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Abstract— Social Network Analysis (SNA) is aimed at studying the structure of a social network, usually
represented as a graph, in order to extract the hidden knowledge about the activities and relationships of
the users. With exponential increase in the volume and velocity of the data created in today’s social networks
like Facebook and Twitter, a main requirement for social network analysis is employing computationally
efficient algorithms and methods. Since sequential and centralized approaches are far from the desired
scalability, a natural solution is to distribute graph of the network on a number of processing machines and
perform the execution in parallel. In this paper, existing works on distributed large-scale graph processing
are reviewed in four categories regarding their computational model. 1t is concluded that none of the
existing categories outperforms other ones significantly, and therefore no single category addresses the
requirements of all different graph algorithms. This highlights the need to research on identifying the types
of algorithms for which each category of the computational models is more suitable, and also on how to
customize the model for the corresponding type.
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knowledge. Consequently, in the last decade, much

I.  INTRODUCTION research is focused on social network analysis to extract
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Social networks are one of the major success stories
that have pushed the user-centric nature of Web 2.0 to
its limits by enabling users with wide range of social,
culiural and educational differences to get involved in
content generation and interaction on the web, The
large volume of data created through users' activities
has made social networks a wvaluable source of

knowledge from the structure of the social networks
[1112].

Generally, two types of methods can be observed in
the social network analysis domain [2][3]: 1) egocentric
analysis which focuses on how individual entities
affect, through their relationships, the larger groups of
entities or fragments of the network, and 2) socio-
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centric analysis which has a macroscopic point of view
and concenirates on studying groups of entities and
their relationships, how they evolve, and how they
affect each other.

Despite its interesting advantages, success of social
network analysis is also hindered by different
challenges, a major one of which is the huge amount of
data generated with a fast pace on the social networks
[1]{5]. For instance, in the case of Facebook, the
number of users has exceeded 1.2 billion users in 2014,
the number of friend connections is more than 150
billion, and the size of Facebook's Graph Search
database is greater than 700 terabytes'.

A social network is usually modeled as a very large
graph with vertices and edges representing the network
entities and their relationships, correspondingly [2]. As
a result, a social network analysis task is usually
transformed to a kind of graph processing problem,
which requires scalable algorithms and methods.

A possible approach to address this issue is using
graph databases which are inherently designed to store
and analyze graph data [4]. However, they are mostly
based on sequential and centralized algorithms that do
not provide the required efficiency when processing
very large graphs. For instance, Neodj® is a popular and
high-performance graph database. If the graph is not
very large, Neodj stores a large part of data in the main
memory, leading to a low response time for query
execution on the graph. However, for very large graphs
not fitting in the main memory, portions of the graph
are stored on disk, and therefore, performance
degrades due to the frequent disk access [5].

A more promising approach is to diswribute the
graph on a number of machines and execuie the
processing using distributed and parallel algorithms
[5][6]. The goal of this paper is to review existing
waorks focusing on distributed processing of large-scale
graphs, Two major issues generally addressed by these
works are 1) how to efficiently distribute graph data
onto processing machines in order to reduce data
communication across the underlying network, and 2)
how to design concurrent and efficient algorithms for
processing the distributed graph data.

This paper is organized as follows. In Section II
some required background is described. Section III
reviews existing works and discusses their merits and
pitfalls. Finally, Section IV concludes the paper by
summarizing the review results,

II. BACKGROUND

A major step in most of the works reviewed in
this paper is distributing graph data based on some
distribution model. A second step is to execute
distributed and paralle]l algorithms on this distributed
data layer.

In the following, first, the issue of data
distribution, and then, challenges of the second step are
described in more details.

A. Graph Data Distribution

An approach generally used for distributing graph
data is based on a network of multiple commodity
machines to provide the required processing power.
Each machine has access to its own data and if some
data is needed that is stored on a remote machine, it is
provided via communicating the remote machine
across the network.

An advantage of this architecture is that due to the
use of commodity hardware, it is cost-effective and
therefore horizontally scalable. However, this is
obtained at the cost of more complex programming
model [1][7].

