
A Framework for Evaluation of SQL Injection
Detection and Prevention Tools

Atefeh Tajpour
Advanced Informatics School

University Technology Malaysia
tajpour81sn@yahoo.com

Suhaimi Ibrahim
Advanced Informatics School

University Technology Malaysia

suhaimiibrahim@utm.my

Received: November12, 2011- Accepted: December 25, 2012

Abstract— SQLIA is a hacking technique by which the attacker adds Structured Query Language code (SQL
statements) through a web application's input fields or hidden parameters to access the resources. By SQL injection
an attacker gains access to underlying web application's database and destroys functionality and/or confidentiality.
Researchers have proposed different techniques to detect and prevent this vulnerability. In this paper we present SQL
injection attack types and also current security tools which detect or prevent this attack and compare them with each
other. Finally, we propose a framework for evaluating SQL injection detection or prevention tools in common
criteria. In fact, this paper provides information about current tools for researchers and also helps security officers to
choose suitable SQL injection detection tools for their web application security.

Keyword— web application security, web application vulnerability, SQL Injection attack, framework, tool,
evaluation, comparison

1.INTRODUCTION

In recent years, most of our daily tasks are
dependent on database driven web applications
because of increasing activity, such as banking,
booking and shopping. Web has become business-
oriented and is the preferred interface for information
and services around the world [2] consequently,
information must be trustable to web applications and
their underlying databases but unfortunately there is
not any guarantee for confidentiality and integrity of
this information. In particular, remote attacks which
exploit one or more vulnerabilities to seize control or
break down vulnerable hosts over the Internet are
dramatically increasing [4]. Refers to the TOP-10 web
applications vulnerabilities for 2007 by OWASP, SQL
Injection Attacks (SQLIAs) have known as one of the
most common threats to the security of database-
driven web application. In other word, there is not
enough assurance for confidentiality and integrity of
this information. SQLIA is a class of code injection
attacks that takes advantage of lack of user input

validation. In fact, attackers can shape their
illegitimate input as parts of final query string which is
operated by databases. Financial web applications or
secret information systems could be the victims of
SQLIA because attackers can threat their authority,
integrity and confidentiality. So, developers addressed
some defensive coding practices to eliminate
vulnerabilities but they are not sufficient. Some
researcher propose firewalls and Intrusion Detection
Systems (IDSs) but they are not enough because
SQLIA performs through ports used for regular web
traffic which usually are open in firewalls. On the
other hand, most IDSs focus on the network and IP
layers whereas SQLIA works at application layer.

Not only developers try to put some controls in
their source code, but attackers also continue to bring
some new ways to bypass these controls. These
problems motivate the need for a solution to the SQL
injection problem. Researchers have proposed some
tools to help developers to compensate the
shortcoming of the defensive coding [7, 10, 12].

Technical Note

ITRC

Volume 5- Number 3- Summer 2013

mailto:tajpour81sn@yahoo.com�

The problem is that some current tools could not
address all attack types or some of them need special
deployment requirements. Moreover, some tools suffer
from weakness in efficiency and effectiveness,
performance and stability. For example some tools
support special programming language.

Finally, this paper focuses precisely on a
framework for evaluating SQL Injection Detection or
Prevention tools in different criteria to help users
choose an appropriate security tool. Choosing a tool,
only according the numbers in the articles, is not
reasonable, today. Because some of the results are
depended on programming language, operating
system, database, attack list as well as equipment
which had been used by the authors of tools in
evaluation process. This framework provides common
criteria for evaluating common measure parameters.

2. OVERVIEW OF SQL INJECTION ATTACK

2.1.Definition of SQLIA

SQLIA is a hacking technique which the attacker
adds Structured Query Language code (SQL
statements) through a web application's input fields or
hidden parameters to access to resources. Lack of
input validation in web applications causes hacker to
be successful. For the following examples we will
assume that a web application receives a HTTP
request from a client as inputs and generates a SQL
statement as output for the backend database server.

