I J I CTR International Journal of Information & (r
Communication Technology Research r'

ITRC

Volume 6- Number 4- Autumn 2014 (13-26)

An Overload Window Control Method Based
on Fuzzy Logic to Improve SIP Performance

Ahmad Reza Montazerolghaem
Department of Computer Engineering
Ferdowsi University of Mashhad
Mashhad, Iran
Ahmadreza.montazerolghaem@stu.um.ac.ir

Mohammad Hossein Yaghmaee Moghaddam

Department of Computer Engineering
Ferdowsi University of Mashhad
Mashhad, Iran
hyaghmae@um.ac.ir

Received: March 3, 2013-Accepted: November 7, 2014

Abstract—Having facilities such as being in text form, having end-to-end connection establishment and being
independent from type of transmitted data, SIP protocol is a good choice for signaling protocol in order to set up a
connection between two users of an IP network. However, utilization of SIP protocol in a wide range of applications
has made various vulnerabilities in this protocol, amongst which overload could make serious problems in SIP
servers. An SIP is overloaded when it does not have sufficient resources (majorly CPU processing power and memory)
to process all messages. In this paper, attempts were made to improve window-based overload control in RFC 6537.
In window-based overload control method, a window is used to limit the number of messages that are sent to an
overloaded SIP proxy simultaneously. In this paper, first, fuzzy logic was used to regulate accurate size of window and
then it was developed, implemented and evaluated on an Asterisk open-source proxy. Implementation results showed
that this method could practically maintain throughput under overload conditions, dynamically change the maximum

[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

window size, and also fairly treat among various upstream servers.

Keywords- SIP; Overload control; Window based; Asterisk proxy; Fuzzy logic

I. INTRODUCTION

SIP protocol is the signaling protocol in
application layer which is used to start, manage and
finish the meeting between two or more applications.
Major components of a SIP network are user agents,
server proxies and registrars. User agent is the
terminal component in SIP session. Figure 1 illustrates
connection establishment between two user agents in a
case in which middle proxies are statefully configured.
Before establishing a session between callers (User
Agents A in Figure 1) and callee (User Agents B in
Figure 1), the information required for establishing a
session through SIP signaling is exchanged. SIP
signaling is performed by sending requests and
responses via SIP proxy servers. The routes of
requests and responses are independent from routes of
the established sessions. Signaling of SIP takes place
between the neighbors, as shown by 1, 2 and 3 in

Figure 1. Resolving the SIP URI, each SIP proxy
server performs routing of SIP requests and responses.
The proxy task is to route and redeploy signaling
between user agents.

SIP server is an application one. The overload
problem in SIP server is distinguished from ones in
other HTTP servers for at least three reasons: first, the
messages of SIP meeting pass several SIP proxy
servers to reach the destination, which could itself
make overload between two SIP proxy servers.
Second, SIP has several retransmit timers which are
used for dealing with packet loss, especially when the
packet is sent via UDP transmission protocol, and this
could lead to overload on SIP proxy server. Third, SIP
requests are used as real time session signaling; so,
they have high sensitivity. Overload in SIP-based
networks occurs when the server does not have
necessary sources (for instance, CPU processing

International Journal of Information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-113-en.html

14 &3

[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

power and memory ') for answering every received
call. Reviews conducted in overloaded SIP proxy
server have shown that increasing request rate results
in sudden increase in delay in establishing connection
and dropping proxy throughput and therefore increase
in unsuccessful call rates. Therefore, the aim in
overload control in SIP is to maintain the throughput
of overloaded server near its capacity. Generally, there
are two local and distributed methods for overload
control. In local control, when SIP proxy server
reaches its capacity threshold, it starts to reject
requests; SIP estimates this threshold by calculating
CPU consumption or queue length?. But, request
rejection mechanism, in order to finish meeting,
imposes cost itself and, when server is overloaded, it is
compelled to allocate fraction of sources to reject
requests, which in turn decreases efficiency in SIP
proxy server. In distributed method, upstream servers
control load of downstream servers through rejecting
requests and try to maintain it under their capacity.

In 2011, design considerations for a SIP overload
control mechanism were discussed in the SOC
workgroup. The resulted design, named RFC 6537,
was standardized in the workgroup [31]. Five ways of
distributed overload control were described in this
standard. These methods used explicit feedback
between SIP proxy servers:

Rate-based overload control method
Loss-based overload control method
Window-based overload control method
Signal-based overload control method
On/Off overload control method

This study focused on window-based overload
control method. The main idea of this method is to
limit the number of output messages by controlling the
window size. In other words, in window-based
overload control approaches, a limit is applied on the
maximum requests waiting for response in the proxy.
The main issue of such methods is window size. In
this paper, fuzzy logic was proposed to determine
window size as accurately and dynamically as possible
and then it was implemented and evaluated on
Asterisk open-source proxy. Simulation results
showed that the proposed method reached a higher
throughput than a traditional overload control
algorithm proposed in [29].

The rest of this paper is organized as follows:
section Il includes an overview of the SIP protocol and
existing overload control methods. Section Il includes
SIP overload problems.

"'In section IV we analyzed the effect of processing
and memory resources on the operation of an
overloaded SIP proxy.

2 In order to understand the problem of overload in
SIP servers more appropriately, in section III we
implemented a simple local control mechanism and
compared it with no-control case.

e T

- ~ Downstream SIP~
Proxy “N
a——

Ps - N
e Upstream SIP Proxys

Media(RTP) A
“\User Agents(A) RN o7~ User Agents(B),”
ST “~~__ Internet __-- ~—

Fig. 1. Network configuration for SIP

To continue the discussion of last section, in
Section 1V, effect of processing as well as memory
resources on the operation of an overloaded SIP proxy
is studied. The results lead to the fuzzy approach. In
Section V, details of the proposed overload control
algorithm which is developed in this open source
software is presented. In Section VI, the network
topologies and configurations are presented. Section
VIl contains performance evaluation and experimental
results. Finally, Section VIII concludes the paper and
outlines future works.

1. BACKGROUND

A. SIP Overview

Figure 2 illustrates the typical SIP trapezoid
topology and standard SIP voice call signaling
consisting of the INVITE-BYE message sequence.
When the caller (User Agent Client: UAC) sends an
“INVITE” request to the callee (User Agent Server:
UAS), which is routed through SIP proxies in the path
between them, setting up of a session starts. Returning
a “100 Trying” response to the previous hop in the
path confirms reception of this request in each proxy.
As the UAS receives the “INVITE” request, it sends
back a “180 Ringing” response to the caller. It later
also sends back a “200 OK” response when the
application accepts the call in charge of taking the call.
Finally, in order to acknowledge reception of “200
OK”, an “ACK” request is sent to the callee. After this
three way handshake, the media session is
independently established between the two parties.
The session is then terminated when one party sends a
“BYE” request and another responds with a “200
OK”.

=)

SIP Proxy Downstream SIP Proxy SIP User Agent

s E

SIP User Agent Upstream

INVITE
100 Trying

INVITE

INVITE

ging l¢—L80Ringing |
180 Ringin: 180 Ringin: >
200 OK 00 OK.
200 OK
ACK
ACK ACK
— — — — | e []

BYE BYE

BYE
200 OK

200 OK

200 OK

Fig. 2. Exchanged messages for establishing connection in SIP

International Journal of Information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-113-en.html

[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

B. SIP Proxy Server

SIP servers are applications that accept SIP
requests and respond to them. An SIP server should
not be confused with a user agent server or the client-
server nature of the protocol, which is described in
terms of clients (originators of requests) and servers
(originators of responses to requests). An SIP server is
a different type of entity; the types of SIP servers
discussed in this section are logical entities. Actual
SIP server implementations may contain a number of
server types or may operate as a different type of
server under different conditions. Because servers
provide services and features to user agents, they must
support both TCP and UDP for transport.

