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absorption, humidity fades, and reflective outdoor 
materials in millimetre-wave band. Fortunately, 
progression in RF circuits combined with very small 
wavelengths of mmW signals (between 1 to 10mm) 
makes it possible to pack a miniaturized large number 
of antennas into transceivers thereby providing high 
beamforming gains that can compensate path loss and 
even out-of-cell interference [2]. Utilizing of the 
massive MIMO in mmW system helps to provide 
pencil-shaped beams so that it focuses energy into a 
favorable direction [3]. Large scale Moreover, 
adaptive beamforming may make systems less 
vulnerable to unfavorable shadowing effects. In 
contrast to conventional lower frequency systems, 
millimeter wave (mmW) systems, avoid to dedicate 
one complete RF chain and one high-resolution ADC 
or DAC to each branch of antenna due to a high cost 
and power consumption of such components. For this 
reason, low complexity sub-optimal analog 
beamforming based on beam training is proposed to be 
used instead of fully baseband solutions to support 
only single stream MIMO communication [4].  

To send several data streams simultaneously and 
achieve more accurate beamforming gain, a hybrid 
architecture has been proposed in [5] where the 
processing is divided across the analog stage with 
number of RF chains much lower than the number of 
antennas and baseband stage. Baseband or digital stage 
is for correction of limitation of analog RF section. In 
[6] the sparse nature of the poor scattering mmW 
channel is exploited to develop low-complexity 
channel estimation. Hybrid beamformers designing 
problem based on estimation of a few eigenmodes 
according to echoing between transmitter and receiver 
has been investigated in [7] based on subspace 
estimation rather than estimation of the whole channel 
by utilizing the concept of the reciprocity of the 
channel in TDD MIMO systems.  

In this paper, we consider a hybrid beamforming 
model for downlink single-user mmW systems. We 
assume to have an known sensing matrix in several 
times of training mode as well as to know the geometry 
of the arrays in source and destination. Thus, we utilize 
the multiple measurement vectors (MMV) model of 
sparse for millimeter channel and propose different 
approaches for solving the channel estimation problem 
[8]. The main contribution of the paper is developing 
the MUSIC-based methods [9] rather than the existing 
simultaneous algorithms for solving the joint sparse 
channel recovery. One of the challenges in millimeter 
wave channel estimation can be rank-deficiency. A 
matrix is rank defective when rank is smaller than the 
dimension of the matrix. For rank-defective channel 

estimation by simultaneous algorithms we can use 
contents of [8, 10-12]. 

We use the following notations throughout this paper.  

The bold upper-case letters denotes matrices, and bold 

lower-cases represent vectors. Furthermore, 
F|| ||A is 

Frobenius norm, whereas T
A , H

A , *
A and  

are its transpose, conjugate transpose (Hermitian), 
conjugate and Moore-Penrose pseudo-inverse, 

accordingly. A B  is the Kronecker product of A and 

B. 𝔼[.], is used to designate expectation. A is a 

submatrix of A  composed of columns indicated by set 

 . ( )R Ψ  is abbreviated to range of the matrixΨ . An 

n n unitary matrix is represented by 
nI . 

II. SYSTEM  MODEL 

Assume a single user downlink Millimetre-Wave 

MIMO system with Nt
 transmit antennas at the base 

station (BS) and Nr
receive antennas at the Mobile 

station (MS) whereas each side is equipped by Nt

rf and 

Nr

rf RF chains. Ns
data streams are considered to send 

into sparse channel. In our model, the number of 
component of the transmitter array is more than the 
receiver and also the number of RF chains is satisfied 

to N N min(N , N )s rf t r  Fig.1 depicts a hybrid 

single user MIMO mmW transceiver with spatial 
multiplexing gain and phase shifter as an analog 
beamformer. 

The downlink signal at the receiver side after 
filtering on baseband is given by, 

               
H H H H

r r r t t r r

H H  y G F HFG t +G F n C HPt C n       (1) 

where C r tN N
H  is the complex sparse channel 

assumed to be slowly block-fading, t C
t

t rfN N
F is the 

analog or RF precoder, t C
t
rf tN N

G the baseband  

precoder, 1
C tN 

t  is transmit signal vector with 

covariance matrix 𝔼[ H
tt ]= ( P / Ns s )

sNI and 

1
C rN 

n is the additive Gaussian noise at the receiver 

with 𝔼[ H
nn ]=

2

n rNI . Similarly, r C
r

r rfN N
F and 

r C
r
rf rN N

G are the RF band and baseband 

combiners, respectively. matrix C  is defined as 

r r C r rN N
F G .  

In Fig.1, 

the block 

of phase 

shifters 

as an 

analog 

†
A

Figure1. Hybrid Model of millimetre wave channel 
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precoder/combiner can be chosen from predefined 

codebooks or as random matrices with variable phase 

and constant amplitude. Thus, a possible value set for 

th phase shifter and th RF chain in matrix F  is                          

                           
j1

N
t

e  

 




F               (2) 

where    as a M-bits quantized angle is chosen from  

uniform distribution in range of [0,2 ) . The total 

power constraint is compelled by normalizing 
tG such 

that 
2

t t NsF
F G .   

