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Abstract—Millimeter wave communication (mmW(C) is a promising volunteer for 5G communication systems with high
data rates. To subdue the channel propagation characteristics in this frequency band, high dimensional antenna arrays
need to be deployed at transceiver. Employing such a deployment, prevents to use of ADC or RF chain in each branch
of MIMO system because of power constraints. Thus, Such systems impose to have a hybrid analog/digital
precoding/combining architecture. Hence, channel estimation revision seems to be essential. This paper propose new
algorithms to estimate the mmW channel by exploiting the sparse nature of the channel and finding the subspace of
received signal vectors based on MUSIC. By combining the multiple measurement vector (MMYV) concept, MISIC ,
subspace augmentation (SA) and two-stage orthogonal subspace matching pursuit (TOSMP) approaches, we try to
recover the indices of non-zero elements of an unknown channel matrix accurately even under the defective- rank
condition. These indices are called support in the context. Simulation results indicate MUSIC-based approaches offer
lower estimation error and higher sum rates compared with conventional MMYV solutions.

Keywords—Millimeter wave MIMO systems; sparse channel estimation; support; multiple measurement vectors (MMV);
subspace augmentation (SA).

L INTRODUCTION communication tends to develop standards to achieve

Thanks to prominent feature of huge unlicensed high-throughput [1].
spectral frequency between 30GHz to 300GHz in  One of the challenges in outdoor ambience is severe
millimeter wave (mmW) systems, modern wireless  path loss and shadowing phenomena due to oxygen
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absorption, humidity fades, and reflective outdoor
materials in millimetre-wave band. Fortunately,
progression in RF circuits combined with very small
wavelengths of mmW signals (between 1 to 10mm)
makes it possible to pack a miniaturized large number
of antennas into transceivers thereby providing high
beamforming gains that can compensate path loss and
even out-of-cell interference [2]. Utilizing of the
massive MIMO in mmW system helps to provide
pencil-shaped beams so that it focuses energy into a
favorable direction [3]. Large scale Moreover,
adaptive beamforming may make systems less
vulnerable to unfavorable shadowing effects. In
contrast to conventional lower frequency systems,
millimeter wave (mmW) systems, avoid to dedicate
one complete RF chain and one high-resolution ADC
or DAC to each branch of antenna due to a high cost
and power consumption of such components. For this
reason, low complexity sub-optimal analog
beamforming based on beam training is proposed to be
used instead of fully baseband solutions to support
only single stream MIMO communication [4].

To send several data streams simultaneously and
achieve more accurate beamforming gain, a hybrid
architecture has been proposed in [5] where the
processing is divided across the analog stage with
number of RF chains much lower than the number of
antennas and baseband stage. Baseband or digital stage
is for correction of limitation of analog RF section. In
[6] the sparse nature of the poor scattering mmw
channel is exploited to develop low-complexity
channel estimation. Hybrid beamformers designing
problem based on estimation of a few eigenmodes
according to echoing between transmitter and receiver
has been investigated in [7] based on subspace
estimation rather than estimation of the whole channel
by utilizing the concept of the reciprocity of the
channel in TDD MIMO systems.

In this paper, we consider a hybrid beamforming
model for downlink single-user mmW systems. We
assume to have an known sensing matrix in several
times of training mode as well as to know the geometry
of the arrays in source and destination. Thus, we utilize
the multiple measurement vectors (MMV) model of
sparse for millimeter channel and propose different
approaches for solving the channel estimation problem
[8]. The main contribution of the paper is developing
the MUSIC-based methods [9] rather than the existing
simultaneous algorithms for solving the joint sparse
channel recovery. One of the challenges in millimeter
wave channel estimation can be rank-deficiency. A
matrix is rank defective when rank is smaller than the
dimension of the matrix. For rank-defective channel
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estimation by simultaneous algorithms we can use
contents of [8, 10-12].

We use the following notations throughout this paper.
The bold upper-case letters denotes matrices, and bold
lower-cases represent vectors. Furthermore, ||A| is
Frobenius norm, whereas A" , A" , A"and A

are its transpose, conjugate transpose (Hermitian),
conjugate and Moore-Penrose  pseudo-inverse,
accordingly. A®B is the Kronecker product of A and
B. E[], is used to designate expectation. A is a

submatrix of A composed of columns indicated by set
7 - R(¥) isabbreviated to range of the matrix ¥ . An

N XN unitary matrix is represented by 1, .