An SIP proxy server receives a SIP request from a
user agent or another proxy and acts on behalf of the
user agent in forwarding or responding to the request.

1) Introducing Asterisk Proxy

Asterisk is the most popular open source VOIP
telephone system in the world, based on which many
available IPPBXs are currently produced. Asterisk is
based on C programming language and could be
loaded in various operating systems such as Linux
NetBSD, UNIX, Solaris and Mac OSX. In addition, it
is observed that some versions of Asterisk are
installable and operable in Windows platform.
Although Asterisk services could be operated using
common computers and servers and through
calculating power of system (CPU/RAM) on the basis
of users multiplicity, popularity of Asterisk and
diversity of its services have made producers utilize
most of combined platforms of Linux and Asterisk in
producing integrated connection equipment at various
scales. The minimum system requirements for
installing Asterisk are a 500 MHz Pentium computer
with 512 MB RAM and 20 GB empty hard space [5].
This software uses UDP and TCP transmission
protocols to receive and send SIP messages and, while
receiving SIP messages, it first intercepts the message
and then decides whether to reply to it or forward it to
the next destination [5, 6]. In this paper, UDP
transmission protocol was used to receive and send
SIP messages. Asterisk uses several Worker Processes
to receive and send SIP messages and every Worker
Process receives messages individually and makes
decisions about it. In order to process a SIP message,
Worker Process should make a connection between
the message and transaction; the message could be
related to a transaction which already exists or it may
be a new message for which a transaction is created;
these transactions are saved in shared memory of
Worker Processes. There is no guarantee that a
Worker Process manages every message related to the
same transaction and it is probable for one transaction
to be managed by several Worker Processes. When a
message is sent, a new timer is created and added to
the list. A process manages this list, checks timers and,
until the timer finishes and no replication is received
for that message, resends the message by accessing the
appropriate transaction [6].

C. SIP Client Workload Generator

In this work, Spirent Abacus 5000 device was used
to create traffic with different transmission rates and

Volume 6. Number 4- Autumn 2014 IJICTR IR

various distributions. This device is used for different
tests including interoperability, performance,
scalability and testing audio and video qualities on IP
networks. This production is able to test efficiency and
extensibility of the tested proxy by producing
hundreds to thousands of calls. Asterisk software and
Spirent Abacus 5000 tester device were used for
implementing proxy servers and user agents,
respectively. According to Figure 1, signaling load
was produced by two UAS and UAC user agents, role
of both of which was played by Spirent Abacus 5000
device (see Figure 4).

Fig. 3. Spirent Abacus 5000 device

Asterisk
oy » Proxy — |10
Server
0 T
(originate) (terminate)
Abacus 5000

Fig. 4. Role of Spirent Abacus 5000 device

D. Related Works

Many researches about efficiency of SIP proxy
server have been done. In [7], overload control
methods were dealt with in SIP proxy server and
OPNET software was used for measuring throughput.
In [10] and [11], SIP was practically implemented
along with TCP and UDP transmission protocol and
OpenSER was used to obtain efficiency results. [12]
and [13] mentioned window-based distributed method
and combination of signal and window-based method,
respectively. SIPstone [14] is a series of benchmark, in
which various criteria are proposed for evaluating
proxy server powers and redirecting server and
registrar in answering SIP requests. In [15], another
benchmark was presented for measuring effect of
operating system, hardware configuration, database
and selected transmission layer on SIP efficiency. In
[16], practical experiments were accomplished on four
types of proxy implementation which were different in
both thread management and memory allocation
methods. The results of these experiments showed that
the effective parameters in proxy efficiency could be
classified to two parts: parameters related to protocol
such as message length, length variability and
irregularity of excess load, and parameters related to
type of server implementation; e.g. how to allocate
sources of operating system to transactions. Also in

International Journal of Information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-113-en.html

BT HIJICTR Volume 6. Number 4- Autumn 2014

[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

[17], similar studies on the effect of operating system
and type of proxy implementation on SIP efficiency
were done. In [18], efficiency of signaling SIP in
establishing VOIP connections was examined using
JAIN SIP API and by considering effect of call
duration and call rate on the delay of connection
establishment between two end-to-end user agents. In
[19], effect of delay of user's answer on SIP server's
efficiency was analyzed by introducing a tool called
SlIPperformer. In [20], issues such as importance of
security cost in configuration which used
authentication and also effect of stateful or stateless
proxy and protocol type of transmission layer on
proxy's efficiency were studied by placing only one
proxy between the user agents. A group of studies has
been also concentrated on the evaluation of SIP
efficiency under various access technologies. For
example in [21], effect of transmission delay and
packet loss on W-CDMA link was surveyed using a
proxy. In [22], the delay in signaling SIP in
establishing IMS meetings was evaluated for different
WiMax channels with different speeds. Also,
compression techniques for SIP messages were used in
order to reduce volume of SIP packets along with their
transmission delay. Selection of transmission layer
protocol is also influential in the efficiency of
signaling SIP. In [23], various options in selection of
transmission layer protocol were qualitatively
surveyed for SIP. In [24], effect of deploying various
transmission layer protocols, especially effect of
window control mechanism in TCP on throughput and
delay in connection establishment, was evaluated. In
[25], it was shown that, despite the general perception
in which more common utilization of UDP than TCP
was considered on account of the low processing
excess load in the former, it was probable that
unfavorable efficiency in TCP utilization was due to
implementation manner of proxy. A wide variety of
local overload control methods differing mainly in the
rejection policy and overload detection criteria has
been introduced and evaluated in the literature. For
instance, Queue-length-based algorithms were
proposed in [7, 8, 26 and 27]. Occupancy-based
algorithms, namely OCC, which used CPU utilization
as a trigger for rejecting calls, were also proposed in
[7, 26]. In addition, effect of priority-based queuing
and transport protocol on performance of SIP
signalling was analyzed in [28, 13], respectively. In
[7], it was demonstrated that, for an overload of 100%,
system throughput dropped by 25%, from 200 to 160
cps. This throughput degradation could be considered
the cost of running the overload control algorithm by
CPU. This throughput penalty could be alleviated in
many cases where cause of overload condition is
upstream SIP servers. This circumstance is called
“server-server” overload. Local rejection mechanisms
are coupled with “distributed” OC, in which upstream
servers control load of the downstream SIP server,
keeping its load as close as possible to its capacity.
Generally, the overloaded server monitors its
resources and sends an explicit feedback to all
upstream servers with the purpose of informing them
from the overload. It also possibly communicates the
amount of load that can accept. Accordingly, the
upstream servers lower their forwarding rate. Shen et
al. [29] proposed three window-based distributed OC

methods in which downstream server dynamically
estimated its capacity and generated a feedback,
indicating the number of currently available window
slots.

While local overload control methods suffer from
non-negligible rejection cost, most proposed
distributed algorithms increase complexity of the
overloaded server by requiring load monitor and
calculating an explicit feedback. Another drawback of
using explicit feedback is delay of the feedback in
reaching upstream servers, which may result in
instability or at least performance fluctuations of the
algorithm. In the context of Internet congestion control
algorithms, this is a well-known phenomenon [30].
Now, the main deficiencies of current overload control
schemes could be summed up. First, reliance only on
local rejection could lead to throughput degradation.
Second, overload detection and possibly feedback
generation cost CPU time and impact throughput if
accomplished in the overloaded server. An overload
condition is a complicated situation which may happen
due to many reasons. It is believed that cost of
generating feedback information is mainly because of
local load estimation.