1. an attacker sends the malicious HTTP
request to the web application

2. creates the SQL Statement
3. submits the SQL Statement to the back end

database

Figure 1. Example of a SQL Injection Attack

The above SQL Statement is always true because of
the Boolean tautology we appended (OR 1=1) so, we
will access the web application as an administrator
without knowing the right password. By using
SQLIAs, an attacker may be able to read, modify, or
even delete database information. In many cases, loss
of sensitive or confidential information can lead to
problems such as identity theft and fraud.

2.2. Sql Injection Attack Types

There are different methods of attacks that,
depending on the goal of attacker, are performed
together or sequentially. For a successful SQLIA the
attacker should append a syntactically correct
command to the original SQL query. There are more
explanation and examples in [28],[20]. Tautologies:
This type of attack injects SQL tokens to the
conditional query statement to be evaluated always
true. Illegal/Logically Incorrect Queries: when a query
is rejected, an error message is returned from the
database including useful debugging information. This
error messages help attacker to find vulnerable
parameters in the application and consequently
database of the application. Union Query: By this
technique, attackers join injected query to the safe
query by the word UNION and then can get data about

other tables from the application.
Piggy-backed Queries: In this type of attack, intruders
exploit database by the query delimiter, such as ";", to
append extra query to the original query. With a
successful attack database receives and execute a
multiple distinct queries. Normally the first query is
legitimate query, whereas following queries could be
illegitimate.

Stored Procedure: Stored procedure is a part of
database that programmer could set an extra
abstraction layer on the database. As stored procedure
could be coded by programmer, so, this part is as
inject able as web application forms. Depend on
specific stored procedure on the database there are
different ways to attack.
Alternate Encodings: In this technique, attackers odify
the injection query by using alternate encoding, such
as hexadecimal, ASCII, and Unicode.

Because by this way they can escape from
developer’s filter which scan input queries for special
known "bad character". For example attacker use char
(44) instead of single quote that is a bad character.
Inference: By this type of attack, intruders change the
behaviour of a database or application.There are two
well-known attack techniques that are based on
inference: blind-injection and timing attacks.

Volume 5- Number 3- Summer 2013 56

• Blind Injection: Sometimes developers hide the
error details which help attackers to compromise
the database. So the SQLIA would be more
difficult but not impossible. An attacker can still
steal data by asking a series of True/False
questions through SQL statements.

• Timing Attacks: A timing attack lets an attacker
gather information from a database by observing
timing delays in the database's responses. This
technique uses an if-then statement for injecting
queries. WAITFOR is a keyword along the
branches, which causes the database to delay its
response by a specified time.

2.3. SQL Injection Detection And Prevention Tools
Researchers have proposed a wide range of

techniques to address the problem of SQL injection.
These techniques range from development best
practices to fully automated tools for detecting and
preventing SQLIAs. In this section, these proposed
tools would be reviewed and the advantages and
disadvantages associated with each tool would be
summarized [1]. It is noticeable that there are more
techniques that have not implemented as a tool yet.
This paper emphasizes on tools not techniques such as
[23],[24]. Further information about techniques is
available in [20].

Huang and colleagues [18] propose WAVES, a
black-box technique for testing web applications for
SQL injection vulnerabilities. The tool identifies all
points a web application that can be used to inject
SQLIAs. It builds attacks that target these points and
monitors the application how response to the attacks
by utilizing machine learning.

JDBC-Checker [12],[13] was not developed with
the intent of detecting and preventing general
SQLIAs, but can be used to prevent attacks that take
advantage of type mismatches in a dynamically-
generated query string. As most of the SQLIAs
consist of syntactically and type correct queries so
this technique would not catch more general forms of
these attacks.
 CANDID [7], [27] modifies web applications
written in Java through a program transformation.
This tool dynamically mines the programmer-
intended query structure on any input and detects
attacks by comparing it against the structure of the
actual query issued. CANDID’s natural and simple
approach turns out to be very powerful for detection
of SQL injection attacks.