1. SYSTEM MODEL

Assume a single user downlink Millimetre-Wave
MIMO system with N, transmit antennas at the base

station (BS) and N, receive antennas at the Mobile
station (MS) whereas each side is equipped by N', and

N RFchains. N, data streams are considered to send

into sparse channel. In our model, the number of
component of the transmitter array is more than the
receiver and also the number of RF chains is satisfied
toN; <N, <min(N,,N,)Fig.1 depicts a hybrid
single user MIMO mmW transceiver with spatial
multiplexing gain and phase shifter as an analog
beamformer.

The downlink signal at the receiver side after
filtering on baseband is given by,

y, =G'F'HEG t+G'F'n =C'HPt+C"'n (1)
where HeCVoM

assumed to be slowly block-fading, F, € """ s the

is the complex sparse channel

analog or RF precoder, G, e C"" "' the baseband

precoder, teCM* is transmit signal vector with
covariance  matrix  E[tt" ]= (P, /Ng) 1 and

n e C" s the additive Gaussian noise at the receiver

with E[nn"1=07 1, . Similarly, F, eC"™% and

G,eC"Nrare the RF band and baseband

combiners, respectively. matrix C is defined as
FG, eCV M,
In Fig.1,
the block
Digital of phase
shifters
, as an
BaseBand analog
Combiner H ¥
G | i
— N,

I
Combining
« == selection

Figurel. Hybrid Model of millimetre wave channel
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precoder/combiner can be chosen from predefined
codebooks or as random matrices with variable phase
and constant amplitude. Thus, a possible value set for
4th phase shifter and vth RF chain in matrix F is

[Fl,, = / ﬁe"% ¥

where 3, as a M-bits quantized angle is chosen from
uniform distribution in range of [0,27). The total
power constraint is compelled by normalizing G, such
that [F.G,[} =N,

Based on parametric physical model of channel with L
scatterers and assumption that each scatterer
contributes a single propagation path between the BS

and MS, the nonlinear channel H in spatial angles (but
linear in the path gains) can be indicated as

H= Y Av, 0V (@)

N, N H
=~f ‘L =V, (O)BVY, ()
where

p=diag ([B, ... B ]) €C"** is the L dimensional
propagation path gain diagonal matrix with
independently and identically distributed complex
Gaussian diagonal entries with zero mean and variance
1/L. The V(@) eC'and V,(p)eC*"in (3)
represent array response matrices at the BS and MS,
respectively. Such matrices are given by

®)

V,(0) =[V,(0).V,(8),... v,(8) V N, 4)

Vt(w)=[Vt((p1)'vt((p2)""lvt ((pL)]/\th 5)
The ¢, and 6, denote the Angle of Departure (AoDs)

and Angle of Arrival (AoAs) of ith independent path
from L total path. By assuming of an uniform linear
arrays (ULA) model, v, (6)and v,(¢) can be

defined as

M 27 .27 . T
—j—dsin(§) —j=—(N,-1dsin(4,)
v.(6)=|le * ", .e Z "1 YN, (6)

27 2x ) T
—j—dsin(g ) —j—(N{-Ddsin(qy )
Vip)=|te 2 e A LN ()

where A is the signal wavelength and d is the inter-

antenna distance and set to % at both the BS and MS.

It is assumed v, (6,) and v, (¢, ) vary slowly and they
can be well estimated at both sides.

1. PROBLEM FORMULATION

In this section, we take the advantages of the sparse
nature of the mmW channel and formulize channel
estimation as a compressive sensing problem. Contrary
to [6] where training analogue vectors are obtained
from a multi-level hierarchically, here they are found
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as random vectors with fluctuating phase by using one
RF chain in training step. As a result, the received
signal can be written as

v =fHf t +fn, (8)
wherey, andt, are received and transmitted symbol,
f.. and f, are training analog beamformer at the MS

and BS and n, is additive received vector noise at the
kth instant. For representing the sparse characteristics
of the <channel, we can apply Ilemma
vec (ABC) = (CT ®A)vec (B)to (8) from [13] . Thus
we can rewrite (8) as
U, = (ftTk ®f} )vec (H)t +f5n, 9)
We can assume that BS sends equal symbols t in
separate M time slot with different precoder vectors
and also MS received in M different combiners. With
such an assumption, MS stacks the M measurements in
a vector as
y =0Oht +{ (10)

where y =[v;,...0,] . @=[ (£ ©f)....(t5 © )]

Jh=vec(H) and {=[f/n,,...f7}n,, ]T .