I1l. SIP OVERLOAD PROBLEMS

SIP uses its own reliability mechanism, which is
using a large set of re-transmission timers, especially
when used on an unreliable transport protocol such as
UDP. For instance, Timer A is responsible for
scheduling INVITE re-transmissions and starts with an
initial value of typically T1 = 500 ms and doubles
when being expired. After waiting for 64xT1 = 32 s,
SIP will stop re-transmission and declare call failure.
This mechanism is useful in the case of having
unreliable links; but, in overload conditions, it is a
major cause of performance degradation. During the
overload, messages that arrive at the overloaded server
either get dropped or incur large delay. Hence, the
UACs (and also possibly the upstream proxies) start
re-transmitting unacknowledged messages.
Furthermore, incoming responses from the UAS,
before being processed by the server, experience loss
or extensive delay. This makes the server itself re-
transmit some parts of the requests it has already
forwarded to the UAS. Therefore, the actual server
load increases in a regenerative way so that the call
fails. The curve labeled ‘‘without overload control’” in
Figure 5 shows the dramatic decrease in server
throughput. Here, capacity of SIP server equals 700
calls per second (cps). When load increases beyond
this limit, the server becomes overloaded and
congestion collapse occurs. A similar behaviour was
reported in [7, 8] and many other references. Also, SIP
server performance on a real test-bed was evaluated
and similar results were obtained, as explained in the
following sections.

In order to survey efficiency of SIP proxy when
facing overload, the simplest traditional topologies
were used [9, 7]. In this topology, platform of which is
illustrated in Figure 8, a central proxy inquires every
connection to be made between parties. This model is
usually used for studying destructive effects of
overload on proxy. If the number of users that start to

@/\N\mtemational Journal of Information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-113-en.html

call in a short duration of time exceeds proxy's
capacity, it is faced with overload. The overload with
which the proxy in this topology is faced is in the form
of client-server and the methods that are presented to
get away from it are local inevitable.

Conversation production rate starts from the
amount of as low as 100 calls per second and goes up
to as high as 1200 calls per second, having Poisson
distribution. In this case, only one proxy considers call
routing.

Figure 6 shows average call establishment time
versus call request rate; call establishment time is
defined as the interval between sending the first
“INVITE” from meeting starter to time of receiving
OK message. As can be seen in this figure, the average
call establishment time before received call rate
reaching about 700 calls per second was
inconsiderable and lower than ten ms. So, capacity of
the proxy was 700 calls per second. As the received
call rate approached to proxy's capacity (700 cps), the
average delay went beyond 10 s.

The reason why call process procedure gets slow
in proxy is that the amount of received call rate is
beyond the processing capacity of the proxy and
therefore proxy's sources are conjugated for analyzing
and dissecting new call requests. Besides, the flow of
requests of new calls eventuates to overflowing of
received queue and losing the packets related to
ongoing calls. As a result, users whose requests have
remained unanswered or the progression of whose call
establishment has remained incomplete proceed to
resend their messages. On the other hand, the proxy
itself spends a part of its capacity on resending
requests which have been already sent because it has
not seen some of the received reply packets which are
missed through overflowing of queue or have not been
checked yet because the proxy is busy. This procedure
continues until proxy's throughput falls to near zero.
The diagram of proxy's throughput in terms of call
request rate which is shown in Figure 5 clearly proves
this issue. For example, for rates of higher than 800
cps, the magnitude of throughput is practically
negligible. Note that, this diagram shows rate of calls
that have started successfully in unit of time.

Figure 7 shows retransmission rate for “INVITE”
requests made on the user side. As expected, no
request is resent before the received call rate reaches
proxy's capacity. But, upon reaching the received call
rate to proxy's capacity, retransmission rate abruptly
increases and considerably intensifies the load
imposed to proxy.

The amount of imposed load is calculated as the
ratio of processing cost of each call to its expected
processing cost in the case of non-overload. The cost
of each call, which includes the required time for
dissection of its related packets, regulating timers and
creating and eradicating state for its related
transactions, increases as load rate increases because,
in the case of overload, as a result of resending
phenomena, the number of packets which is created
and dissected per call along with the number of timers
that are regulated and reset increases.

Volume 6. Number 4- Autumn 2014 IJICTR I

==+ ithout overload control ==s=Theoritical ==+=local overload control

700 - = =

600 \ \\
2 500 \\
§ |
Z 400
£ |
¥ 300
IS
: \
£ 200
100 ——

[=}

0 200 400 600 800 1000 1200
Rate(Cps)

Fig. 5. Proxy’s throughput in the case of single proxy

—+—without overload control —s—Theoretical —s—local overload control

100000

10000
1000

100 //

10 .____.n—-l"'"‘d

Average Delay(ins)

1
0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Rate(CPS)

Fig. 6. Delay of call establishment in the case of single proxy

—+—uwithout overload control —s=—Theoretical —=—local overload control

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
Rate(cps)

Fig. 7. INVITE retransmission rate in the case of single proxy

Asterisk SIP proxy server

uac(seAlE
Flzlpy SIP Pri

Spirent Abacus 5000

Fig. 8. Single-proxy topology and testbed setup

[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

International Journal of Information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-113-en.html

BT WIJICTR Volume 6. Number 4- Autumn 2014

[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

Although the number of packets that are received
and dissected is related to size of queue as well, if the
size of queue is small, many packets are missed and
there is no need for them to be processed in proxy.
Therefore, as cost of each call increases, the amount of
load which should be processed each proxy is much
more than the load rate that is imposed directly by
excess calls. The reason of sudden fall in proxy's
throughput in load rates of a little more than 700 cps is
this amount, too. For example, if the cost in non-
overload case for each call is 5 ms, in the case of
overload, it may increase to 6 ms. So, imposed load to
proxy is like being 1.2 times of the rate of its received
calls.

The major aim of SIP overload control (OC) is to
keep server throughput as close as possible to its
capacity in the presence of overload. As can be seen in
the above figures, the curve labeled ‘‘Theoretical’’
shows how an ideal OC scheme would work when
server throughput is 700 cps. As was mentioned
before, there are two ways to control overload: local
and distributed. In the former, the control loop is
internally implemented on the overloaded server;
therefore, a SIP server starts rejecting additional
requests whenever it gets close to its capacity limit.
This is accomplished by sending a “503 Service
Unavailable” message in response to an “INVITE”
[4]. Under heavy overload conditions, the overloaded
server will spend most of its resources on rejecting
extra requests, which leads to throughput degradation.
This can be clearly observed in the curve labeled
“Local Overload control’”” in Figure 5. The local
overload mechanism in this paper will be shown
below.

A queuing structure of the SIP server could be seen
in Figure 9. As shown in this figure, the queue is a
simple single queue. Every time a SIP message is
arrived, it is placed in the queue and served with the
first in first out (FIFO) procedure. Here, two different
states may occur for the server. overload and
underload. In order to detect an overload, two
thresholds can be introduced: THiow and THyign. If the
occupied number of buffers in the queue exceeds the
threshold THHigh, the SIP proxy server recognizes a
congestion condition. After that, if the occupied
number of buffers becomes less than THLow, the SIP
proxy server recognizes that the congestion is
removed. Whenever a packet arrives at the queue,
first, average queue length of the overloaded server
(Qavg) is calculated by function (1) and then the
rejection probability of service, Prej, is calculated by
function (2) such that the proxy will randomly reject
messages when length of the occupied buffering queue
reaches a certain threshold. When a message arrives at
the proxy, it compares current Qavg with the
aforementioned thresholds: if Qavg < THLow, the
proxy accepts the message; if Qavg > THHigh, it
rejects the message; if THLow < Qavg < THHigh,
then Prej calculated by function (2) will determine
whether to refuse the message and response by a 503
message.

