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Abstract— Common nearest-neighbor density estimators usually do not work well for high dimensional datasets. 

Moreover, they have high time complexity of )( 2nO  and require high memory usage especially when indexing is used. 
In order to overcome these limitations, we proposed a new method that calculates distances to nearest and farthest 
neighbor nodes to create dataset subgroups. Therefore computational time complexity becomes of )log( nnO  and 
space complexity becomes constant. After subgroup formation, assembling technique is used to derive correct 
clusters. In order to overcome high dimensional datasets problem, Principal Component Analysis (PCA) in the 
clustering method is used, which preprocesses high-dimensional data. Many experiments on synthetic data sets are 
carried out to demonstrate the feasibility of the proposed method. Furthermore we compared this algorithm to the 
similar algorithm –DBSCAN- on real-world datasets and the results showed significantly higher accuracy of the 
proposed method. 
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I. INTRODUCTION  
The main purpose of clustering [1] is finding the 

structure of unlabeled datasets. Data should be 
partitioned into clusters in a way that objects in the 
same cluster are more similar to each other than to 
those in other clusters. Unlike classification methods 
in which each data is assigned to precaution group, in 
clustering there is no prior information about the class 
membership among data and in fact clusters are 
extracted from data information. Data clustering can 
be used in some applications such as marketing, 
biology, analysis and classification of network traffic, 
image processing, time series forecasting, machine 
learning, pattern recognition and natural language 

processing [2]–[7] and it is potentially useful in other 
fields [8], [9]. 

The clustering has some challenges such as 
selecting suitable clustering algorithm that can handle 
huge number of dimensions and distributed data. 
Some of the density-based clustering methods are 
based on nearest neighbor density estimators. The 
time complexity of these methods is )( 2nO ; because 
they need to find the nearest neighbor for every data 
in the dataset. Consequently, utilizing these methods 
are impractical when the dataset is large [10]–[12]. 
There are other methods that use k-nearest neighbor 
method to find the nearest neighbor in the dataset 
[13], [14]. Even these methods reduce the time 
complexity to )log( nnO , but these indexing 



algorithms have high memory requirement and this 
speedup only occurs in datasets with few dimensions 
[15]. 

In [16]  we proposed an approach to density 
clustering based on finding nearest and farthest 
neighbors. This approach first creates some subgroups 
of dataset that each node becomes member of the 
nearest subgroup and then ensembles these subgroups 
to obtain the final clusters. Since the number of 
subgroups is smaller than the size of the dataset, the 
algorithm has an appropriate speed. However finding 
the clusters of high-dimensional data using this 
algorithm is a poor job. This may generate wrong 
number of clusters for real-world datasets. This is 
because many of the dimensions in high dimensional 
datasets are often irrelevant.  These irrelevant 
dimensions can hide the clusters in noisy data which 
leads to confusion of clustering algorithm. In this 
paper on the basis of the former method, an improved 
method is proposed to overcome the previously 
mentioned drawbacks using Principal Component 
Analysis (PCA) [17].  In Some works like [18] PCA 
is used as a feature extraction mechanism to map the 
dataset to one with a lower feature space by removing 
less significant features. 

 
The main contributions of this paper are: 
 

1- PCA is used in proposed clustering estimator 
to reduce dimensions of dataset. 

2- The proposed method is tested on synthetic 
datasets and its feasibility is demonstrated. 
In addition, to evaluate the performance of 
the proposed method, it is compared to 
DBSCAN algorithm on real datasets which 
are acquired from UCI repository [19]. The 
test results showed that the proposed 
clustering method is better than DBSCAN 
method and when dimensions of dataset are 
high, PCA-based method has a better 
performance than others. 

The rest of this paper is organized as follows: In 
Section 2 some related works about clustering 
methods are reviewed. In Section 3, the proposed 
method is described in details. Section 4, the proposed 
algorithm based on PCA is explained. In Section 5, 
the experimental results on synthetic datasets and UCI 
datasets are presented. The final Section covers 
conclusion. 