Under the consideration of virtual model of the
channel, we can characterize physical channels by joint
spatial beams in fixed virtual transmit and receive
directions determined by resolution of the arrays [14].
Using this linear model of channel, user channel H can
be modelled as

N, N,
H=> > H,(mnV, @,V (,)=UHU’ (11)

m=1 n=1
u, =[vr(él),vr(éz),...,v,(éNr)] is an N,xN array
response matrix Similar to (3) excepting that instead of

spatial frequencies%dsin(@,),l:1,...,L, we

substitute  the  virtual  spatial

27K 12N, |
N

r

frequencies

Similarly,

U =[Vi(@) V(&) v (@,)] is an N xN array
response matrix with virtual spatial frequencies
27 . L
L,I =12,..,N,. Thanks to these spatial virtual
t

directions, the matrices U, andU, are full-rank DFT

matrices. Therefore, H,is unitarily equivalent to H

and captures all of channel information. H, e CN-*"

represents the virtual complex channel matrix and is
not generally diagonal. For virtual angles where there
is no scattering, the corresponding entries are
approximately zero. Note that, the virtual
representation does not distinguish between scatterers
that are within the spatial resolution.

By vectorising the channel matrix in equation (11), we
have

h =vec(H) = (U] ®U, vec(H,) (12)
=(U] ®U,)h, =Wh,  (13)
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where W e C"N"Nr s defined as a complex
dictionary matrix of the channel and h, € CcNiNed

represents a sparse
vector with L non zero entries as L <<N N, .

Replacing (13) in the stacked measurement vector
in (10) and assuming t =1, we can write,

y =OWh, +{ (14)
=%Yh, +{ (15)

where ¥ e CV"™Nris  sensing matrix with  the
constraintof M <N,N . Equation (15) can be seen as

a single measurement vector (SMV) compressive
sensing problem due to L-level sparse vector h, . Some

of important greedy techniques such as orthogonal
Matching Pursuit (OMP) and its derivaions, Hard
Iterative Thresholding (IHT) and its extensions have
been offered to resolve the SMV sparse problems [15].

When the SNR is very low, which is typical case at
mmW systems, we need to enhance the number of
measurements comparable to the dimension of
unknown sparse vector. To prevent large stacking of
the measurements, exploiting Multiple Measurement
Vector (MMV) or joint sparsity is proposed. Rather
than recovering the K unknown vector, one attempts to
simultaneously recover all vectors by finding the row
support of the unknown H, from the matrix

formulation as

Y=¥H, +E (16)
Where, H,=[h,,,....h,, ] € C" ",
E=[¢,...¢51eC"*  and thus Y=[y,,...y,]eC"*.

When predominant nonzero entries of h,,, are shared

in the same locations, MMV algorithms can lead to
computational promotion [16]. In this paper, we
assume that H, is L-row-sparse, i.e., that its row-

support, which is defined assupp(H, ) :={i : H,; =0}

, has cardinality at most L.

One of the famous greedy algorithms for solving
the MMV problem is Simultaneously Orthogonal
Matching Pursuit (SOMP) [17]. However, SOMP is a
rank blind approach. Namely, it does not allow for
perfect recovery in the full rank case with small
number of measurements. Another greedy blind rank
algorithms such as Simultaneous Iterative Hard
Thresholding (SIHT), Simultaneous Hard
Thresholding Pursuit (SHTP) are proposed in [8]. In
contrast to high computational complexity of rank-
blind  methods, MUSIC  (Multiple  Signal
Classification) approach, where is a rank-aware,
provides guaranteed recovery in the full row rank cases
with the mild complexity.

V. MUSIC-BASED METHODS

One of the simplest approaches evolves the rank of
observations is MUSIC, a popular algorithm in array
signal processing which is identical to rank aware
Thresholding techniques in the full rank case [18].
However, one of the main disadvantages of the MUSIC
technique is its tending to failure under the condition
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of rank(H, )<L . To compensate this limitation,

one can use a greedy selection algorithm to find
s=L-—ratoms of dictionary (or equivalently
supports) and then apply MUSIC to an augmented data
matrix to recognize the rest supports. Motivated by
these facts, we investigate rank aware algorithms to
improve estimation of unknown channel matrix.