Qavg (N) = (1-Wg) Qavg (n-1) + Wq Q (n) @
Prej = ((Qavg - THLow) / (THHigh - THLOW)) (2)

Reject request ~ SIP Server
(503)

Messages Queue

Request Forward
Message nil-]-13)2 Message

[N

UAC(s) UAS(S)

THrow
THuHigh

Fig. 9. Queuing structure and thresholds

where Wq is the queue weight. This allows for
tuning contribution of the current queue size (Q (n)).
The maximum and minimum thresholds for buffer
length are set as THLow = 400, THHigh = 1000
messages. The average queue weight Wq is 0.1.

Figure 10 shows a message flow for load
regulation purpose. Usually, a SIP proxy server returns
the“100 Trying” response for “INVITEs”. As shown
in the figure, the SIP proxy server returns “503” when
congestion conditions occur. As mentioned before,
according to RFC3261, when source SIP UA receives
“300-699” response, it must stay in the state of starting
Timer, which is called “A” here. In this state, the
source SIP UA cannot send any new “INVITE”
messages. The period which stays in this state is
controlled using Timer A. As was said, the default
value of Timer A is chosen as 32 s. Through
regulating setting up new calls by Timer A, the offered
load to the network can be reduced. It is expected then
that the overload is temporarily removed. And, this is
the main reason of relative and temporary success of
local OC methods.

A—— A——
= =
Y —
Z JP/
/2P Sip Sip
SIP. UA SIP Proxy SIP Proxy
INVITE » INVITE
P 100 Trying v

503 service unavailable 4—503 service unavailable

ACK ACK >

Timer Al '
--------- -¥ Transaction is terminated
Fig. 10. Message flow for load regulation

IVV. PROCESSING AND MEMORY RESOURCES OF A PROXY

As can be seen in Figure 11, proxy's queue is
approximately empty before occurring overload since
every message is drawn out of queue and processed
upon reaching the proxy. Although, in overload
conditions, many packets are consistently waiting in
the queue to receive service, applying local overload
control method could decrease memory usage. The
diagram in Figure 12 shows CPU usage in proxy in
terms of call request rate. In this diagram, the
horizontal axis represents the amount of load received
by proxy and vertical axis represents the average CPU
utilization. These amounts are achieved by regular
sampling (every second) of CPU engagement times
and their averages. As was expected, in load rates
lower than proxy's capacity, percentage of CPU

@/\/\/Tntemational Journal of Information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-113-en.html

[iDownloaded from ijict.itrc.ac.ir on 2025-11-17]

utilization is proportional to the amount of load to
proxy's capacity. For example, when there is no
overload control mechanism, in about 350 cps which
is half of the proxy's capacity, utilization of proxy's
CPU is approximately 0.5 as well; also, in a rate of
630 cps in which call establishment request rate is
90% of proxy's capacity (700 cps), utilization of
proxy's CPU is 0.9. In loads greater than proxy's
capacity which lead to overload, CPU utilization
reaches 100%. Using local overload control
mechanism, CPU utilization could be decreased.

In Figure 13, the processing resource used in proxy
in “without overload control” case is illustrated. It
could be seen in the figure that, as the rate increases,
percentage of CPU utilization by Asterisk and MySQL
which are responsible for processing SIP packets and
managing users' database, respectively, increases as
well. This procedure continues until the rate of about
700 cps, in which CPU efficiency reaches 100 percent.
After that, as load increases, no additional processing
resources are devoted to either of the procedures.
Therefore, in rates of higher than this, call
establishment delay increases dramatically.

=—+—without overload control =—s—Theoretical == local overload control

-

e
o N o b

n

I
)
1A

Il
Il
1T

c oo
IS

buffer(%)

e
= R

=)

Average number of packets in the

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
Rate(cps)

Fig. 11. Average queue packet count in the presence and absence
of local overload control mechanism

—+—without overload control ====—Theoretical === local overload control

1
0.9

-
~ 08 /
% 0.7
506 L~
_g 05 / A
5oa V- "
S oa P A
& ~
“ o2 A

Q¢
e

o

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
Rate(cps)

Fig. 12. Average CPU utilization in the presence and absence of
local overload control mechanism

m Asterisk m mysql other

CPU Utilization(%)

100 200 300 400 500 600 700 800 9001000 11001200
Rate(cps)

Fig. 13. Utilization percentage of proxy's CPU in case of not
using any overload control method

Volume 6- Number 4- Autumn 2014 |J|CTR“

Then, we study effect of limitation of memory and
processor on efficiency of another proxy called
OpenSER (With the same details). In these tests, 512
MB of memory is allocated to OpenSER and then the
used memory has been monitored during test. The
number of the sent, received and deleted messages
from SIP buffer has been monitored.

In Figure 15, maximum rate of shared memory has
been shown which an ascending function of call rate is
naturally.

In dotted curve which is the authentication and
stateful proxy, the use of memory has reached its
highest limit in rate 700 cps. In this state, server
parsing many demands for which it creates transaction
but call setup time is very long due to shortage of
processing sources and many of these contacts will
fail. With increasing call establish rate, major part of
messages is either “INVITE” or resending it. As a
result, proxy is more involved in analysis of calls and
operations relating to authentication and
communication with database. Therefore, fewer
messages are sent to transaction allocation and
submission phase which results in reduction of the
memory used by proxy.

In the stateful curve without authentication, proxy
memory reaches saturation limit in rates of higher than
700 cps. In this case, the number of active transaction
considerably increases (exceeding 10000) and because
server has no enough memory for new contacts, it
prevents new users from persisting on contact requests
with error 500 which means internal error of server.
When proxy memory is filled, the number of missing
packets is also enhanced.

In this paper, we seek to prevent location of the
proxy in this situation.

HOpenSER Emysql Mrsyslog Mvmlinux M other

100
90
80
70
60
50
40
30

20
0

100 200 300 400 500 600 700 800 900 1000 1100 1200

CPU Utilization(%s)

Rate(cps)
Fig. 14. Average CPU utilization (OpenSER SIP Proxy)

= =e—=With Authentication-Stateful ——m=— Without Authentication-Stateful

’:u\llUU ‘-’

- ~

/
/

-
~<

s l/l
= 100 —

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
Rate(cps)

Fig. 15. Maximum memory usage (OpenSER SIP Proxy)

International Journal of Information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-113-en.html

IFPMIJICTR volume 6. Number 4- Autumn 2014

[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

The recent figures show that proxy's efficiency
changes due to two factors: the allotted memory and
processing power of the processor on which the proxy
runs. Both processor saturation and memory
deficiency degrade proxy's efficiency dramatically.
Note that, it is feasible to prevent proxy from
accepting calls which are more than its capacity by
limiting its allotted memory. Under these
circumstances, proxy's processor never reaches the
saturation limit and also, through sending a 500
message by the proxy, additional calls are not made.
However, it is notable that this policy improves
proxy's efficiency to some limited extent. In other
words, as call rate increases, proxy's processor which
is needful of parsing received messages in order to
know their contents reaches saturation again. But, this
happens under heavier loads.