 

II. RELATED WORKS 
Clustering is defined as unsupervised classification 

of data into groups or clusters. Various types of 
clustering algorithms have been proposed and 
developed in the literature (e.g., [20] and the 
references therein). Generally, clustering methods are 
divided into three main categories: partitioning 
approach, hierarchical approach, and density-based 
approach.  

In partitioning approach various partitions are 
constructed and then evaluated by some criterion like 
minimum sum of square errors. Typical methods of 
this approach are k-means [21] and CLARANS [22]. 
These methods are simple and they converge to local 
optimum very fast. However the limitation of these 
methods is that the number of clusters must be 
predefined and they don’t work well for clusters with 
different sizes and shapes.  

In Hierarchical approach, a hierarchical 
decomposition of datasets is created using some 
criterion. CURE [23] and CHAMELEON [24] are 
examples of this approach. These methods are suitable 
for clusters with different size and shape, but their 
complexity is high and their convergence is slow.  

Density-based algorithms such as DBSCAN [25], 
SSN [26], OPTICS [27] and MSC [28], [29] are based 
on connectivity and densities that exist among 
datasets. In this approach, clusters are zones with high 
density of data, which are separated by regions of 
lower density. In these methods clusters can be 
arbitrarily shaped and the number of clusters is 
automatically determined simultaneously during the 
operation of clustering. DBSCAN requires two 
parameters: )(epsε  and the minimum number of 
points required to form a dense region )(min Pts .It 
starts with an arbitrary starting point that has not been 
visited. This point's odneighborho−ε  is retrieved, 
and if it contains sufficiently many points, a cluster is 
started. Otherwise, the point is labeled as noise.  

Some density based clustering algorithms like k-
nearest-neighbor density estimator and DBSCAN 
determine a local neighborhood based on a global 
parameter, i.e., k or ε ; and the density is calculated 
based on these variables. In addition, these algorithms 
consider the entire dataset to find nearest neighbors, 
which leads to time complexity of )( 2nO for n  nodes. 
To overcome this execution complexity, some 
researches are focused on reducing this cost by 
employing different indexing methods while these 
algorithms need high memory. Some works like [30] 
focused on the discretization of data to improve 
accuracy. 

Our method computes the density, based on 
finding the nearest and farthest neighbors of subset 
centers with novel features as follows. The number of 
objects in each subgroup and its volume are adaptive 
according to data distribution; unlike the methods that 
create subgroups based on a global parameters and 
their subgroup’s size are fix. This method only needs a 
small subsample to find nearest neighbors and it 
searches farthest neighbors inside each subgroup 
which form smaller search space than the whole 
dataset.  

III. THE PROPOSED CLUSTERING METHOD 
This method includes two steps. In the first step, 

subgroups are created and then at the next step, 
subgroups are merged to form clusters based on novel 
proposed assembling technique. 



 
(a). data set and first iteration of forming subgroups with equal radius, finding FFN for each subgroup 

 
(b). Second iteration with unequal radius and new 
representative node 
 

 
(c). Third iteration and scaling up subgroups with new 
representative node and new unequal radius, some nodes can 
be common in near subgroups 

 
 

Fig. 1. Example of process of subgroups forming  

A. Creating subgroups of dataset 
In this step, a subsample M of size nm log2=  

from dataset is selected. The process of subsample 
selection uses uniform distribution which causes the 
selected samples to be distributed across the entire 
dataset uniformly. Sample nodes are representative 
nodes of M  subgroups. Thus the dataset is divided 
into M subgroups according to the procedure 
described below. 