A. mmW channel estimation by MUSIC

Inspired by using of the MUSIC for joint sparse
recovery in [19], signal subspace is needed to estimate
by eigenvalue decomposition (EVD) of the
approximated covariance matrix YY" /K or singular
value decomposition (SVD) of observation matrix Y .
To distinguish between the signal and noise subspace,
it is better to truncate the number of eigenvalues to
sparsity level of the channel, L. The resulted subspace
matrix is constituted of L eigenvectors proportional to
L dominant eigenvalues. But MUSIC is tending to
failure when W H, ., is ill-conditioned in the

presence of the noise, or when H, , does not have

full row rank. If the condition number, defined as the
ratio of the largest to the smallest singular value, is
large enough then the matrix is said to be ill-
conditioned. Also whereas K, the number of snapshots,
is smaller than the sparsity level L, then no more than
K rows can be linearly independent, and the nonzero
rows of unknown matrix turns into rank defective.
Correlation between sources or multi-path propagation
is another reason that caused to rank defective matrix.
Therefore, in such conditions we choose r large
eigenvalues, where r is the rank of WH,, instead of L

large eigenvalues where r <L . But rank is usually
unknown in receiver. To estimate rank, difference
between (i)th and (i+1)th descended sorted eigenvalue

of M eigenvalues of YY" /K is calculated. Note that
calculation is begun to (M-1)th and Mth eigenvalues.
If the result of dividing of subtracted value to the
largest eigenvalue is less than a predefined threshold
then rank is decreased one unit and rank finding
procedure will be persist until M-1 computations. After
the identification of the rank, signal subspace

estimation is performed. Given the signal subspace S

, MUSIC for solving the joint sparse recovery problem
accepts each columns of ¥ if that column is posed on
the estimated subspace and continues until L columns
is selected. MUSIC method is summarized in
algorithm 1 to find the unknown virtual channel
matrix. In algorithm 1, function Eigen refers to
eigenvalue decomposition and returns back a diagonal
matrix included eigenvalues.

Algorithm 1 MUSIC

EVs =sort(Eigen( YY" / K )) degenerately;
if K<L

r=whole of number of EVs larger than zero;
else
p = rank estimation from M EVs as explained in
section IV.A;
6. r=min(p,L);

arwnd =
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7. construct matrix U, from r eigenvector

proportional to r largest eigenvalues;

8. P.=UUY;

9. y={};

10. for j:]-: NtN r

11. A AN Al
12. end for

13. y={ select L largest elements of vector x };

A

—y v.
14. H,,=¥,Y;

B. Subspace augmentation methods

The range of the matrix ¥ is nothing more than the
space spanned by set of all possible linear
combinations columns of ¥ and is denoted by R (P) .

Practically speaking, Signal subspace, S , is estimated
from the finitely many snapshot matrix Y =%¥H, +E
and exactly computed from YY" /K when K > o .
Mathematically speaking, signal subspace is defined
by

S ZR(¥H,)=R(¥ H,,) (17)

When H, ,, is a full row rank matrix, the range of
signal subspace of Y =¥H, +E,ie. R(¥Y H, ,),is
coincided with R('¥,). If we assume that H, , isa

full row rank matrix and SNR is high, then
R(¥,) =R(Y) .Namely, only the columns of ¥ that

selected by elements of y , lie within R(¥ H, ).

Consequently, one can find the value of elements of
support by projecting the columns of ¥ into
orthogonal subspace of R(¥ H, ) [9].

However, in practical issue of estimating the rank,
due to limitations in SNR, finite number of K or
truncation of eigenvalues, estimation of signal

subspace is inaccurate. Thus, relation [P, =0 is

not satisfied and we have to minimize P."¥, or
equivalently maximize PP, in algorithm 1. Also, in
the rank defective case, i.e,, rank(H, ,)=r <L, in

spite of exact rank estimation, it may happen that some
of columns of sensing matrix as an element of the
support not belong to the signal subspace S and thus
MUSIC makes a mistake to select a true component of
support set. To prohibit the wrong estimating of the
support, one can estimate a subspace spanned by L —r
columns of ¥ as an augmentation subspace by
conventional MMV algorithms like SOMP in a
probabilistic way and attach this subspace to the r-
dimensional subspace obtained by MUSIC method
deterministically. The details will be discussed in next
section.