Based on parametric physical model of channel with L 

scatterers and assumption that each scatterer 

contributes a single propagation path between the BS 

and MS, the nonlinear channel H in spatial angles (but 

linear in the path gains) can  be indicated as 
 

 

                 (3) 

   

 

where 

1 2([ , ,..., ]) CL L

Ldiag     β  is the L dimensional 

propagation path gain diagonal matrix with 

independently and identically distributed complex 
Gaussian diagonal entries with zero mean and variance 

1/ L . The r ( ) C rN L 
V and 

t ( ) C tN L 
V in (3) 

represent array response matrices at the BS and MS, 

respectively. Such matrices are given by 

          

 r r 1 r 2 r( ) ( ), ( ),..., ( ) /L rN   V v v v               (4) 

                         

 t t 1 t 2 t( ) ( ), ( ),..., ( ) /L tN   V v v v                (5) 

The i  and i  denote the Angle of Departure (AoDs) 

and Angle of Arrival (AoAs) of ith independent path 

from L total path. By assuming of an uniform linear 

arrays (ULA) model, r ( )lv and t ( )lv  can be 

defined as  

             
T

2 2
sin( ) ( 1) sin( )

( ) 1,e ,...,e / N
l r lj d j N d

r l r

 
 

 
   

  
 

v  (6) 

            
T

2 2
sin( ) ( 1) sin( )

t ( ) 1,e ,...,e / N
l t lj d j N d

l t

 
 

 
   

  
 

v  (7) 

where   is the signal wavelength and d  is the inter-

antenna distance and set to 
2


 at both the BS and MS. 

It is assumed r ( )lv and t ( )lv vary slowly and they 

can be well estimated at both sides. 

III. PROBLEM FORMULATION 

In this section, we take the advantages of the sparse 

nature of the mmW channel and formulize channel 

estimation as a compressive sensing problem. Contrary 

to [6] where training analogue vectors are obtained 

from a multi-level hierarchically, here they are found 

as random vectors with fluctuating phase by using one 

RF chain in training step. As a result, the received 

signal can be written as 

                   H H

k r,k t,k k r,k kt  f Hf f n                          (8) 

where
k and

kt are received and transmitted symbol, 

r,kf  and t,kf are training analog beamformer at the MS 

and BS and 
kn is additive received vector noise at the 

kth instant. For representing the sparse characteristics 

of the channel, we can apply lemma 

     Tvec vec ABC C A B to (8) from [13] . Thus 

we can rewrite (8) as 

                   T H H

k t,k r,k k r,k ktvec   f f H f n            (9) 

We can assume that BS sends equal symbols t  in 

separate M time slot with different precoder vectors 

and also MS received in M different combiners. With 

such an assumption, MS stacks the M measurements in 

a vector as 

                   t y Θh ζ                                         (10) 

where  
T

1 M,..., y ,    
T

T H T H

t,1 r,1 t,M r,M,...,   
 

Θ f f f f

, ( )vech H  and 
T

H H

r,1 1 r,M M,...,   ζ f n f n .  

Under the consideration of virtual model of the 

channel, we can characterize physical channels by joint 

spatial beams in fixed virtual transmit and receive 

directions determined by resolution of the arrays [14]. 

Using this linear model of channel, user channel H can 

be modelled as 

H H

v r t r v t

m=1 n=1

(m,n) ( ) ( )
tr NN

m n  H = H v v U H U        (11) 

rr r 1 r 2 r
ˆ ˆ ˆ( ), ( ),..., ( )N   

 
U v v v  is an 

r rN N array 

response matrix Similar to (3) excepting that instead of 

spatial frequencies
2

sin( ), 1,...,ld l L





 , we 

substitute the virtual spatial frequencies

2
, 1,2,..., r

r

k
k N

N


 . Similarly, 

t t 1 t 2 t
ˆ ˆ ˆ( ), ( ),..., ( )

tN     U v v v  is an t tN N array 

response matrix with virtual spatial frequencies

2
, 1,2,..., t

t

i
i N

N


 . Thanks to these spatial virtual 

directions, the matrices rU and tU are full-rank DFT 

matrices. Therefore, vH is unitarily equivalent to H  

and captures all of channel information. 
v C r tN N
H  

represents the virtual complex channel matrix and is 

not generally diagonal. For virtual angles where there 

is no scattering, the corresponding entries are 

approximately zero. Note that, the virtual 

representation does not distinguish between scatterers 
that are within the spatial resolution.  