First of all, for each node in M the nearest sample 
node is identified. Euclidean distance is used to 
compute nodes distances (Eq. (1) and (2)).
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Where, ),( kid  is the distance between node i and 
node k and minarg denotes minimum arguments, i.e. 
the nearest sample node to node i . Then data at the 
local region with center of each sample node and its 
radius are assigned to subgroups. At the beginning of 
the algorithm, radius of each subgroup is defined by 
Eq. (3): 

)
2

),((min jidr Mj
Mi
i ∈

∈
=                                           (3) 

In Eq. (3) ir  is the radius of local region isub with 
the center of sample node. When some nodes are 
joined to subgroups, new representative node for each 
subgroup is identified which is the farthest node from 
previous representative node (here that is the sample 
node). Each of these new representative nodes is 
called First Farthest Neighbor (FFN) and they form a 
new set called FFN- set. At the next iteration for each 
object in FFN-set nearest neighbor is identified, 

according to Eq. (1) and (2). At this point, new radius 
for each subgroup is calculated based on variance 
criterion (according to Eq. (4)) in a way that subgroups 
with higher variance and dispersion have larger radius. 
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Where, ),( jid  is the distance between FFN of 
subgroup i  and it’s nearest FFN in FFN-set. Variables 
of isubvar_ and jsubvar_ are nodes distribution of 
subgroup i and its nearest subgroup (j) respectively; j 
is obtained based on Eq. (2). In this step variance of 
each subgroup is calculated according to minimum 
distance between members of each subgroup to its 
sample node (s) or FFN (Eq. (5)). 
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Where iD is the distance set of each subgroup’s 
member in Eq. (5). Variance of iD  is computed as the 
expected value [.]E  of the squared deviation from the 
expected value of ndist  in Eq. (6). To obtain variance 
of each subgroup, instead of computing the distance 
between all objects in each subgroup, only the distance 
between each member and the center or FFN is used. 

So according to new calculated radiuses nodes, 
which are in the range of subgroups and are not 
labeled by any subgroup yet, are assigned to these 
local regions. Due to new radius calculation, some 
nodes which were labeled with one subgroup might be 
on the range of other subgroups. So these nodes are 
considered as common nodes between two or more 
subgroups.  



In the next step, in each subgroup the farthest node 
to FFN is selected as Second Farthest Neighbor 
(SFN). This is performed to extend each subgroup in 
different directions. As these SFN nodes are the new 
representative nodes for the subgroups, like pre-
representative nodes, nearest SFN node is identified 
according to Eq. (1) and (2) for each node in SFN set. 
Then new ranges of subgroups are computed 
according to Eq. (4). In this step, to compute the 
variance of each subgroup, the minimum distance 
between each node and 3 points of its subgroup 
including c, FFN and SFN is considered. 

||,...,1)),,((minarg ,, iFSNFFNck subikidj == =      (7) 
 

Where || iSub  denotes the cardinality of each 
subgroup in Eq. 7. Then variance and new ir are 
calculated based on Eq. (4) and (6). This part of the 
algorithm is repeated until all of the nodes are 
assigned to one subgroup.  

Algorithm 1. Forming subgroups 
Input: N-Input Data 
Output:{subi |i=1,…,m} 
 
1. m=2log(N) 
2. for i=1 to m 
3.  )(NSampleC ←  
4. end 
5. for i=1 to m 
6.  ←j find nearest neighbor from other sample 

7.   radius
2

,
2
1

ji cc×←  

8. end 
9. assign=0; 
10. for i=1 to m 
11.   for j=1 to N 
12.     if x is unassigned and ij radiusxrep ≤

2
,   

13.          ji xSub ←  
14.           assign=1; 
15.     end 
16.     if x is assigned to jsub  and 

ij radiusxrep ≤
2

, , ij ≠  

17.          ),( jiCom 1),( +← jiCom  
18.     end 
19.   end 
20. end 
21. for 1=i  to  m  
22.   find farthest neighbor for rep node 
23. end 
24. for 1=i  to  m  
25.   ←j Find nearest neighbor from other rep 

nodes 

26.    radius
2

,
varvar

var
ji

i

i reprep
j
×

+
←  

27. end 
28. if assign==1 and there are unassigned nodes Go 

to step 9 
29. return {subi |i=1,…,m} 

At these steps FFN and SFN are frequently changed 
but centers are constant. An example of subgroups’ 
creating steps is shown in Fig. 1(a), Fig. 1(b) and Fig. 
1(c). Since the size of M is ))(log(nO and in each 
iteration for each subgroup all of unassigned nodes 
are considered, the time complexity of the algorithm 
is at most ))(log(nO . The first step of algorithm is 
implemented in algorithm 1. 