In SQL Guard [10] and SQL Check [5] queries
are checked at runtime based on a model which is
expressed as a grammar that only accepts legal
queries. SQL Guard examines the structure of the
query before and after the addition of user-input based
on the model. In SQL Check, the model is specified
independently by the developer. Both approaches use
a secret key to delimit user input during parsing by the
runtime checker, so security of the approach is
dependent on attackers not being able to discover the
key. In two approaches developer should modify code
to use a special intermediate library or manually insert

special markers into the code where user input is
added to a dynamically generated query.

AMNESIA combines static analysis and runtime
monitoring [16],[17]. In static phase, it builds models
of different types of queries which an application can
legally generate at each point of access to the database.
Queries are intercepted before they are sent to the
database and are checked against the statically built
models, in dynamic phase. Queries that violate the
model are prevented from accessing the database. The
primary limitation of this tool is that its success is
dependent on the accuracy of its static analysis for
building query models.
 Web SSARI [15] use static analysis to check taint
flows against preconditions for sensitive functions. It
works based on sanitized input that has passed through
a predefined set of filters. The limitation of this
approach is adequate preconditions for sensitive
functions cannot be accurately expressed so some
filters may be omitted.

Security Fly [14] is another tool that was
implemented for java. Despite of other tool, chases
string instead of character for taint information.
Security Fly tries to sanitize query strings that have
been generated using tainted input but unfortunately
injection in numeric fields cannot stop by this
approach. Difficulty of identifying all sources of user
input is the main limitation of this approach.

Positive tainting [1] not only focuses on positive
tainting rather than negative tainting but also it is
automated and does need developer intervention.
Moreover this approach benefits from syntax-aware
evaluation, which gives developers a mechanism to
regulate the usage of string data based not only on its
source, but also on its syntactical role in a query string.
 IDS [6] use an Intrusion Detection System (IDS) to
detect SQLIAs, based on a machine learning
technique. The technique builds models of the typical
queries and then at runtime, queries that do not match
the model would be identified as attack. This tool
detects attacks successfully but it depends on training
seriously. Else, many false positives and false
negatives would be generated.

Another approach in this category is SQL-IDS [8]
which focuses on writing specifications for the web
application that describe the intended structure of SQL
statements that are produced by the application, and in
automatically monitoring the execution of these SQL
statements for violations with respect to these
specifications.
 SQL Prevent [11] is consists of an HTTP request
interceptor. The original data flow is modified when
SQL Prevent is deployed into a web server. The
HTTP requests are saved into the current thread-local
storage. Then, SQL interceptor intercepts the SQL
statements that are made by web application and pass
them to the SQLIA detector module. Consequently,
HTTP request from thread-local storage is fetched
and examined to determine whether it contains an
SQLIA. The malicious SQL statement would be
prevented to be sent to database, if it is suspicious to
SQLIA.

Volume 5- Number 3- Summer 201357

Sw addler [3], analyzes the internal state of a web
application. It works based on both single and multiple
variables and shows an impressive way against
complex attacks to web applications. First the
approach describes the normal values for the
application’s state variables in critical points of the
application’s components. Then, during the detection
phase, it monitors the application’s execution to
identify abnormal states.

3.COMPARISON

 In this section, the SQL injection detection or
prevention tools presented in section IV would be
compared together. It is noticeable that this
comparison is based on the evaluation which the
authors of tools have done empirically. They used a
testbed for their tool. In particular, they used a set of
web applications and a set of inputs for those
applications that included both legitimate inputs and
SQLIAs.