V. WINDOW-BASED FUZZY OVERLOAD CONTROL
MECHANISM

The main issue of window-based algorithms is the
window length which is regulated by downstream
proxy's feedback. It is feasible to prevent overload by
limiting window length. Therefore, new calls are
accepted only when there is an empty slot in the
window. As mentioned before, it is feasible to
efficiently limit the number of messages by using
window size.

In this section, an effective fuzzy-based method is
introduced for window-based overload control. In this
method, fuzzy logic was used to solve the problems
related to changes of window size. Fuzzy logic bore
characteristics that made it appropriate equipment for
solving such problems. In fuzzy logic, unsure data
were received and processed although a sure and finite
output was generated. Instead of request and response
messages, this logic was used to determine overload
window size accurately and dynamically. Considering
the results achieved from analyzing SIP proxy's
processing and memory resources in IV section, in
order to initially diagnose occurrence of overload and
then change the window size, instead of using request
and response messages and comparing them, CPU and
memory utilization of the overloaded proxy were used
to prevent overload and react on time in the case of
overload happening.

In this method, a fuzzy controller was contrived to
dynamically change window size in upstream server.
The input of this controller was average utilization of
CPU and memory in downstream server (Icpy and Imem,
respectively) and its output was rate of changes of
window size in upstream server (AW) (see Figure 17).

Intel Dual Core

Downstream Apterisk Proxy

Upstream Astgrisk Proxy

10 Mbps Ethernet IP-PBX LAN

Fig. 16. General scheme

Icpu » SIP server
overload
controller

Based on
Imem=——» [Fuzzy logic

AW

v

Fig. 17. Fuzzy controller

In this method, the window size control
mechanism in upstream proxy was as follows:

1) Wmax = Winit
2) Calculating AW by fuzzy controller
3) Wmax(t+1):Wmax(t)+ (AW * Wmax(t))

On the basis of the results of performed
experiments, the best range of changes for AW was
[-0.6, 0.4], the membership function of which is stated
below.

A. Fuzzy Derivation System

Fuzzy derivation is a method which interprets
values of input vector and assigns a value to output
vector using defined rules. In this paper, Mamdani
approach was used as the fuzzy derivation method.

B. Input and Output Membership Functions

The proposed fuzzy system in the algorithm
included two input and one output variables.
Membership functions were determined using
experimental ~ experiences and trial-and-error
procedure. The improvement of system efficiency
dramatically depended on membership functions
determined in this phase. Membership functions for
input and output variables are as shown in the
following figures.

Low Medium High

i U UL U3 U U o i .o (18-

input variable "CPU-Usage”

Fig. 18. Membership function of input variable Icpu

Low Medium High

u u UL u.3 u u.a u.o

input variable "Memory-Usage

Fig. 19. Membership function of input variable Imem

International Journal of Information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-113-en.html

[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

FastDEC DEC SlowDEC NCHange SlowlINC INC

n n L n n 1 n 1 n

U2 -U.4 -U.3 -U.L -u u L1 U.Z LR u

cutput variable "Delta-\Windows-zize”

Fig. 20. Membership function of output variable

C. Fuzzy Rules Base

The next step of designing fuzzy systems is to
design fuzzy rules base. Fuzzy rules base is like the
core of fuzzy derivation engine. This base is a set of
If-Then rules, each responsible for a part of derivation
and decision making process. Note that, if rules base is
extensive, then fuzzy system is complicated and its
speed is degraded. The rules based used in the
proposed algorithm is presented as follows.

1. If (CPU-Usage is Low) and (Memory-Usage is Low)
Then (Delta-Windows-size is INC)

2. If (CPU-Usage is High) and (Memory-Usage is High)
Then (Delta-Windows-size is FastDEC)

3. If (CPU-Usage is Medium) and (Memory-Usage is Medium)
Then (Delta-Windows-size is NoCHange)

4. If (CPU-Usage is Low) and (Memory-Usage is Medium)
Then (Delta-Windows-size is SIowINC)

5. If (CPU-Usage is Low) and (Memory-Usage is High)
Then (Delta-Windows-size is SIowDEC)

6. If (CPU-Usage is Medium) and (Memory-Usage is Low)
Then (Delta-Windows-size is SlowINC)

7. If (CPU-Usage is Medium) and (Memory-Usage is High)
Then (Delta-Windows-size is DEC)

8. If (CPU-Usage is High) and (Memory-Usage is Low)
Then (Delta-Windows-size is SIowDEC)

9. If (CPU-Usage is High) and (Memory-Usage is Medium)
Then (Delta-Windows-size is DEC)

TABLE I. FUzzY RULES BASE

Icpu/lmem | Low Medium High
Low INC SlowINC SlowDEC
Medium SlowINC | NoCHange | DEC
High SlowDEC | DEC FastDEC

In order to evaluate rules, first of all, inputs are
made fuzzy and then applied to the rules’ premier
section. In this system, AND fuzzy operator was used
to derive a number representing the assessment of the
rules' premier section. Then, the derived number was
applied to the inferior section. Also, union operator
was used to merge the results of applying fuzzy rules.
Consequently, a central average de-fuzzier operator
was used to derive a real output.

For example, as shown in Figure 21, for input
values lep=0.5 and 1mem=0.5, the proposed fuzzy
system considered AW as -0.218, which represented
that window size should decrease as -0.218*Way.

Figure 22 shows output variation versus inputs as a
three-dimensional diagram. It is clear that as Memory
and CPU in downstream server were more involved,
window size in upstream server decreased.

Volume 6- Number 4- Autumn 2014 |J|CTRﬂ-

CPU-Usage = 0.5 Memory-Usage = 0.5 Defta-Windows-size = -0.218

N | N | | /]
O I E— | —] =

»] | L | &=]
RN L= | | |
s [] | —] | |
s] | N | | |
7 | | ! AN

O I E— [| | |
S N E— L— | AN

: 1 ‘ 1 D pu—

Deta-Windows-size

CPU-Usage

Memaory-LUsage

Fig. 22. Three-dimensional diagram of system's output versus
both of its inputs

VI. NETWORK TOPOLOGIES,
CONFIGURATIONS AND PRACTICAL
CONSIDERATIONS

The SIP trapezoid, shown in Figure 23, was used
as the basic network topology. In this topology, two
proxies, namely, upstream and downstream, were used
for handling outgoing and incoming calls,
respectively. In order to easily study OC performance,
the upstream proxy was made faster than the
downstream. All the calls were originated from the
clients of the upstream proxy and destined to those of
the downstream proxy.

In this topology, it is assumed that M transmitter or
upstream proxies (e.g. M=1) make an overload in a
destination (downstream) proxy by sending many call-
making requests. The overload with which the proxy
in this topology is faced is in the form of server-server.
In this form of overload, a limited number of upstream
proxies send a huge volume of traffic to a downstream
proxy and leads it to be faced with overload. This
topology is applicable wherever any user gets service
from their local service provider proxy. The capacities
of upstream proxies are considered so that they do not
face overload during experiments. By the way, for
simplicity, only one upstream proxy is used.

Figure 24 shows the present test bed setup, which
was composed of two Linux PCs connected over a
100Base-T Ethernet LAN. The faster PC functioned as
the upstream proxy while the slower one was
considered the downstream proxy with nominal
capacity of approximately 700 cps. Upstream and
downstream servers were configured in the
transaction-stateful mode without any authentication.