B.1 Subspace Augmentation MUSIC-MMV

Suppose that H, has L nonzero rows within support
y<{L...,N,N .} and also H,is rank defective, i.e.
r<L.Let & bean arbitrary subset of y with L —r
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elements. If we estimate r-dimensional subspace from
R(¥ H, ,,) then we can write,

R(¥,)=S +R(¥,) (18)
where S is estimated subspace of R (¥ H,, ) which
obtains by applying the EVD over YY" /N . The goal
is to find an augmented signal subspace.

Theory1: Suppose that S is an augmented signal
subspace withinR (¥, ). If we have equation (18) as

S =S +R(¥,)where S is estimated subspace, then

projection matrix on augmented signal subspace
attains as

P, =P, +(PXW,)(PIP,) (19)
Proof is in appendix A.

Remember that In SOMP algorithm as a conventional
solution for MMV, the selection rule is given by,

| =arg max ||Pl YV ||
gke[N‘N,]\J R(¥;) T akllp

The key point in algorithm2 is replacing stacked data
matrix Y by the estimated orthonormal signal subspace

U, in step 5. That is, SA-MUSIC algorithm in step 5

incrementally updates the partially support by the
following selection rule,

| =arg max ||PR*(.,,J)U§‘I':Yk ||2 (20)

k[N N, \&

where § is {J}at the outset of iterations.

The implementation on (19) and (20) seems
impractical. We know that the projection onto R (¥ )
is achieved by Py, ) ="¥,¥, =U,U;" where U, is
attained by SVD on ¥, =[U, | U,]Z[V, | V,]" [13]. A
proper substitution to construct the projection onto
S +R (¥ ,) is exploiting the orthonormal basis from [

U, ¥,] by SVD or QR decompositions. However,

SVD doubles the computation time rather than QR
factorization, but provides more reliable and consistent
rank determination.

Propositionl: The selection rule of augmented
support by SA-MUSIC-MMV is attained as

K :”U;QTVU)HZ/”‘I’V(i)"z where y={1:N,N }\o

and observed matrix is noisy.
Proof. According to MUSIC algorithm, every column
of ¥ belong to support index, lies within the range of

¥ H, . Provided that U, is error-free orthonormal
basis of R(¥ H, ), it can be orthonormal basis of
R(¥,). Thus each of columns of ‘¥ certainly lies

within this subspace. In the other hand, we have
P =1-U,U and thus none of selected columns

would not lie within P;* .Therefore one can compute
P, | =[w, -U, U, | =0 ifand only if k € 7.
Let & be an index subset of » with cardinality of
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L —r chosen by (20), then rank ([U,"¥,])=L —r
where Us is noise subspace resulted by SVD on Y and

consists of orthonormal columns such that U.;"Y =0.
If we suppose the noisy model of Y =¥H, +E, then
for every key={L:N,N,}\6 the term of

rank (U," [¥,, ., 1) =L —r is satisfied if and only if
k € 7. Thus the term of minH[US,‘I’(;JH T’(”H can
2

be appropriate selection rule.
Algorithm 2 describes Subspace Augmentation
MUSIC-MMV (SA-MUSIC) as follows,

1. 6={};
2. Continue by step 1 to 8 from algorithm1, exploit
Ucsand I

3. y={L:N,N ,}\¢
4. for j=1:length( y )

5. n =arg kemm‘%),(1m||PRL("’a>U§T*k ||2

6. o=oUn;

7. end for

8. U, =[U:¥,] ;find augmentation subspace

9. l_Jaug =orth(U,,, ) ; find orthonormal basis for the

range of U,,, by SVD or QR.
10. y={L:N,N J\¢$
11. for j=1:length( ¥ )
2. x5 =L, 1,0,
13. end for
14, y=6U{ I' largest elements of x };

A

—yp y.
15. Hv,(z)—‘P(;()Yx

PRL(.,,J) is perpendicular complementary projection on
range of ¥ .

B.2 Two stage orthogonal subspace matching pursuit
(TOSMP)

In this section, we present an mmW channel
estimation method based on subspace and MMV
concepts no need to augmentation. At the primary
stage, the algorithm finds M —1 the most effective
columns of ¥ by partial orthogonal subspace matching
pursuit (POSMP) method introduced in [11] and then
calculates the primary estimation of H,. POSMP is a
modified version of [20], and its criterion is based on

minimization the angle between spaces PRL(‘,,J)US; and
PRL(.,,J)R (¥,).