3.1. Comparison of SQL Injection
Detection/Prevention Tools Based on Deployment
Requirement
Each tool with respect to the following criteria

was evaluated: (1) Does the tool require developers to
modify their code base? (2) What is the degree of
automation of the detection aspect of the tool? (3)
What is the degree of automation of the prevention
aspect of the tool? (4) What infrastructure (not
including the tool itself) is needed to successfully use
the tool? The results of this classification are
summarized in Table1.

TAB LE1 . COM P AR IS O N O F TOO LS B ASE D
ON D EP LO YM EN T RE QU IR EM ENT

Table1 determines the degree of automation of tool in
detection or prevention of attacks. Actually
automatically detection and prevention is an ability of
the tool that provides user satisfaction. Also table
shows that which tool needs to modify the source
code of application. Moreover, additional
infrastructure that is required for each tool that
usually leads to inconvenience for users is illustrated.

3.2. Comparison of Sql Injection

Detection/Prevention Tools Based on Attack Types

Proposed tools were compared to assess whether it
was capable of addressing the different attack types
presented in section2. Tables 2 summarize the results
of this comparison.

The symbol “•” is used for tool that can
successfully stop all attacks of that type. The symbol
“-” is used for tool that is not able to stop attacks of
that type. The symbol “°” refers to tool that the attack
type only partially because of natural limitations of the
underlying approach.

 As the table shows the stored procedure is a
critical attack which is difficult for some tools to stop
it. It is consisting of queries that can execute on the
database. However, most of tools consider only the
queries that generate within application. So, this type
of attack make serious problem for some tools.

3.3. Comparison of Tools Based on Evaluation
Parameters

The authors of proposed tools have evaluated
their tools in common parameters: efficiency,
effectiveness and performance, flexibility and
stability. The results of this classification are
summarized in Table 3. Definition of the measured
parameters [11], [29]:

Efficiency
− False positive: is a false alarm. It is when the tool

incorrectly categorizes a benign request being as
a malicious attack.

− False negative: occurs when a malicious attack is
not recognized, so the tool lets it pass normally.

Effectiveness
− Attacks Detection: the percentage of real attacks,

correctly detected.
− Attacks Prevention: the percentage of real attacks

correctly blocked after being detected.

Flexibility
Different Types of SQLIAs: the ability of the tool to
detect/prevent different types of SQL Injection attacks
such as those presented in section II.

Performance
− Detection Overhead: is the time spent for a

detection of a SQLIA once the tool is running.

Table2 Comparison of Tools with Respect to Attack Types

Volume 5- Number 3- Summer 2013 58

− Prevention Overhead: is the time spent to detect
and block (prevent) a SQLIA once the tool is
running.

Stability
 Environment Independence
− Web Applications: the possibility to test the tool

on different types of web applications, such as
open source/commercial, large/small.

− Databases: testing on web applications that use
different backend databases, such as open source
(e.g. MySQL) commercial (e.g. Oracle).

− Programming Languages: the ability of the tool
to work on web applications written in different
programming languages, such as J2EE, .NET,
PHP and so On.

− Operating Systems: the ability of the tool to run
on different OS such as Windows and Linux.

− Application Servers: the possibility to run the
tool in a network using different type of
Application Server such Tomcat.
− Which parameters are important?
− How important parameters could be

measured?
4. Detailed Framework Diagrams

The data flow through the framework starts with
“Create Testbed” and continue with ”Perform
SQLIAs without Tool”, “ Install Tool”, ”Re-perform
SQLIAs with Tool” and “Analyze result”.

4.1. Create Testbed

Figure2 illustrates that the testbed is made up by
five main components which are all related to each
other, in fact, mostly choosing a component depends
on the others. For example, if "Vulnerable web
applications” is written in PHP then, MySQL should
be selected as Dtabase, consequently “Operating
System” and “Application Server” should be selected
compatible with database and programming language.

Actually, this step is complex and time-
consuming because a vulnerable web application
should be settled with other components which work
together, then evaluation can be done.