B. Assembling technique 
In the proposed method, two measures of common 

nodes and density are intended to merge subgroups. 
Subgroups with common nodes can be considered as 
a single cluster. Due to different dispersion of 
clusters, there might be some subgroups that have 
common nodes but do not belong to the same cluster. 
To handle this problem, other measure is also used 
called density. Therefore, two subgroups will belong 
to the same cluster, if two measures of common nodes 
and densities are satisfied. 
The density criterion refers to ratio of middle point 
density between two subgroups to minimum density 
of these subgroups. If this ratio is more than threshold 
parameter β , density criterion is satisfied. The 
threshold of β is selected according to the problem 
context and in most β has a value between 0.25 and 
1. Density of each subgroup can be expressed as Eq. 
(8): 
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Where || iSub is the cardinality of subgroup i , and 

maximum mutual distance between three parameters 
of ,c FFN and SFN  is the diameter of subgroup i .The 
density of middle point is calculated according to Eq. 
(9) 
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Where ),( ji ccd  is the distance between sample 

nodes of subgroups i  and j , || middle  is the number 
of the nodes that are at the region with the center of 

middle point and radius 
2

),( ji
middle

ccd
r = . 

When both of the two conditions are established, 
suitable subgroups are merged to form a cluster. This 
process is repeated until there are no subgroups for 
merging under these conditions.. Assembling 
technique is implemented in algorithm 2. 

IV. THE POPOSED CLUSTERING METHOD WITH PCA 
Due to existence of irrelevant features in datasets, 

proposed algorithm may generate wrong number of 
clusters especially on real-world datasets. In this 
paper to improve our algorithm on dealing with high 
dimensions datasets we bring forward our method 
based on principal component analysis (PCA). 



Principal components analysis (PCA) [17] is a widely 
used dimensionality reduction algorithm that can be  
Algorithm 2. Assembling subgroups 
Input: set of subgroups, parameter β  
Output: number of clusters, nodes tag 
 
1. for i=1 to m 
2.   ←iρ density of  subi 
3. end 
4. k=0 
5. for i=1 to m 
6.   for  j=1 to m 
7.       if subi  and subj aren’t  member of any 

cluster 
8.          k=k+1; 
9.      end 
10.     ←middleρ density of middle point of 

ji subsub ,   
11.      if  i and j have common nodes and 

≥
),min( ji

middle
ρρ

ρ β  

12.         ←kcluster join ji subsub ,  

13.     end 
14.   end 
15. end 
16. return k and datasets with their tags 

 
 
used to significantly speed up unsupervised feature 
learning algorithms. The basic idea of PCA is to 
project the original data onto a lower-dimensional 
subspace, which highlights the principal directions of 
data’s. The following steps describe this algorithm 
procedure. 

 
1- Computing the average of dataset according to 
Eq. (10). 
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where ],...,,[ 21 nXXXX =  are the set of 
observation in which each of observation has a 
row vector of length m, so the dataset is 
represented by a matrix mnX × . 
 
2- Calculating the sample covariance matrix of 
dataset according to Eq. (11). 
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3- Calculating the eigenvalues-eigenvectors pairs 
of sample covariance matrix C, in which for a 
square matrix C of order n, the number 𝜆𝜆  is an 
eigenvalue if and only if there exists a non-zero 
vector V such Eq. (12) will be satisfied.  
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 4- Sorting these eigenvalues in decreasing order 
and choosing k eigenvectors having the largest 
eigenvalues. The selection of k eigenvectors can 
be determined by Eq. (14). 
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where α is the ratio of variation in the subspace to 
the total variation in the original space. Therefore 
k eigenvectors are selected for data reduction. 
 
5- Obtaining the new representation of the data by 
projecting it onto the k-dimensional subspace 
according to .XVY T=  In this paper we pick the 
smallest value of k by considering α=0.99 as 
shown in Eq. (15). 
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Then we use the new datasets in our method to be 
clustering. In Algorithm 3 the PCA-based 
clustering method is implemented. 