Definition 1 [21]: the angle between two subspace S,
ands, is as follows
£(3,,8;) =sin”*(min{|P; P |, [PP -
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In the secondary stage, the L nonzero rows of
estimated channel matrix H, via the best row-norm, is

recognized. When the rank is deficient, i.e.
rank (H,)=r <L, it is proven that the TOSMP

outperforms the SA-MUSIC specially, under the
conditionK <r.
Algorithm 3 represents the TOSMP method.

1. o={};

2. Continue by step 1 to 8 from algorithm1, exploit
Usand I';

3. y={L:N,N }\¢
4. for j=1:M-1

_ 1 1

5. n=arg kem%)r(]\(;"PR o) YsPriw,) Yok "2
6. o= o6Un;
7. end for

. _ i
8 Hyp=¥,Y
9. for j=1:length( & )
0. K = Hvﬁ(j)ﬁﬂz
11. end for

12. y={ L largest elements of x };

A

— ' .
13 A, =¥ ,Y

()~

C. The Spectral efficiency

After estimation of virtual channel and thus extracting
estimation of mmW channel, thanks to assumption of
the Gaussian signalling over the link in (2), we are able
to achieve the estimated spectral efficiency as follow,

R= Iog{ j (21)

A

where H, =C"HPis effective estimated channel

with C=F.G,and P=FG, as estimated combiner
and precoder matrices  respectively.  Also,
R, =c?CC"is the estimated combined noise

covariance matrix in the downlink. Considering the
estimated virtual channel from one of the proposed
algorithms and using (11), the estimated mmw
channel model can be written

H=UH

P . .. ~
S -1 H
Iy, + N R, He Hey

S

up Ut (22)
By applying the singular value decomposition on H in
(22) and choosing the first N columns of left- handed
unitary matrix, i.e., U, and choosing the first N,
columns of right-handed unitary matrix, i.e.,V , and
finally replacing them rather than C and P
respectively, we can design F,, G, ,F, andG, by
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Fig.3. Spectral Efficiency of Estimated mmW-Channel
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solving the general sparse optimization problem as
follow,

(IA: Gx)zargmin “\/AvX -F.G,

5L,

, st.
F

FG,| =N, (23)

2
F

where subscript X can be substituted for t or r, W,

can be replaced by U or V dependenton X and C, is

a general codebook included of quantized steering
vectors for transmitter or receiver and is chosen from

v(,k\l—”),k =0,1,..,N, .,y ~L,N, = 2°

Q (24)
Vv (3):|:1,ejﬂcos(&)7...,ej;r(Nx—1)005(19):|T/W

Q in (23) is number of bits for controlling the phase
shifters and N, ., is number of steering vectors
existing in transmitter/receiver codebook.

V. SIMULATION RESULTS

In this section, we evaluate numerical results of
proposed algorithms to estimate a typical millimetre-
Wave MIMO channel with hybrid precoding structure
and compare their performance to conventional MMV
and SMV problems.

BS and MS are equipped with 64 and 32 miniature
antenna and 10 and 6 RF chains respectively. We

and | G, ]I e{[C.], 150 SN}l =12, N, g
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Fig.5 NMSE versus SNR for
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assume that scatterer number is 6 independent on
indoor or outdoor environment.

Each scatterer as a cluster further assumed to
contribute a single propagation path between the BS
and MS. RF phase shifters in analog parts of precoder
and combiner are able to be controlled with 7
quantization bits. The operational carrier frequency of
the system is 28GHz with consideration of bandwidth
of 100MHz. the path-loss exponent is assumed to be
B =3.5. The angles of arrival and departure are

selected randomly with a uniform distribution from
range of [0,2x] .

In Fig.2, we evaluate the NMSE behaviour of virtual
channel estimation in the proposed algorithms for the
cases L =6 as multipath number or sparsity level of
channel and set K =2 to 6 while number of training
beam vectors, i.e. M is held to constant to 20. The
impact of K on the performance of the proposed
algorithms especially on measurement in an
environment with constant AoDs and AoAs and
variable channel gain, has incremental growth. When
K=1, the algorithm turns into the SMV and needs to
increase the number of measurements, i.e., M, for
better results. However, enlarging of the measurement
vector increases the time of solving the problem
exhaustingly.