International Journal of Information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-113-en.html

BFZHIJICTR Volume 6. Number 4- Autumn 2014

[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

Asterisk software and Spirent Abacus 5000 tester
device were used for implementing proxy servers and
user agents, respectively. The upstream server was a
PC with INTEL Dual Core 3 GHZ processor and 4 GB
memory and the downstream server was a PC with
INTEL 1.8 GHz processor and 2 GB memory. Both
servers used version 6.3 of Linux CentOS as their
operating system. By modifying Asterisk code, the
proposed mechanism on the upstream server was
implemented. However, the downstream proxy was
intact. Also, using MATLAB, the proposed fuzzy
system was simulated.

Fig. 23. Dual-proxy topology (trapezoid)

Asterisk SIP Proxy Server Asterisk SIP Proxy Server
(upstream) (downstream)

Intel Dual Core Intel Dual Core

Cent0S 6.3
192.168.10.10

100 Mbps Ethernet IP-PBX LAN
IP-PBX LAN

$

Test Dispatch Spirent Abacus 5000
Terminal Call Generator

Cent0S 6.3
192.168.10.11
Capacity:700cps

Fig. 24. Test bed setup for the trapezoid topology

/
Caller-/ JH/ 'a:
“x,Group /

N _/. P Upstream roxy 0
Domain 0

i Dovinstream
Proxy

Fig. 25. Edge-core topology

The next network topology (Edge-Core) is
depicted in Figure 25. This topology consists of a
number of edge servers that communicate signaling
messages through one core server, which was
overloaded in the present experiments. This is a
representative of the topology used in the IP
Multimedia Subsystem proposed by 3GPP. In the
current experiments, there were two upstream servers
and a downstream one. All the edge servers were
assumed and configured to be fast enough so that they
were not overloaded. Using the Edge-Core topology, it
was shown how the proposed overload control scheme
could be extended to the multiple upstream cases
while parameters such as fairness as well as
throughput were considered.

VII. EVALUATION OF EFFICIENCY

In this section, efficiency of overload control
algorithm is reviewed and compared with local
overload control. Reports produced by Spirent Abacus
5000 device were used to check time and type of sent
and received messages by users. Also, reports of
Asterisk software were used to measure status of
progression of calls and transactions that occurred in
proxy; and also Oprofile software was used to measure
processing load of proxy. There are various criteria to
determine efficiency of SIP [33], amongst which, in
this study, the delay of connection establishment
(interval between sending “INVITE” from UAC to
receiving OK from proxy), retransmission rate and
proxy throughput (number of successful calls per unit
of time) were concentrated on. Conversation
production rate starts from low amount and continues
to heavy rates of about 1600 cps.

A. Result for Trapezoid Topology
1) Throughput

Figure 26 shows throughput as a function of rate of
received call requests in the case of existence and non-
existence of overload control method, which
represents that proxy's throughput could be maintained
at its around maximum capacity in case of existence of
overload control mechanism. As is shown in Figure
26, using fuzzy overload control mechanism, the
upstream proxy was able to maintain its throughput up
to about 1500 cps, which was about twice the capacity
of downstream proxy, whereas, if overload control
algorithm was not used, upstream proxy's throughput
would be approximately equal to the one related to
downstream proxy (700 cps). Also, this figure showed
throughput when perfect overload control was done
(curved labeled “Theoretical”), which kept throughput
at the maximum downstream server capacity of 700
cps. Under overload conditions, throughput of the
proposed mechanism converged to 645 cps and was
almost independent from the load. On the other hand,
throughput of the local OC approach was lower than
that of the proposed mechanism and furthermore
decreased with the load increase. The curve labeled
“WIN-DISC” is an explicit feedback window-based
approach proposed in [29] by Shen et Al., in which the
downstream server calculated and sent back a window
size at the end of each discrete control interval of Tc =
200 ms determining the number of new sessions it can
accept for the next control interval (in experiments,
parameter values were used that yielded maximum
throughput, i.e., DB = 200 ms and Tm = 100 ms,
exactly as reported in [29]). Throughput of the
proposed mechanism was constantly higher than that
of WIN-DISC. The poor throughput of WIN-DISC
might be attributed to the explicit nature of the used
feedback, which is known to result in throughput
degradation and stability problems as the feedback
loop delay increases.Using OCC, CPU utilization
rapidly fluctuated and became more severe as overload
deteriorated. This was due to the regenerative nature
of overload where calls progressively took much more
CPU time due to retransmissions. However, once
enough calls were rejected, the CPU utilization
dropped.

International Journal of Information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-113-en.html

[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

=—+—no control =—=—Theoretical =—s—local ===—=WIN-DISC =—e—Fuzzy

700

A =
T ZE N
& 500 \ N
= 400 N
5 | N
%ﬂ 300 \ ~
& 200 7{

100 ——

o

0 200 400 600 800 1000 1200 1400 1600
Rate(cps)

Fig. 26. Performance comparison of the proposed mechanism
with that of WIN-DISC and no control

—+—no control —s—Theoretical —«—local ——WIN-DISC —— Fuzzy

100000 -
=
& 10000
g
S 1000
Q
)
8o g
3 100 /
2
= 10

1

0 200 400 600 800 1000 1200 1400 1600
Rate(cps)

Fig. 27. Average delay comparison of the proposed mechanism
with that of WIN-DISC and no control

=—no0 control-INVITE ===no control-BYE ~ ==e=WIN-DISK-BYE
=== \\/IN-DISK-INVITE === Fuzzy-INVITE =@ Fuzzy-BYE

9000
T 8000
£ 7000
T 6000
£ 5000 -
2 4000 a—t
§ 3000
£ 2000
£ 1000
0 I
0 200 400 600 800 1000 1200 1400 1600
Rate(cps)

Fig. 28. Retransmission rate comparison of the propsoed
mechanism with that of WIN-DISC and no control

2) Average Delay of Call Establishment

It was seen that, as new requests were received,
window size started to increase and therefore delay
increased, too. As shown in Figure 27, this linearly
increased the average time of call establishment in this
proxy to about 1500 cps with growth rate far much
lower than the case in which the overload control
mechanism was not used.

3) Retransmission Rate

In rates higher than downstream server's capacity
(700 cps), the huge amount of received requests
stimulated CPU sensor and therefore many calls were
rejected. Sudden rejection of calls led many “Ack”
packets to reach proxy in a very short interval and
therefore fill the queue of proxy so that there was no
place in this queue for the packets of answers related
to ongoing calls. Missing of answer packets was a

Volume 6. Number 4- Autumn 2014 IJICTR IZX IR

stimulation to activate retransmission mechanisms in
both server and client which deteriorated the situation.
So, calls accepted in proxy in this status were accepted
with a very long delay. The diagram shown in Figure
28 individually illustrates retransmission rate for
“INVITE” and “BYE” requests from the user side. As
expected, when fuzzy overload control mechanism
was used in upstream server, resending rates of
messages considerably decreased. Overload led to loss
of “OK” packets related to the passed calls. Thus, the
proxy was required to resend “INVITE” requests
related to lost packets. In this case, increase of
resending rate made proxy spend much of its time on
resending requests related to ongoing calls and
therefore throughput rate of proxy considerably fell.
Processing the abundant packets which existed in
proxy's queue caused more delay in the passes calls
and increased resending rate on caller's side. Note that,
if the capacity of proxy's queue was high enough,
additional requests were rejected before being expired
and resent from user's side; on the other hand, not
losing “OK” packets related to the passed calls in this
case led to decrease in average time of successful call
establishment and therefore there was no need for
proxy to resend “INVITE” messages; so, throughput
would have less decrease.