The main issue in this approach is how to
distribute the data over machines in order to reduce the
network communication overhead. Reparding this
issue, three main models are employed in the existing
works:

* A copy of the entire graph is stored on each
machine. This model is effective, especially for
algorithms that can be divided info independent
tasks, since the machines do not need to
communicate with each other in order to
traverse the graph and collect the required
fragments [11]. In order for this model to be
effective, it is required to store the whole graph
in the main memory of the machine, to
eliminate the disk access latency issue.
Therefore, the main disadvantage of this model
is its misuse of memory, because each machine
should have enough memory to store the entire
graph, This is a major practical limitation when
processing large graphs,

* The input graph is partitioned over different
machines, so that each machine stores some
portions of the graph. The benefit of this
approach is that it enables the processing very
large graphs by increasing the number of the
processing commaodity machines. On the other
hand, this approach has the disadvantage that it
might need considerable network
communication for a single machine to fraverse
the entire graph or a large subgraph of it. This
communication overhead is in contrast with
scalability. Therefore, the main issue in this
model is how to effectively partition the graph
in order to reduce or minimize network
communications [16][ 18][25][26].

s A hybrid model is employed in which the input
graph is first partitioned over machines, and a
caching mechanism is used to reduce data
communications with remote
machines [9][14][32]. This leads to an
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improved performance, until the overhead of
cache consistency-preserving is kept small,

B. Challenges

Although employing distributed and  parallel
algorithms improves scalability and efficiency of graph
processing tasks, it also introduces some challenges
related to the common the characteristics of most graph
algorithms. These characteristics include [T]:

e Data-Driven computations: In many graph
algorithms, the computational steps are driven
by the stuciure of the underlying graph
instance. In other words, it cannot be
determined a priori how the computations are
distributed across the graph vertices and edges,
and it is different for each graph instance. This
is in conirast with many matrix computation
algorithms, e.g. matrix multiplication, where
the execution pattern of the computational
steps of the algorithm can be clearly
determined regardless of the values of the
matrix entries. As a result, it is challenging to
find out how the underlying computational
steps of the graph algorithm should be
partitioned and parallelized.

o  Unstructured Data: From a practical point of
view, many real world graphs are much
irregular and unstructured. As a result, simple
schemas for graph partitioning might lead to
unbalanced workloads on different processing
machines, and therefore poor resource
utilization. On the other hand, finding an
efficient schema for partitioning graph data
across  processing  machines is  much
challenging, since it is dependent on the
structure of the graph instance, which is not
kmown before the execution time.

* Poor Locality: Due to the unstructured and
irregular nature of a graph, and the difficulty of
effective graph partitioning on processing
machines, it might happen that many graph
fragments required by a processing machine
are not already stored locally and they must be
obtained from a remote machine through costly
network communication. This poor locality
which is observed in many graph algorithms
reduces performance.

s Communication (o computation ratio; In many
graph algorithms, a processing machine may
need to browse through the graph, and hence,
the ratio of communications (e.g. for accessing
remotely  stored  graph  data) to actual
computations is considerably high. This leads
to low performance and poor utilization of
computational power.

The characteristics and challenges described have
been the subject of much research. In the next section,
some of the related works are reviewed,

[II. DISTRIBUTED METHODS FOR LARG-SCALE
GRAGH PROCESSING

There are many works which propose distributed
methods for processing large graphs. These works can
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be categorized into four groups based on the
underlying computational model. Next, these groups
are described and compared to each other.

A MPl-based

MPI (Message Passing Interface) defines a
standard interface for a wide range of applications
which require a message passing schema [8]. There are
some works which propose MPI based methods for
processing large-scale graphs. While they generally
provide high performance, they also have some
problems. For instance, they do not address fault
tolerance and it is lefi to the programmer to implement
the required mechanisms. The programmer is also
responsible for much of the work regarding scheduling,

low-level synchronization and communication [6].

For instance, PBGL [9] is a general MPI based
library which supports definition of various distributed
graph data structure with different characteristics. It
also provides generic algorithms that can be effectively
run on different types of graphs. The goal of this library
is to improve flexibility and performance,
simultanecusly. For instance, in order to address the
poor-locality challenge mentioned in the previous
section, PBGL uses a hybrid model for distributing
graph data. This model introduces the concept of ghost
cells to cache graph data obtained from remote
machines. While this usually improves performance,
but it also might lead to scalability issues when the
mumber of remote references exceeds a specific
threshold. For instance, experiments in [7] have shown
this scalability problem for very large-scale graphs.