4.2.Perform SQLIAs without Tool

After preparing the test bed, we perform different
types of SQLIAs on the vulnerable web application
without the security tool that is not installed yet. It is
noticeable that the chosen web application in test bed
is insecure and vulnerable to SQL Injection, so it
should be possible to perform SQLIAs. This role can
be done not only manually, but also with the support
of automatic tools for penetration tests or scripts.

For a successful SQLI attack a pairs of data:
vulnerable page and a parameter should be
considered. For example:"login.jsp" as a vulnerable
page and "username and password" as parameters.
For each of these parameters, possible attack should
be identified. Then an attack list and a benign list for
the insecure web application could be written as a set
of scripts and to submit the created lists
automatically. Also run a penetration test using that
set is effective.

A penetration test is a method to assess the
security of a computer system or network by
simulating an attack by a malicious user. This
includes an active surveillance system for all potential
weak points. Unknown hardware and software
failures and weaknesses in operating procedures or
technical countermeasures or improper system
configuration can cause these weak points. This
analysis will be performed by a potential attacker and
can involve active exploitation of vulnerabilities. The
intent of a penetration test is to determine the
feasibility and impact of an attack if successfully
done. In fact, it is part of a complete security audit.

Figure3. Perform SQLIA without Tool

4.3.Install Tool

After examining the web application by a
successful set of SQLIAs, the security tool should be
installed for the assessment in this regard.

In fact this phase is fully depended on the
selected tool for evaluation which means each tool
has special process, characteristics and limitations. A
few of them with small manipulation can run despite
of those tools which need major configuration in their
source core and environment to adopt them with new
situation.

Figure2. Create Test bed

Volume 5- Number 3- Summer 201359

4.4.Re-Perform SQLIAs with Tool
The process in this phase is exactly as the same

as phase 2. The only difference is, before this phase,
security tool has been installed to guarantee the web
application. Here the same attack list, benign lists will
be repeated and penetration testing as explained
above will be performed.

4.5.Analyze Result
After following the above phases there are

different results which should be analyzed. So with
the support of tables, charts and graphs, we can
observe each parameter, with different results. For
example, there are results for false negative and false
positive. Consequently some useful conclusion and
judgment on the SQLIAs security tool could be
achieved.

4.6. Change Parameter and Loop

Once a complete loop of all the 5 phases has been
done, it is suggested that the whole process to be
repeated using other vulnerable web applications or
database, operating system and application server.

In addition, it is useful to change attack list and
benign list, also penetration test to get valuable
results. Iteration of the evaluation process is essential
to obtain useful results because each time that the
process is repeated, different result may be obtained.
In fact the number of repetition is depended on the
examiners when he or she can trust to result to
achieve the goal. On the other hand, it is clear that
only one iteration is inadequate. Evaluation takes a
long time, especially if is done particularly and
correct.

5.COMPLETE EVALUATION FRAMEWORK
Figure 4, summarizes all steps of evaluation of

the proposed framework. It shows important
components related to each other and all of them are
effective in measuring the parameters that show the
ability and characters of a SQL injection detection or
prevention tool. Also this framework shows how
these components are related to each other.
Moreover, by this framework the logic of data follow
is understandable for viewers. Each phase identifies
the related components and the result for each phase
such as programming language, web application
vulnerability, application server, database and
operating system with Stability that could be
measured by phase1.
The Table4 gives an overall view about components,
output and also parameters that will be measured in
each phase. This table gives some information in
detail about the processes in the framework. The
proposed framework is understandable and clear
enough to be utilized for the evaluation of different
SQLIAs detection/prevention tool. In fact, it does not
have limitation and provides a standard trend and
common procedures for evaluation process. It
provides common criterion and useful results. Then,

based on these results, the comparison between tools
can be done correctly and security officers can choose
appropriate tools for their web application.