Algorithm 3. The Proposed Clustering Method based on 
PCA 
Input: N-Input Data: 𝑋𝑋 ∈  𝑅𝑅𝑛𝑛×𝑚𝑚 
Output: reduction dimension of X: Y ∈ 𝑅𝑅𝑛𝑛×𝑘𝑘 
 

1. for i=1 to N 
2.  )( iXmean←Ψ  
3. end 
4. for i=1 to N 
5.   )(var iXianceCoC ←  
6. end 
7. for i=1 to M 
8.   

)(),( iCEigEigValEigVec ←  
9. end 

10. )'',()( descentEigValsortEigVal ←      

11. While  99.0

1

1 <

∑
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=
m
i i

k
i i

λ

λ
 

12.     Continue 
13. Else 
14.     for j=k+1 to m 
15.        ))(()( jEigVeczerosjEigVec ←  
16.     end 
17. end 
18. for i=1 to N 

19.   i
T

i XEigVecY ×←  
20. end 
21. )(min){ YgSubgroupsFortsSubgroupSeS =←  
22. ,(),,( βSSubgroupsAssemblingLabelsYkreturn ←

 
 



 
Separated cluster β = 0. 5 

 
Aggregation set with β = 0.25 

 
Spiral set with β = 1 

 
Jain set with β = 0.5 

 
Flame set with β = 0.3 

 
R15 set with β  =0.25 

Fig. 2. Applying proposed clustering method on different synthetic data sets 
 

 

V. EXPERIMENTAL RESULTS 
In this section, the performance of the proposed 

method is tested on two types of experiments. These 
experiments include tests on synthetic datasets and 
tests on real-world datasets. The results of tests on 
synthetic datasets are used to show the feasibility of 
the proposed method and the results of tests on real 
world datasets are compared with DBSCAN algorithm 
to compare the accuracy. 

A. Results of synthetic data sets 
Since there are only two feature dimensions in 

synthetic datasets, the results are represented visually 
for this type of experiments. Because the performance 
of clustering algorithm and PCA based algorithm on 
two dimensional datasets are similar, we only test the 
performance of proposed method.  

The proposed method is tested on 6 synthetic 
datasets. The first synthesized dataset includes 5 
clusters with 200 nodes in each cluster and totally 
1000 nodes. Data is generated randomly with normal 
distribution on vertical and horizontal axes in each 
cluster. The spaces between clusters are selected in 
such a way that clusters are easily separable. The 
second dataset is aggregation [31], which consists of 
seven distinct clusters which some of them are not 
obviously separable. Data is generated with a non-
Gaussian distribution. The third dataset named spiral 
[32], forms 3 similar spiral shaped clusters that each 
cluster has 106 nodes. The forth dataset named Jain 
[33], consists of 2 clusters with different densities and 
the fifth one –Flame [34]- has 2 clusters with different 
sizes and shapes. R15 [35] is the sixth dataset which 
contains 15 clusters that are positioned as rings. Fig. 2 
shows that the proposed method works perfect for all 
datasets with different shapes and different densities 
and it can find the correct number of clusters and 
suitable tag label for each node. 

B. Real-world dataset 
The real-world datasets which are used in this  

TABLE I. Real world datasets 
Datasets # cluster # dimension Size n 

Iris 3 4 150 
Yeast 10 8 1484 

Pendigits 10 16 10992 
Animals 4 17 200,000 
Segment 19 19 2310 
WDBC 2 30 569 

 
paper are acquired from the UCI Machine Learning 
Repository [19]. These datasets include Animals, 
Pendigits, Segment, Yeast, Iris and WDBC. The 
details of these datasets are given in Table I. 

The clustering results by DBSCAN and our 
proposed method and PCA-based proposed method 
are shown in Tables II and III. In these tables the 
results are assessed in terms of number of unassigned 
nodes which don’t join any cluster, number of clusters 
that method can identify, and F-measure which is 
calculated based on assigned instances only. Some 
papers like [36] use some assessment metrics such as 
accuracy, true positive and false negative to compare 
results but here we use F-measure which is equal to 1 
when all assigned instances are in the correct clusters, 
i.e. perfect clustering and is equal to 0 if all instances 
are assigned to wrong clusters.  