As another example, Combinatorial BLAS [13]is
a distributed library based on MPI for analyzing and
mining graph data. Tt uses a distributed sparse
adjacency mairix for representing graph data, and
provides a set of primitives based on linear algebra for
implementing distributed graph algorithms. [t provides
flexibility in the sense that it supports modification and
customization of the underlying mairix representation
format with low cost and complexity.

Compared to PBGL, Combinatorial BLAS
provides better scalability by employing more
sophisticated graph distribution schema [13]. Actually,
it uses two-dimensional distribution by dividing the
underlying matrix to equal blocks, ie. sub-matrices,
while PBGL uses one-dimensional distribution by
distributing graph only based on its vertices.

B. MapReduce-based

MapReduce is a distributed programming model
for processing large volumes of data over a cluster of
machines. The input data is initially divided into
smaller chunks and distributed over machines, Then, in
the map siage, a map function is used o produce
intermediate key-value pairs to be fed to the reduce
stage. In the reduce stage, a specific computation is
executed on the input key-pair values to generate the
results, which are stored in the underlying distributed
file system [23].
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The advantage of using MapReduce is that the
programmer doesn't need to get involved in low-level
details and complexities of issues like data distribution,
scheduling and fault tolerance. However, MapReduce
has some limitations regarding distributed processing
of large scale graphs:

o MapReduce is not inherently designed for
processing graph data. Instead it is tailor-made
for data represenied as key-value pairs, This
introduces significant complexity and overhead
for porting graph algorithms to  this
programming model [27].

*  While most graph algorithms are iterative and
therefore, they should be implemented by
multiple iterations of map and reduce stages.
However, MapReduce does not inirinsically
support  data  communication  between
successive iterations of map and reduce. In
other words, afler each iteration the results are
stored on the underlying file system, and they
should be reloaded in the next iteration. The 'O
overhead due to frequent data serialization
might lead to considerable inefficiency in case
of large graphs [6][10][21][27].

¢ The map and reduce workers are located in
different physical machines, As a result, a
constant network connection is required which
is very disk-intensive [10].

+ Many graph algorithms are exploratory in the
sense the graph is browsed from vertex to
vertex during the execution of the algorithm,
Because of the poor-locality challenge, it is
frequently needed to access data stored on a
remote machine. This may lead to significant
overhead if MapReduce is used, since it does
not fundamentally support direct
communication between processing
nodes [10][21][27].

Mext, some of the works which use MapReduce
programming model for large scale graph processing
are described.

PEGASUS [17] is the first open source library for
large scale graph processing based on MapReduce, It
is based on the idea that most graph algorithms can be
translated to vector-matrix multiplication problem.
Therefore, it uses an adjacency matrix representation
format for the graph data, and divides the
commesponding multiplication into three main
operations which their specific details are specified by
the programmer. PEGASUS then uses MapReduce to
execute each of the three operations. It also provides
some improvements like dividing the corresponding
matrix and vector into equal blocks.

MGMF [20] is a MapReduce based framework
for large scale graph processing. It defines four
categories of graph mining algorithms based on how
data of a graph is accessed and collected: Traverse all,
Traverse Partial, One-Hop, and Multi-Hop. Further, it
proposes a framework for porting algorithms of each
category to MapReduce model. This framework
consists of three main components, i.e. primitive

functions, distributed algorithms, and optimization
methods. It is implemented as an open-source library
and experimental resulis demonstrate that it
outperforms PEGASUS in terms of scalability and
performance.

Surfer [18] is another large scale graph
processing engine. Its goal is to provide better
efficiency and more programmability by supporting
two programming models, ie. MapReduce and
Propagation, for implementing graph algorithms. In
order to address the challenges of MapReduce for
graph processing, Surfer complemenis MapReduce
with the two steps of Propagation programming model,
i.e. transfer and combine, Surfer uses Propagation
maodel to improve data communication between
processing machines. It introduces a bandwidih-aware
algorithm for partitioning the input graph so that
communication overhead is reduced. Further it enables
executing user-defined functions over the partitioned
graph in a distributed manner,

GBASE [19] proposes a framework that consists
of two processes, i.e. indexing and query process. In
the former, the input graph which is represented as an
adjacency matrix is partitioned into several blocks.
Then, GBASE reshuffles the adjacency matrix in order
to put the vertices that are in the same partition near
each other. Finally, all non-empty blocks are
compressed by a standard compression method and
stored in the distributed file system. In the query
process, GBASE unifies different types of operations
through matrix-vector multiplication and selects the
required files before executing the query as
MapReduce jobs.