4) Window Size Variations

In this scenario, Spirent Abacus 5000 generates
load traffic with rate 800 cps for 100 s. The upstream
server transfers this traffic to the downstream server
while the latter operates at its maximum capacity. In
traditional mechanisms, as new requests are received,
window size as well as delay starts to increase. This
continues until delay exceeds a threshold value. At this
time, window size reduces to its half. However, in
fuzzy method, the average window size changes
majorly about maximum window size. As shown in
Figure 29, this issue leads to retention of throughput at
the capacity of downstream proxy and rejection of
other incoming requests.

Overload Window Variations ——throughput ——rejection rate

700

[T R .

600

v
Q
S

2
=}

load(cps)
w s

=}
=]

N
Q
S

AW
VWYMot
\ vy V”WW
Y. |
0 t
0 10 20 30 40 50 60 70 80 90 100
Time(second)

Fig. 29. Windows variations, throughput and rejection rate with
rate of 800 cps

B. Result for Edge-Core Topology

In this section, the Edge-Core topology was used,
as illustrated in Figure 25, to study performance of the
proposed overload control algorithm when used by
multiple upstream proxies. In the implementation
scenario, two upstream edge proxies were considered,
each forwarding calls from a group of UAs to a single
core proxy causing it to overload. Also, fairness of the
proposed overload control algorithm was investigated

International Journal of Information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-113-en.html

I ZWIJICTR Volume 6. Number 4- Autumn 2014

[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

through monitoring the throughput perceived by each
upstream edge proxy during the overload.

1) Fairness Analysis

In order to provide fairness during the overload,
capacity of the overloaded downstream proxy was
required to be equally split between all upstream
(edge) proxies which communicated with it. Note that,
with the proposed mechanism, the downstream server
did not need to know about the number of upstream
servers connected to it and also did not generate any
extra feedback.

The proposed mechanism did not require changes
in the SIP protocol since it was implemented in the
sending (upstream) servers; consequently, it did not
impose processing burden on overloaded servers.

Indeed, Figure 30 verifies this claim. In this figure,
caller groups generate call requests of rate 650 cps,
each starting 100 s after the previous group. Network
latency is set at zero. It could be seen clearly in the
figure that all upstream servers get roughly the same
throughput which obviously decreases as more caller
groups start sending requests. Note that, the total
throughput of the core proxy is maxed out at its
capacity (i.e., 700 cps). From 0 to 100 s, only one
upstream proxy was sent at 650 cps so it got the entire
capacity. From 100 to 200 s, there were two operating
proxies, each receiving roughly equal throughput of
360 cps and 340 cps. At 200 s, the second proxy
stopped sending requests and another one regained the
extra capacity.

e Total Throughput ====Caller Group 0 Caller Group 1

800
700

=]
Q
=1

w
=]
=]

g 1--=-

A Frpreln V- AP 1 rF 2T

Throughput (cps)
w s
Q Q
(= =]

N
Q
=}

=
Q
=1

o

0 30 60 90 120 150 180 210 240 270 300

Time(second)

Fig. 30. Fairness analysis of the proposed method

VIII. CONCLUSION

The studies accomplished in this paper showed that
SIP protocol was not efficient enough in facing
congestion so that, when call request rate increased,
delay of call establishment increased suddenly, proxy's
throughput fell and consequently retransmission rates
and unsuccessful calls increased. In this paper, fuzzy
window-based control method was developed,
implemented and tested on a real platform. Also, the
efficiency of SIP proxy in case of overload was
studied using a distributed overload control method,
which was developed on Asterisk open source proxy.
The proposed overload control algorithm for SIP
servers was a window-based approach that required no
extra feedback and used fuzzy logic to detect the
overload. Moreover, the suggested method could
change the maximum window size dynamically.
Studying the charts of throughput, delay and
retransmission rate of “INVITE” and “BYE” messages

demonstrated that the proposed algorithm was able to
maintain the throughput at a high level and be fair. As
future works, we intend to investigate more
sophisticated window update strategies. In addition, an
analytical model as well as stability analysis of the SIP
network is also underway.

ACKNOWLEDGEMENTS

This work was supported by IP-PBX Type
approval laboratory, Ferdowsi University of Mashhad,
both morally and materially.

REFERENCES

[1] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-
Lee. Hypertext transfer protocol — HTTP/1.1. RFC 2068,
Internet Engineering Task Force, January 1997.

[2] J. Rosenberg and Henning Schulzrinne. An offer/answer
model with session description protocol (SDP). RFC 3264,
Internet Engineering Task Force, June 2002.

[3] Henning Schulzrinne, Stephen Casner, Ron Frederick, and
Van Jacobson. RTP: a transport protocol for real-time
applications. RFC 3550, Internet Engineering Task Force,
July 2003.

[4] Jonathan Rosenberg, Henning Schulzrinne, Gonzalo
Camarillo, Alan Johnston, Jon Peterson, Robert Sparks, Mark
Handley, and Eve Schooler. SIP: Session initiation protocol.
RFC 3261, Internet Engineering Task Force, June 2002.

[5] P. Montoro, a Comparative Study of VolP Standards with
Asterisk, in: International Conference on Digital
Telecommunications, 2009.

[6] D .Qin, Research on the Performance of Asterisk-Based
Media Gateway, in: International Symposium on Knowledge
Acquisition and Modelling (KAM), 2011.

[7] V. Hilt. I. Widjaja, Controlling overload in networks of sip
servers, in: IEEE International Conference on Network
Protocols, 2008, pp. 83-93.

[8] E.C. Noel, C.R. Johnson, Initial simulation results that
analyze sip based voip networks under overload, International
Teletraffic Congress (2007) 54-64.

[9] V. Hilt, E. Noel, C. Shen, A. Abdelal, Design consideration
for session initiation protocol (sip) overload control, SOC
working group, Internet draft,draft-ietfsoc-overload-design,
Work in progress (May 2011).

[10] C. Shen and H. Schulzrinne, On TCP-based SIP server
overload control, in: Principles, Systems and Applications of
IP Telecommunications, 2010.

[11] E. M. Nahum, J. Tracey, and C. P. Wright, Evaluating SIP
server performance, in: SIGMETRICS Perform. Eval. Rev.,
vol. 35, pp. 349-350, 2007.

[12] D. Y. Hwang, J. H. Park, S. W .Yoo, and K. H. Kim, A
window-based overload control considering the number of
confirmation Massages for SIP server,in: Ubiquitous and
Future Networks (ICUFN),2012.

[13] M. Ohta, Performance comparisons of transport protocols for
session initiation protocol signaling, in: Telecommunication
Networking Workshop on QoS in Multiservice IP Networks,
2008, pp. 148-153.

[14] H. Schulzrinne, SIPstone — Benchmarking SIP server
performance, Tech. rep., Columbia University, Apr. 2002.
Auvailable from http://Aww.columbia.edu/

[15] Raatikainen K., et al., A Control Plane Benchmark for
Telecommunications Signalling Applications ,Linux Conf
Europe, 5th September 2007.

[16] M. Cortes, J. R. Ensor, and J. O. Esteban, On SIP
Performance, Bell Labs Technical Journal, Volume 9, Issue 3,
pp. 155-172, 2004.

[17] h S. Wanke, M. Scharf, S. Kiesel, S. Wahl, Measurement of
the SIP Parsing Performance in the SIP Express Router,
Lecture Notes in Computer Science (including subseries
Lecture Notes in Avrtificial Intelligence and Lecture Notes in
Bioinformatics), Springer Berlin / Heidelberg, Volume 4606
LNCS, pp. 103-110, 2007.