As it is obvious in Table II and III, for all of 
methods their parameters are set to values in a way 
that they get better result and detect true clusters. The 
proposed method shows better result in identification 
of number of clusters than DBSCAN and PCA-based 
for iris dataset. Experiment results on Pendigits and 
Yeast datasets show all methods haven’t found the 
suitable number of clusters but our method and PCA-
based have shown higher accuracy than DBSCAN. 
Our method resulted in 769 unassigned nodes in 
Pendigits dataset while this count is 4563 for 
DBSCAN that means proposed method could extend 
better in some directions and covered more nodes. All 
of methods obtain correct clustering on the Animals 
dataset and have good accuracy. All of methods 
obtain correct clustering on the WDBC dataset, 
however PCA-based has a better accuracy than others 



Table II. Clustering results on the Iris, Yeast and Pendigits datasets 

 Datasets Iris-3 Yeast-10 Pendigits-10 

D
B

SC
A

N
 

Parameter 1.0=ε  07.0=ε  2.0=ε  
 MinPts =6 MinPts =6 MinPts =5 
# cluster 5 12 46 
# Unassigned 75 1097 4563 
F-measure 0.79 0.24 0.7 

O
ur M

ethod 

Parameter 5.0=β  45.0=β  75.0=β  

# cluster 3 12 12 
# Unassigned 3 400 769 

F-measure 0.91 0.3 0.78 

O
ur PC

A
 

based M
ethod 

Parameters 45.0=β  3.0=β  55.0=β  

# cluster 4 13 11 

# Unassigned 26 578 654 

F-measure 0.83 0.2 0.82 

 
. 
As shown in Table II and III, Our method 

outperforms others in low-dimensional datasets such 
as Iris and yeast, because it doesn’t miss any 
information of features. However, our PCA-based 
method has a better performance compared to others 
in relatively high-dimensional data sets.  PCA not 
only reduces the dimensionality of the data, but also 
maintains information as much as possible. When 
some datasets have relatively high dimensions, our 
method does poor job, so we need to employ PCA to 
reduce dimensions and remove irrelevant features. In 
consequence, PCA-based method outperforms others 
in high-dimensional datasets. 

VI. CONCOLUSION 
In this paper a new clustering algorithm based on 

subsampling method with PCA was introduced. This 
algorithm first forms subgroups based on nearest and 
farthest neighbors and then aggregate the subgroups to 
obtain correct clusters.  

TABLE III. Clustering results on the Animals, Segment and 
WDBC datasets 

 Datasets Animals-4 Segment-19 WDBC-2 

D
B

SC
A

N
 

Parameters 7.0=ε  1.0=ε  3.0=ε  
 MinPts =5 MinPts =6 MinPts =6 
# cluster 4 43 2 
# Unassigned 3342 1043 294 
F-measure 1 0.62 0.84 

O
ur M

ethod 

Parameter 5.0=β  25.0=β  65.0=β  

# cluster 4 36 2 

# Unassigned 3021 320 234 

F-measure 1 0.76 0.94 

O
ur PC

A
 

based M
ethod 

Parameters 65.0=β  5.0=β  5.0=β  

# cluster 4 28 2 

# Unassigned 2564 270 127 

F-measure 1 0.84 0.96 

 
Computational complexity of this method is less 

than other similar methods because this method 

doesn’t need to search nearest and farthest neighbors 
over the entire dataset. PCA is used to reduce the 
dimensions of high dimensional dataset to remove the 
irrelevant features of datasets. Experimental results 
revealed that proposed method is able to detect the 
correct number of clusters and assign nodes to correct 
cluster with high accuracy in synthesized and real-
world datasets even with arbitrary shape. Moreover 
when the dimension of dataset is high, PCA-based 
method has a better performance than others. 
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