C. Vertex-Centric BSP-based

WVertex-ceniric is a programming model in which
computations of a graph algorithm take place in each
vertex. In other words, the algorithm is implemented
by considering each vertex as a computational unit that
has information about itself and its outgoing edges.
The advantage of this programming model is its
simplicity and its suitability for many graph
algorithms [6]. On the other hand, it has some
efficiency issues since each vertex has a very limited
knowledge about the graph, and for instance it might
have to spend many iterations for propagating its data
to another vertex, even if both vertices are stored on a
same graph partition on the same machine. Recently,
graph-centric programming is iniroduced to address
this issue by considering larger computational units
which have access to the whole partition structure. So
it enables utilization of the local graph structure in a
partition, and consequently supports more complex
and flexible graph algorithms [29].

BSP (Bulk Synchronous Parallel) is a
computational model for parallel processing. It
performs the computations in a sequence of supersteps
where each supersiep consists of three minor steps

[24]:

1. Parallel computational step in which different
processes run simultaneously,
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2. Communication step in which different processes
send message to each other to communicate data,

3. Synchronization step in which each process waits
until all the processes have reached to a specific
state, ready for starting the next superstep.

In comparison with the MapReduce model, the
BSP model has the advantage that it is stateful and
doesn’t need the graph structure to be transferred
between the processing machines. Therefore, it has less
commumication overhead. Further, BSP model can
utilize in-memory computation to improve efficiency
if the whole graph structure fits in the memory of all
machines [21]. Otherwise, it is required to implement
spilling-to-disk techniques. As a result, MapReduce is
still the best alternative for parallel processing of large-
scale graphs when the graph siructure doesn’t fit in the
local memory [10].

In vertex-centric BSP programming model, each
vertex of the graph is a computational unit which
executes BSP supersteps [6]. In the following, some of

the works which are based on this programming model
are described.

In 2010, Google introduced Pregel [15] as a
scalable framework for large-scale graph processing.
Pregel executes a graph algorithm as a set of iterations
in different supersteps. During each superstep 5, Pregel
calls, in parallel, a user-defined function for each
vertex V. This function can 1) read the messages that
vertex V has received in the previous superstep, 2)
change the state of vertex V or its associated outgoing
edges, and 3) send messages to other vertices, so that
these messages are received at the destination vertex in
the next superstep. Generally speaking, each superstep
is a unit of parallel computation, There is a
synchronization phase between any fwo successive
supersteps which is responsible for checking that every
vertex receives the messages of the previous superstep.
The algorithm is terminated when there are no
messages to be received and all vertices have become
inactive. The underlying idea of Pregel has motivated
many researchers to develop an open source version of
Pregel. Phoebus?®, GoldenOrb* and Giraph® are some
examples.

Apache Giraph is the most popular open-source
implementation of Pregel. It uses Hadoop [22] and
Zookeeper frameworks, and is based on a master/slave
architecture, The master node is responsible for
partitioning the graph before each superstep. It also
distributes the graph vertices between worker nodes
and monitors state of these nodes during the superstep,
Barrier synchronization at each superstep is also
executed by master node. On the other hand, each
worker node executes the user defined function on each
vertex assigned to it, and if it is necessary, it sends
messages to other worker nodes. The role of

Volume 6- Number 3-Summer 2014 [JICTR

ZooKeeper is to do coordination management at the
application level, and provide fault tolerance.

GPS [16] is another open-source project for
large-scale graph processing that is inspired by
Pregel [15]. However, it has three main differences
with Pregel framework or with Giraph. In addition to
vertex-centric algorithms, GPS allows combining
several wvertex-ceniric computations with global
computations. GPS utilizes repartitioning during the
computations in order to reduce communication
overhead. This is performed by moving to a single
machine the vertices which frequently send messages
to each other. Finally, while Pregel exccutes the
computations of the vertices in parallel, but it does not
support parallelization of the computation of a single
veriex. This might reduce utilization when a vertex has
heavy computation due to its high degree. GPS
addresses this problem by distributing the adjacency
list of high degree vertices over multiple machines to
enable parallel processing for each vertex.