Figure4. Proposed Evaluation Framework

6.CONCLUSION
In this paper we presented how SQL injection

attacks disclose the web application security and
explained all SQL injection attack types. Then we
compared the tools in terms of their ability to stop
SQLIA, deployment requirement (modifying source
code, additional infrastructure and automation of
detection or prevention) and common evaluation
parameters (efficiency, effectiveness, stability,
flexibility and performance).

Moreover, this paper emphasises that the value of
some parameters are dependent on test bed, so, for a
complete evaluation, common criteria in a common
test bed should be considered to prove the strength
and weakness of SQL injection detection or
prevention tools. So we proposed a framework for
empirically evaluation of these tools because we
believe that analytically comparison is not enough for
choosing a tool.

Volume 5- Number 3- Summer 2013 60

TABLE 3. COMPARISON OF TOOLS BASED ON EVALUATION PARAMETERS

TABLE 4. PHASES OF EVALUATION FRAMEWORK

PHASE COMPONENT OUTPUT MEASURED PARAMETERS

1
Create Testbed

-Vulnerable web
Application

- Applications Server
- Programming Language

- Database
- Operating System

A testbed made up of a
vulnerable web

application running on
a configured network

-Stability → Environment
Independence

2
Perform SQL

Injection without
Tool

- Penetration Test
-Attack List
- Benign List

Web application
successful penetrated

3 Install Tool -Secure tool Secure web application

4 Re-perform SQLIAs
with Tool

- Penetration Test
- Attack List
- Benign List

Safe web application,
not penetrated anymore

-Flexibility → Types of SQLIAs
-Efficiency →(False positive,

False Negative)
-Effectiveness → (Attacks

Detection/ Prevention)
- Performance → (Detection

Overhead, Prevention Overhead)

5
-Analyze Result

-Change Parameters
and Loop

Results ,comments,
statistics on measure

parameters

Volume 5- Number 3- Summer 2013
61

REFERENCES
[1] W. G. Halfond, A. Orso, Using Positive Tainting and Syntax

Aware Evaluation to Counter SQL Injection Attacks, 14th
ACM SIGSOFT international symposium on Foundations of
software engineering 2006, ACM.

[2] Saeed Sharifian, Seyed Ahmad Motamedi, and Mohammad
Kazem Akbari, "Estimation-Based Load-Balancing with

Admission Control for Cluster Web Servers," ETRI Journal,
vol.31, no.2, 2009, pp.173-181.

[3] M. Cova, D. Balzarotti. Swaddler: An Approach for the Anomaly-
based Detection of State Violations in Web Applications. Recent
Advances in Intrusion Detection, Proceedings, Volume: 4637, pp:
63-86, 2007.

[4] Jong-Hyouk Lee, Seon-Gyoung Sohn, Beom-Hwan Chang, and
Tai-Myoung Chung, "PKG-VUL: Security Vulnerability
Evaluation and Patch Framework for Package-Based Systems,"
ETRI Journal, vol.31, no.5, Oct. 2009, pp.554-564.

[5] Z. Su and G. Wassermann. The Essence of Command Injection
Attacks in Web Applications. ACM SIGPLAN Notices. Volume:
41, pp: 372-382, 2006.

[6] F. Valeur, D. Mutz, and G. Vigna. A Learning-Based Approach to
the Detection of SQL Attacks. Detection of Intrusions And
Malware, And Vulnerability Assessment, Proceedings, Volume:
3548, pp: 123-140, 2005.

[7] P. Bisht, P. Madhusudan. CANDID: Dynamic Candidate
Evaluations for Automatic Prevention of SQL Injection Attacks.
ACM Transactions on Information and System Security Volume:
13, Issue: 2, 2010.

[8] K. Konstantinos and T. Tzouramanis. SQL-IDS: A Specification-
based Approach for SQL Injection Detection. Symposium on
Applied Computing. USA: ACM, 2008.

[9] A. S. Christensen, A. Moller, and M. I. Schwartzbach. Precise
Analysis of String Expressions. In Proc. 10th International
Static Analysis Symposium, SAS '03, volume 2694, pp 1-18.
Springer-Verlag, June 2003.