The performance of proposed SA-MUSIC (MMV is
selected here to be SOMP) with deployments of M=20
and decreasing rank to 3 outperformances than the
Full-Rank MUSIC and SOMP.
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Fig.6 Impact of M,K rank over NMSE Fig.7 Success rate of support extraction
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Fig.9 Spectral efficiency versus SNR
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The performance of MUSIC has more improvement  spectral efficiency in terms of quantized bit number of
when K, i.e. number of columns of In Fig.2. The  phase shifters is represented in Fig.3. The desired

MS antenna number with different RF chains and  We also evaluate the performance of spectral
quantized bits in phase shifters, and compared with the  efficiency versus Quantized bit numbers of phase
spectral efficiency of the perfect channel. shifter in Fig.8. By adopting the structure of
In Fig.4, performance of the algorithms TOSMP and N,=64,N,=32,L.=8,M40, K=5,N}; =10 and N}, =6,
SA-MUSIC under the metric of NMSE is examined.
As is clear of figure, TOMSP outperforms SA-MUSIC
c_hiefly.in IC_JW rank condition. The arrangement for this done. The simulation result represents that TOSMP is
simulation is N, =32,N,=8,L=5-M40 for different rank o1\ \ct under rank-defective conditions.

and different measurement K. As shown in this figure,  Fig.9 shows the performance of spectral efficiency of
SA-MUSIC fails whenrank (H,) <K . It means that  hybrid precoder and combiner system versus SNR

TOSMP is having less sensitive to rank-deficiency. ~ under the condition of
Another simulation is tested for L=8,M40,K=5,fo =10 and N, =6 with different

I\.lt:321|\.lr:8:L:5’M4O’K:5 .and. d.ifferent ranks in N N' N_andN ' . This figure clearly shows that
Fig.5. Since K<L, rank (H,)is limited to K. When  1omps is more efficient than SA-MUSIC under the

rank (H, ) <K , TOMPS outperformance SA-MUSIC. condition ofrank <K . It is also shown the role of
However in condition of K <rank (H,)<L SA-  transceiver antenna gain and size in improvement of

MUSIC can estimate augmented subspace properly. spectral efficiency.
Impact of variations over M, K and rank investigate in

comparison between two algorithm for different
quantized bit numbers of phase shifters have been

Fig.6. in the case K=6 and rank=5, increase of M from VI. CONCLUSION
20 to 40 improves performance both of SA-MUSIC - .
and TOSMP but, TOSMP outperforms SA-MUSIC We have explored the ability of MUSIC algorithm

based on subspace augmentation for Rank-defective

Fig.7 shows success rate comparison of two mentioned mmW-channel estimation with large antenna array.
g. P We introduce robust TOSMP algorithm based on

algorithms ~ for  fixed ~ deployments — of o 500na1 matching pursuit inside of SA-algorithm
N,=32,N,=8,L=5-M40 . Success rate is a metric for  \yhen number of measurements is lower than the rank.
recognizing the percentage of true support extraction. However, TOSMP has higher computational
For the full rank case with sufficient measurements, complexity than SA-MUSIC. Numerical results show
SA-MUSIC has a better behaviour. But for the rank-  that SA-MUSIC provides good a spectral efficiency
defective case, TOSMP outperforms for middle tohigh ~ and normalized

SNRs.

specially in moderate and high SNRs.
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MSE than the MUSIC and conventional MMV
methods specially, when the rank is deficient. for
compensating of such shortage, we proposed TOSMP
algorithm that outperforms SA-MUSIC when the
measurement numbers is smaller than the rank. It
would be interesting to extract the hybrid
precoding/combining of rank-defective multi-user
mmW according to some studied articles such as [22]
for the future works.

Appendix A. Proof OF Theory 1

By assuming Ug =orth[U,,'¥,] as an enhanced
basis matrix with L columns within Q('¥ ) such that
U, asis a rxr estimated signal subspace within
Q(YH,) =Q(Y H, ) we have,

QUg) =V, , ¥,] (A1)

On the other hand, Q(U, )" = Q(Q,) where Q. is

an estimation of noise subspace of YY" /K. By
applying the projection update rule on (A.1) we have,
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