Another similar system is DisNet [11] which has
a master/slave architecture in which every worker node
is responsible for performing computations over a
subset of the vertices, collecting the local resulis and
sending them to the master node. DisNet is similar to
Pregel since it follows the wvertex-ceniric and
synchronous programming model. However, it has
two main differences with Pregel: 1) in Disnet, workers
are allowed to communicate only with the master node,
while in Pregel worker nodes can communicate with
each other. 2) Pregel partitions the input graph over the
workers, but DisNet stores a copy of the entire graph
in the memory of each worker, and therefore, workers
need less communications for graph traversal. This
increases the performance, but also limits the
scalability in case of very large graphs that do not fit in
the main memory,

Seraph [30] is a low-cost system for large-scale
graph processing. The goal of designing Seraph is to
improve inefficient use of memory and high cost of
fault tolerance in case of nmning multiple concurrent
jobs which is the drawback of most of the existing
systems. To achieve this goal, it allows concurrent jobs
to share graph structure in local memory and proposes
a new incremental checkpoint model. lis
computational model is derived from the Pregel
However it separates its data model and computing
logics. Evaluation results demonstrate that Seraph
significantly ontperforms Giraph in terms of execution
time and memory utilization,

Trinity [31] is a general-purpose graph
processing engine which works on cloud distributed
memory. [t supports efficient graph processing through
optimization of memory management and network
communication mechanisms. This is achieved by
differentiating between two types of graph access
patterns, i.e. online and offline access paitern, and

* Phoebus. hitps:/github.com/sslogic phoshus
* GoldenOrb. hutp:/fwww.raveldata.com/goldenorh
* Giraph. hittp://giraph.apache.orz
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providing customized mechanisms for each type. It
must be noted that other works, except for graph
databases, support only offline pattern.

In case of online access pattern, which is used for
query execution on graphs, Trinity employs key/value
storage model where structure of the graph is kept in a
distributed in-memory store. On the other hand, for
offline access pattern which is used in graph analytics
tasks, Trinity uses vertex-centric programming model.
While this makes it similar to Pregel, Trinity is
different in the sense that unlike Pregel which allows a
vertex to send and receive messages to and from any
other vertex, Trinity resiricts a vertex to send and
receive messages to and from only a fixed set of
vertices. This resiriction enables better graph
partitioning and consequently, optimization of
message passing schema. Another difference is that
while Pregel is based on synchronous BSP model, but
Trinity is more flexible and supports asynchronous
model in addition to synchronous BSP. Experimental
evaluations demonstrate that Trinity outperforms
BPGL [9] and Giraph in terms of execution time and
memory utilization.

D. Vertex-Ceniric Asynchronous-based

Despite its benefits, the BSP model has the
disadvantage that it might increase the cost of
convergence between computations of different
vertices. In other words, the barrier synchronization
introduces some latency, as faster workers should wait
for slower ones. Asynchronous computations can
address this issue by accelerating this convergence
through mechanisms for faster propagation of the
vertex updates, since updates of a vertex can be used
by the next vertices as soon as they become available,
and it is not needed to wait until the message passing
step [6][14][28].

While asynchronous parallel programming
model can lead to much better efficiency compared to
synchronous model, but its main problem is its
programming complexity. From a practical point of
view, it is very hard to implement, test and specially
debug an asynchronous parallel program. Also there
are some frameworks which seek to address this
problem by providing new absiractions in
asynchronous programming, but they are still far from
the simplicity of programming in synchronous model.
For instance, they require the user to get involved in
low level concurrency issues which is not negligible
requirement [6][28].

Next, some works which are based on vertex-
ceniric asynchronous programming model are
described.

GraphLab [14] uses asynchronous distributed
shared memory architecture, in which each wvertex
program, in addition to the information of the vertex,
can direcily access the information of its adjacent
vertices and edges (direction of edges is not important).
In other words, each machine which is responsible for
a graph partition stores information of remote adjacent
vertices and edges as ghost cells. Further vertex

programs can schedule their neighboring vertex
programs for running in the future. In GraphLab,
computation is organized as a number of tasks, where
every task is responsible for executing the update
function of a vertex, its edges and its adjacent vertices.
Further, GraphLab provides different scheduling
algorithms for ordering updates of the tasks.