Intermational Journal of Information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-113-en.html

[18] SS Gokhale., Signaling performance of SIP based VolIP: A
measurement-based approach, In Proc. of IEEE Globecom
’05, Vol. 2,pp. 761-765, Nov. 2005.

[19] Caixia Chi, Dong Wang, Ruibing Hao, Wei Zhou,
Performance Evaluation of SIP Servers, 2008.

[20] Erich M. Nahum, John Tracey, and Charles P. Wright,
Evaluating SIP Proxy Server Performance, 17th International
workshop on Network and Operating Systems Support for
Digital Audio & Video, 2007.

[21] Vincent Planat, Nadjia Kara, SIP Signaling Retransmission
Analysis over 3G network, MoMM, 2006.

[22] A. Munir, Analysis of SIP-based IMS Session Establishment
Signaling for WiMax-3G network, Proceedings of the Fourth
International Conference on Networking and
Services,Volume 00, pp.282-287, 2008.

[23] V. K. Gurbani, R. Jain, Transport Protocol Considerations for
Session Initiation Protocol Networks, Bell Labs Technical
Journal, Volume 9, Issue 1, pp. 83-97, 2004.

[24] Masataka Ohta, Performance Comparisons of Transport
Protocols for Session Initiation Protocol Signaling, 2008.

[25] Kaushik Kumar Ram, lan C. Fedeli, Alan L. Cox, and Scott
Rixner. Explaining the Impact of Network Transport
Protocols on SIP Proxy Performance, IEEE International
Symposium on Performance Analysis of Systems and
software, ISPASS,pp. 75-84, 2008.

[26] S. Montagna, M. Pignolo, Performance evaluation of load
control techniques in sip signaling servers, in: ICONS, 2008,
pp. 51-56.

[27] M. Ohta, Overload control in a sip signaling network,
Transactions on Engineering Computing and Technology 12
(2006) 2006.

[28] M. Ohta, Overload protection in a sip signaling network, in:
International Conference on Internet Surveillance and
Protection, 2006, pp. 11-11.

[29] C. Shen, H. Schulzrinne, E. M. Nahum, Session initiation
protocol (sip) server overload control: design and evaluation,
in: IPTComm, 2008, pp. 149-173.

[30] S. Low, F. Paganini, J. Doyle, Internet congestion control,
IEEE Control Systems Magazine 22 (1) (2002) 28-43.

[31] V. Hilt, E. Noel, C. Shen, A. Abdelal, Design consideration
for session initiation protocol (sip) overload control,
IETF,RFC6357,August 2011.

[32] D.-M. Chiu, R. Jain, Analysis of the increase and decrease
algorithms for congestion avoidance in computer networks,
Computing Network ISDN System 17 (1) (1989) 1-14.

[33] D. Malas, SIP End-to-End Performance Metrics, Internet-
Draft, October 31, 2008 (work in progress),
http://www.ietf.org/internet-drafts/draft-ietf-pmol-sip-perf-
etrics-02.txt.

[34] R.Mahmood, M.A.Azas, SIP messages delay analysis in
heterogeneous network, International Conference on Wireless
Communication and Sensor Computing, 2010.

[35] E. Noel, C. Johnson, Novel overload controls for sip
networks, in: 21st International Teletraffic Congress 2009,
2009, pp. 1-8.

[36] S. Montagna, M. Pignolo, Comparison between two
approaches to overload control in a real server: local or hybrid
solutions, in: Proceedings of the 15th IEEE Mediterranean
Electrotechnical Conference, MELECON 2010, IEEE Press,
Piscataway, NJ, USA, 2010, pp. 845-849.

[37] M. Homayouni, S. Azhari, M. Jahanbakhsh, A. Akbari, A.
Mansoori, N. Amani, Configuration of a sip signaling
network: an experimental analysis, in: Fifth International
Joint Conference on INC, IMS and IDC 2009, 2009, pp. 76 —
81.

[38] Y. Hong, C. Huang, J. Yan, Mitigating sip overload using a
control-theoretic approach, in: Global Telecommunications
Conference (GLOBECOM 2010), IEEE, 2010, pp. 1-5.

[39] A. Abdelal, W. Matragi, Signal-based overload control for sip
servers, in: Proceedings of the 7th IEEE Conference on
Consumer Communications and Networking Conference,
CCNC’10, IEEE Press, Piscataway, NJ, USA, 2010, pp. 990—
996.

[40] T.-Y. Chi, C.-H. Chen, H.-C. Chao, S.Y. Kuo, An efficient
earthquake early warning message delivery algorithm using

Volume 6. Number 4- Autumn 2014 IJICTR PN

an in time control-theoretic approach, in: C.-H. Hsu, L. Yang,
J. Ma, C. Zhu (Eds.), Ubiquitous Intelligence and Computing,
Lecture Notes in Computer Science, 6905, Springer, Berlin,
Heidelberg, 2011, pp. 161-173.

[41] R.G. Garroppo, S. Giordano, S. Niccolini, S. Spagna, A
prediction-based overload control algorithm for sip servers,
in: IEEE Transactions on Network and Service Management,
IEEE Press, Piscataway, NJ, USA, vol. 8, 2011, pp. 39-51.

[42] Abaev, Pavel ,On analytical model for optimal SIP server
hop-by-hop overload control, in: 4th International Congress
on Ultra Modern Telecommunications and Control Systems
and Workshops 2012.

[43] Kuzminykh, 1. A combined LIFO-Priority algorithm for
overload control of SIP server, in:International Conference on
Modern Problems of Radio Engineering Telecommunications
and Computer Science 2012.

[44] J. Sun, H. Yu, W. Zheng, Flow management with service
differentiation for sip application servers, in: CHINAGRID
’08: Proceedings of the The Third ChinaGrid Annual
Conference, IEEE Computer Society, Washington, DC, USA,
2008, pp. 272-277.

. Ahmadreza Montazerolghaem was
born on July 1987 in Esfahan, Iran.
-~ He received the B.Sc. degree in
e ¥ Information Technology from the
\4" computer department, Sadjad
: . University of Technology and his
. | M.Sc. degree in computer
" R i engineering from the computer
department, Ferdowsi University of Mashhad,
Mashhad, Iran, in 2010 and 2013, respectively. He is
a Ph.D. candidate in computer engineering at
computer department, Ferdowsi University of
Mashhad. His research interests are in Next
Generation Networks, Voice over IP, Fuzzy Logic
Control, Overload Control and Session Initiation
Protocol.

Mohammad Hossein Yaghmaee
received his B.S. degree in
Communications Engineering from
Sharif University of Technology,
Tehran, Iran in 1993, and his M.Sc.
degree in Communications
Engineering from Tehran
Polytechnic (Amirkabir) University
of Technology in 1995. He received his Ph.D. degree
in Communications Engineering from Tehran
Polytechnic (Amirkabir) University of Technology in
2000. He has been a computer network engineer with
several networking projects in Iran
Telecommunication Research Center (ITRC) since
1992. November 1998 to Julyl999, he was with
Network Technology Group (NTG), C&C Media
research labs, NEC Corporation, Tokyo, Japan, as
visiting research scholar. From September 2007 to
August 2008, he was with the Lane Department of
Computer Science and Electrical Engineering, West
Virginia University, Morgantown, USA as a visiting
associate professor. He is the author of 5 books all in
Farsi language. He has published more than 130
international conferences and journal papers in. He is
head of IP-PBX type approval lab at Ferdowsi
University of Mashhad.

4
Uy

[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

International Journal of Information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-113-en.html
http://www.tcpdf.org