[10] G. T. Buehrer, B. W. Weide, and P. A. G. Sivilotti. Using Parse
Tree Validation to Prevent SQL Injection Attacks. In

International Workshop on Software Engineering and
Middleware (SEM), 2005.

[11] F.Monticelli, PhD SQLPrevent thesis. University of British
Columbia (UBC) Vancouver, Canada.2008.

[12] C. Gould, Z. Su, and P. Devanbu. JDBC Checker:A Static
Analysis Tool for SQL/JDBC Applications. In Proceedings of
the 26th International Conference on Software Engineering
Formal Demos, 2004.

[13] Wassermann, G; Gould, C; Su, Z, et al. Static Checking of
Dynamically Generated Queries in Database Applications. ACM
Transactions on Software Engineering and
Methodology. Volume: 16, Issue: 4, 2007.

[14] M. Martin, B. Livshits, and M. S. Lam. Finding Application
Errors and Security Flaws Using PQL: A Program Query
Language. ACM SIGPLAN Notices, Volume: 40, Issue: 10, pp:
365-383, 2005.

[15] Y. Huang, F. Yu, C. Hang, C. H. Tsai, D. T. Lee, and S. Y. Kuo.
Securing Web Application Code by Static Analysis and
Runtime Protection. In Proceedings of the 12th International
World Wide Web Conference (WWW 04), May 2004.

[16] W. G. Halfond and A. Orso. AMNESIA: Analysis and
Monitoring for NEutralizing SQL-Injection Attacks. In
Proceedings of the IEEE and ACM International Conference
on Automated Software Engineering , USA, Nov 2005.

[17] W. G. Halfond and A. Orso. Combining Static Analysis and
Runtime Monitoring to Counter SQL-Injection Attacks. In
Proceedings of the Third International ICSE Workshop on
Dynamic Analysis (WODA 2005), USA, May 2005.

[18] Y. Huang, S. Huang, T. Lin, and C. Tsai. A Testing Framework
for Web Application Security Assessment. Computer
Networks, Volume: 48 Issue: 5, Pp: 739-761, 2005.

[19] CSI Computer Security Institute, The Computer Crime and
Security Survey 2007.

[20] A.Tajpour, Suhaimi Ibrahim, M. Masrom, “SQL Injection
Detection and Prevention Techniques, International Journal of

Advancements in Computing Technology, Volume 3, Pp: 82-
92, 2011.

[21] Huang, Y. u., Hang, F. C., Tsai, H . C., Lee, D. T., and Kuo, S.
Y. Securing Web Application Code by Static Analysis and
Runtime Protection. In Proceedings of the 12th International
World Wide Web Conference (WWW 04), May 2004.

[22] NavigiliI, R., Velardi, P. Quantitative and Qualitative valuation
of the OntoLearn Ontology Learning System. Proceedings of
the 20th international conference on Computational Linguistics,
ACM, 2004.

[23] D. Scott and R. Sharp. Abstracting Application-level Web
Security. IEEE Transactions on Knowledge and Data
Engineering, Volume: 15, Issue: 4, 2003.

[24] V. B. Livshits and M. S. Lam. Finding Security Errors in Java
Programs with Static Analysis. ACM SIGPLAN
Notices, Volume: 40, Issue: 10, pp: 365-383, 2005.

[25] Atefeh Tajpour, Suhaimi Ibrahim, Maslin Masrom, "Evaluation
of SQL Injection Detection and Prevention Techniques”.
International Journal of Advancements in Computing
Technology (IJACT),2011, Kore.

[26] Daswani, N., Kern, C. and Kesavan, A. (2007). Foundations of
Security. Apress.

[27] S. Bandhakavi, P. Bisht, P. Madhusudan, CANDID: Preventing
SQL Injection Attacks using Dynamic Candidate Evaluations,
2007, USA, ACM.