GraphLab eliminates the need to communicate
messages to transfer the information over network.
Consequently, it isolates user defined algorithms from
the data communications and allows the underlying
system to choose when and how to move program
state.

PowerGraph [25] seeks 1o eliminate challenges of
Pregel [15] and GraphLab [14] for processing large
graphs in the real world i.e. natural graphs, The main
property of natural graphs is that the majority of
vertices have a few neighbors, while a minority of them
have many neighbors. This happens for instance in
social networks where celebrities are connected to a
much greater number of users than the normal users.
This property makes it hard to partition the graph in
such a way that the network communications is
minimized,

Pregel and GraphLab employ hash functions for
partitioning, and this leads to unbalance workload
distribution when applied to natural graphs. In these
systems, machines which are responsible for high
degree vertices need a large amount of memory (o store
the information of the wvertices. In addition, the
execution of each vertex program which is expensive
for high-degree vertices cannot be parallelized. These
characteristics lead to limited performance and
scalability in these systems.

PowerGraph uses the simple idea of vertex
centric programming. However, it enables the
information of high degree vertices to be distributed
over all the machines. It utilizes the distributed shared
memory technique and the associative gather concept
correspondingly from GraphLab and Pregel, and can
execute vertex programs both in synchronous and
asynchronous mode. Experimental resulis demonstrate
that PowerGraph outperforms GraphLab and Pregel in
terms of performance and scalability.

GRACE [28] is another asynchronous system,
which allows the user to implement his graph
algorithms using BSP model which is synchronous,
and therefore advantages of BSP, ie. easier
implementation, testing and debugging. In other
words, it supporis using asynchronous execution
policies in BSP, which improves convergence rate of
the algorithms. This advantage is provided through
relaxation of the two constrains of the BSP model, i.e.
isolation and consistency. Isolation means that in each
BSP superstep, the messages sent by a vertex are not
received by the target vertices until the next superstep.
GRACE relaxes this constraint by allowing messages
of a vertex to be visible to other vertices in the same
superstep. This way, by careful ordering of update
function execution on the vertices, it is possible to
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make considerable improvements. For instance, the
vertices with higher priority messages can be
processed earlier so that their messages affect
computations of the other vertices.

Consistency in BSP means that a veriex program
is executed if and only if all the input messages of that
vertex are available at the beginning of the superstep.
GRACE relaxes this constraint by allowing a vertex
program to be started before it has received all its input
messages, for instance, as soon as it has received at
least one message. GRAE provides facilities for the
programmer o specify his definition of the relaxed
constraints. Experimental evaluations show that
asynchronous execution of BSP in GRACE can reach
convergence rate of fully asynchronous models like
GraphLab. Tt also preserves near-linear scalability of
synchronous BSP models by minimizing concurrency
control overhead.

HIPG [12] is another vertex-centric
asynchronous graph processing model which uses
principles of object oriented programming. Each
vertex is an object which contains its wvalues and
outgoing edges. Further, each wvertex program has
access to other vertex objects through a specific
function. This function is identical for accessing both
local and remote vertices. When the function is called
for a remote wvertex, HIPG replaces it with an
asynchronous message sent o the target machine. The
main advaniage of HIPG is that it provides a high-level
programming  interface  which  hides some
complexities, e.g. explicit message passing, from the
programmer and provides more flexibility, e.g. by
allowing definition of custom attributes and methods
for the vertices. Further, it provides good facilities for
using divide-and-conquer technique which is very
useful in graph algorithms,

IV. CoNCLUSION

In this paper different works on distributed large-
scale graph processing were reviewed. These works are
categorized into four groups based on their
computational model. The MPI-based models have
high performance but their programming model is not
easy and the programmer is involved in low level
complexities like message passing, concurrency
control and fault tolerance.

Models based on Map-Reduce have the
advantage that they free the programmer from dealing
with much details like data distribution, fault tolerance
and replication management. However, since Map-
Reduce is not inherently designed for graph
processing, the iterative nature of most graph
algorithms increases /'O overhead of using Map-
Reduce.

