” A Rule-based Approach for Rootkit
Detection”,The 2nd IEEE International Conference on
Information Management and Engineering (ICIME), Pp. 405
– 408,2010.

[17] Detectors' Vulnerabilities Using a New Woei-Jiunn Tsaur and
Yuh-Chen,” Exploring Rootkit Windows Hidden Driver
Based Rootkit”, IEEE Second International Conference on
Social Computing (SocialCom), pp.842-848,2010.

[18] Shu Zhou and Chenglong,” A Windows Rootkit Detection
Method Based on Cross-View”, International Conference on
E-Product E-Service and E-Entertainment (ICEEE),pp.1-
3,2010.

[19] Endong Wang, Long Xin, Zhongyuan Wu, Weiqing Dong
and Xiaoshe Dong,” KVM-based Detection of Rootkit
Attacks “,International Conference on Intelligent Networking
and Collaborative Systems (INCoS), PP. 703 – 708,2011.

[20] Hai Bi, “Anti-rootkit Technology of Kernel Integrity
Detection and Restoration”, International Conference on
Network Computing and Information Security (NCIS), Pp.
276 – 278,2011.

[21] Watters, P. ; Xinwen Wu ,” RBACS: Rootkit Behavioral
Analysis and Classification System”, Third International
Conference on Knowledge Discovery and Data Mining,pp.78-
80,2010

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
4-

11
]

 7 / 8

http://www.crysys.hu/skywiper/skywiper.pdf
http://en.wikipedia.org/wiki/Budapest_University_of_Technology_and_Economics
http://en.wikipedia.org/wiki/Budapest_University_of_Technology_and_Economics
http://www.webcitation.org/682bQ4f6J
http://blog.fireeye.com/research/2012/05/flamerskywiper-analysis.html
http://en.wikipedia.org/wiki/FireEye,_Inc.
http://www.webcitation.org/6846KWz2y
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Watters,%20P..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Xinwen%20Wu.QT.&newsearch=partialPref
https://ijict.itrc.ac.ir/article-1-32-en.html

[22] Yu-Jie Hao, Yan Zhang, Zhi-Peng Lu and Rui Zhang ,”A
New Malware Detection Method based on Raw Information”,
International Conference on Computing and Intelligence
Analysis, pp- 307 - 310,2008.

[23] Jun Han ,”Security Attack Ontology for Web Services”,
Second International Conference on Semantics, Knowledge
and Grid,pp.42-50,2008. Sacco, Anibal; Ortéga, Alfredo
(2009-06-01). "Persistent BIOS Infection: The Early Bird
Catches the Worm". Phrack. 66 (7). Retrieved 2010-11-13.

[24] Sacco, Anibal; Ortéga, Alfredo (2009-06-01). "Persistent
BIOS Infection: The Early Bird Catches the Worm". Phrack.
66 (7). Retrieved 2010-11-13.

[25] http://studylib.net/doc/9005710/lab-5-rootkits--backdoors--
and-trojans

[26] Protégé https://protege.stanford.edu/

[27] Feilmayr, Christina; Wöß, Wolfram (2016). "An analysis of
ontologies and their success factors for application to
business". Data & Knowledge Engineering: 1–23. Retrieved
23 May 2017

[28] Ontology Evaluation and Ranking using OntoQA - IEEE
Xplore ..., ieeexplore.ieee.org/document/4338348/

Ahmad Salahi received his B.Sc.
degree from Tehran university in
1970,M.Sc. from Kansas University,
Lawrence Kansas in 1974, and his
Ph.D. from Purdue uiversity, West
Lafayette,Indiana,U.S.A. in 1979 all
in electrical engineering. He is
currently an associate professor in

Iranian Research Institute for ICT (ex. ITRC). His research
interests are network security, switching and routing.

Javad Enayatizadeh received his
M.Sc. degree in Information
Technology from Iran university of
science & technology in 2010. His
main interest is software
programming with focuses on
network.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
4-

11
]

Powered by TCPDF (www.tcpdf.org)

 8 / 8

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jun%20Han.QT.&newsearch=partialPref
https://protege.stanford.edu/
https://ijict.itrc.ac.ir/article-1-32-en.html
http://www.tcpdf.org