[28] W. G. Halfond, J. Viegas and A. Orso, “A Classification of SQL
Injection Attacks and Countermeasures,” College of
Computing Georgia Institute of Technology IEEE, 2006.

[29] Atefeh Tajpour, Suhaimi Ibrahim, Mohammad Sharifi, "Web
Application Security by SQL Injection Detection Tools”.
International Journal of Computer Science Issues (IJCSI),
2012.

Atefeh Tajpour She received her
B.Sc.degree in Computer Engineering from
Iran University of Science and Technology
in 1995 and her M.Sc. degree in
Information Security from University
Technology Malaysia in 2010. She has
more than 12 years experience in

application programming and system analysis in Iran. She is
currently working toward the PhD degree in computer science
in University Technology Malaysia. Her interest is in web
application security. She has published different articles in
international conference and journals that have been indexed
by IEEE, Computer Society, Elsevier, Scopus and ISI. She is
also a reviewer of IEEE international conferences as well as a
member of editorial board of International Journal of
Advanced Computer Research.

Suhaimi Ibrahim received his B.Sc.
degree in Computer Science (1986), his
M.Sc. in Computer Science (1990), and
his Ph.D. in Computer Science (2006). He
is an Associate Professor attached to Dept.
of Software Engineering, Advanced
Informatics School (AIS), University

Technology Malaysia International Campus, Kuala Lumpur.
He currently holds the post of Deputy Dean of AIS. He is an
ISTQB certified tester and has been appointed a board
member of the Malaysian Software Testing Board (MSTB).
He has published many articles in international conferences
and international journals such as the International Journal of
Web Services Practices, Journal of Computer Science,
International Journal of Computational Science, Journal of
Systems and Software, and Journal of Information and
Software Technology. His research interests include software
testing, requirements engineering, web services, software
process improvement, mobile and trusted computing.

Volume 5- Number 3- Summer 2013 62

	2-arianian.pdf
	introduction
	Paper Organization

	related works
	ocr
	mlp
	jacket & cuda
	implementation
	Back Propagation Rule
	Designed Neural Network
	Details of Implementation
	I) Initial Weights
	Computational Hinders

	experimental results
	conclusion
	Acknowledgment
	References

	4-Salehi.pdf
	Introduction
	Literature survey
	Content based filtering
	Collaborative filtering
	Hybrid approach

	Methodology
	Material profiling
	Wighted Attribute based Content-based Recommendation (WACB)
	Adaptive strategy
	Weighted Attribute based Collaborative Filterting (WACF)
	Final recommendation(WAH)

	Result and discussion
	Data set and Evaluation metrics
	Performance evaluation
	Parameters setting

	Performance comparison

	Conclusion
	Acknowledgment
	References

	6-Farhood.pdf
	Introduction
	Search Result Classification
	Related Work
	b) Classification-based IR model
	a) Standard IR model
	Proposed Classification-Based IR System
	Conceptual View
	Architecture

	Classification
	Experiment
	Experimental Results
	Classifiers Assessment
	B.Classification-based IR System Assessment

	Conclusion
	References

	7-Tajpour.pdf
	1.introduction
	2. OVERVIEW OF SQL INJECTION ATTACK
	2.1.Definition of SQLIA
	2.2. Sql Injection Attack Types
	2.3. SQL Injection Detection And Prevention Tools

	3.Comparison
	3.1. Comparison of SQL Injection Detection/Prevention Tools Based on Deployment Requirement
	3.3. Comparison of Tools Based on Evaluation Parameters
	4. Detailed Framework Diagrams
	4.1. Create Testbed
	4.3.Install Tool
	4.4.Re-Perform SQLIAs with Tool
	4.5.Analyze Result

	5.Complete Evaluation Framework

	6.CONCLUSION
	REFERENCES

	9.pdf
	Page 12

	11.pdf
	Page 14

	page summer 2013.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67