The advantage of vertex-ceniric BSP models is
programming simplicity of vertex-centric model and
also high performance of BSP which makes it an
appropriate model for graph algorithms which include
mostly iterative computations. Since BSP stores the
graph structure in the memory of each machine, it
eliminates the need to transfer this structure between

Volume 6- Number 3-Summer 2014 [JICTR E-

machines. This reduces network communication
overhead and improves execution performance. The
disadvantage of BSP based models is the low
convergence rate due to the synchronization overhead.

Asynchronous programming models address this
challenge, however in the cost of a more complex
programming model, which increases difficulty of
implementing, testing and debugging distributed graph
algorithms.

Vertex-Centric and Map-Reduce based systems
are more abstract and convenient for implementation
in comparison with MPI based systems, however their
APT for large scale graph processing are low-level and
they use non-traditional programming models to
maximize parallelism and scalability, Further, they
don’t offer mechanisms for conirolling the flow of
programs. As a result, it leads to large and complex
programs for writing sophisticated graph algorithms
like those composed of multiple operations and needs
global conirol flows like Betweenness Cenirality
computation algorithm.

Some recent works have tried fo address this
problem. For instance, HelP [33] is a set of high-level
graph processing primitives that absiract the most
commonly appearing operations in distributed graph
computations. As another example, [34] has designed
a compiler to translate imperative graph algorithms
into  equivalent Pregel implementations using
semantics defined in Green-Marl as a Domain-Specific
Language for graph analysis.

The works reviewed in this paper are summarized
in Table I, in terms of their main properties. Some of
the concluding points which are also shown in this
table are:

* Using vertex-centric programming model is the
dominant irend in the recent years. This can be
attributed to the simplicity of thinking and
designing graph algorithms based on this
model.

» The majority of proposed systems use
adjacency list for graph representation, instead
of adjacency matrix. One reason is that in the
matrix-based representation, the computations
of the graph algorithm might need o be
translated into vector-matrix multiplication
which consequently increases programming
difficulty.

» Most proposed models incorporate  fault-
tolerance. This is not unexpectied since fault
tolerance is an importance quality attribute in
distributed systems,

* Most works employ some graph partitioning
mechanism for the purpose of data distribution
among the processing machines. This improves
scalability and enables processing larger
graphs.

# There are a few numbers of vertex-centric
models that support parallelization of the
vertex program. This improves performance,
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especially when dealing with  highly
unstructured real worlds graphs, because heavy
computation in high-degree vertices is
improved through parallelization.

The main conclusion achieved through studying
existing works is that, each group of the proposed
models has interesting advantages, which cannot be
ignored in comparison with other groups. Therefore, we
consider this as a main research direction to identify key
characteristics and requirements of different graph
algorithms, and to analyze each of the proposed
programming models to determine how naturally they
cope with those characteristics and how effectively they
address the corresponding requirements. This way it is
possible to propose efficient and tailor-made models for
each category of graph algorithms,

The distinction made by Trinity [31] between two
categories of graph access patterns is an example of the
categorization schema suggesied by this paper.
However, our point of view is that there is much work
needed to enhance this schema by extending its
coverage.
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Table 1. Summary of distributed graph processing systems

Matrix- Dvata parallel
System Computational Model | TYyEramming |- Open | gueq | PO | opiribution | Vertex
BV madel method Program
BPGL [%] MPL C++ * hybrid
BALS [13] MPL CH @ partitioning
PEGASUS [17] MapReduce java # * * partitioning
MGMF [20] MapReduce C++ @ . partitioning
Surfer [18] MapReduce C++ " partitioning
GBASE [19] MapReduce f & & partitioning
Pregel [15] Vertex-Centric BSP C++ » partitioning
Giraph Vertex-Centric BSP Java L] " partitioning
GPS [18] Vertex-Centric BSP java L » partitioning .
Seraph [30] Vertex-Centric BSP java L] partitioning
DiNet [11] Vertex-Centric BSP C++ copy
i Wertex-Centric i i
Ty P11 Asynchronons/synchronous L . partitioning
GraphLab [14] iy CH+ . . hybrid
PowerGraph Vertex-Centric 5 -
[23] Asynchronous/synchronous s g hybrid
Vertex-Centric partitioning
GRACE [28] Asynel CH
; Vertex-Centric ) partitioning
HipG [12] Asyncheoious java
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