By vectorising the channel matrix in equation (11), we 

have 

                  
T

t r v( ) ( ) ( )vec vec  h H U U H         (12) 

                                     
T

t r v v( )  U U h Wh       (13) 

H

r t

1

H

r t

( ) ( )

( ) ( )

L
t r

l l l

l

t r

N N

L

N N

L

  

 





H = v v

V βV
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where C t r t rN N N N
W is defined as a complex 

dictionary matrix of the channel and 
1

v C t rN N 
h  

represents a sparse 

vector with L non zero entries as 
r tL N N . 

Replacing (13) in the stacked measurement vector 

in (10) and assuming t 1 , we can write, 

                            
v y ΘWh ζ                           (14) 

                                
v Ψh ζ                              (15) 

where C t rM N N
Ψ is sensing matrix with the 

constraint of 
t rM N N . Equation (15) can be seen as 

a single measurement vector (SMV) compressive 

sensing problem due to L-level sparse vector
vh . Some 

of important greedy techniques such as orthogonal 

Matching Pursuit (OMP) and its derivaions, Hard 

Iterative Thresholding (IHT) and its extensions have 

been offered to resolve the SMV sparse problems [15].  
When the SNR is very low, which is typical case at 

mmW systems, we need to enhance the number of 
measurements comparable to the dimension of 
unknown sparse vector. To prevent large stacking of 
the measurements, exploiting Multiple Measurement 
Vector (MMV) or joint sparsity is proposed. Rather 
than recovering the K unknown vector, one attempts to 
simultaneously recover all vectors by finding the row 

support of the unknown 
vH from the matrix 

formulation as 

                               v Y ΨH Ε                          (16) 

Where, v v,1 v,K=[ ,..., ] C r tN N K
H h h ,

1[ ,..., ] CM K

K

 E ζ ζ and thus 1 K=[ ,..., ] CM KY y y . 

When predominant nonzero entries of 
v,kh are shared 

in the same locations, MMV algorithms can lead to 

computational promotion [16]. In this paper, we 

assume that vH is L-row-sparse, i.e., that its row-

support, which is defined as v v,(i)supp( ) : { : 0}i H H

, has cardinality at most L. 
One of the famous greedy algorithms for solving 

the MMV problem is Simultaneously Orthogonal 
Matching Pursuit (SOMP) [17]. However, SOMP is a 
rank blind approach. Namely, it does not allow for 
perfect recovery in the full rank case with small 
number of measurements. Another greedy blind rank 
algorithms such as Simultaneous Iterative Hard 
Thresholding (SIHT), Simultaneous Hard 
Thresholding Pursuit (SHTP) are proposed in [8]. In 
contrast to high computational complexity of rank-
blind methods, MUSIC (Multiple Signal 
Classification) approach, where is a rank-aware, 
provides guaranteed recovery in the full row rank cases 
with the mild complexity.  

IV. MUSIC-BASED METHODS 

One of the simplest approaches evolves the rank of 
observations is MUSIC, a popular algorithm in array 
signal processing which is identical to rank aware 
Thresholding techniques in the full rank case [18]. 
However, one of the main disadvantages of the MUSIC 
technique is its tending to failure under the condition 

of v,( )rank( ) L H . To compensate this limitation, 

one can use a greedy selection algorithm to find 

s L r  atoms of dictionary (or equivalently 
supports) and then apply MUSIC to an augmented data 
matrix to recognize the rest supports. Motivated by 
these facts, we investigate rank aware algorithms to 
improve estimation of unknown channel matrix. 

A. mmW channel estimation by MUSIC 

Inspired by using of the MUSIC for joint sparse 
recovery in [19], signal subspace is needed to estimate 
by eigenvalue decomposition (EVD) of the 

approximated covariance matrix H / KYY  or singular 

value decomposition (SVD) of observation matrix Y . 
To distinguish between the signal and noise subspace, 
it is better to truncate the number of eigenvalues to 
sparsity level of the channel, L. The resulted subspace 
matrix is constituted of L eigenvectors proportional to 
L dominant eigenvalues. But MUSIC is tending to 

failure when v,( ) Ψ H is ill-conditioned in the 

presence of the noise, or when v,( )H  does not have 

full row rank. If the condition number, defined as the 
ratio of the largest to the smallest singular value, is 
large enough then the matrix is said to be ill-
conditioned. Also whereas K, the number of snapshots, 
is smaller than the sparsity level L, then no more than 
K rows can be linearly independent, and the nonzero 
rows of unknown matrix turns into rank defective. 
Correlation between sources or multi-path propagation 
is another reason that caused to rank defective matrix. 
Therefore, in such conditions we choose r large 

eigenvalues, where r is the rank of vΨH , instead of L 

large eigenvalues where r L . But rank is usually 
unknown in receiver. To estimate rank, difference 
between (i)th and (i+1)th descended sorted eigenvalue 

of M eigenvalues of H / KYY  is calculated. Note that 
calculation is begun to (M-1)th and Mth eigenvalues. 
If the result of dividing of subtracted value to the 
largest eigenvalue is less than a predefined threshold 
then rank is decreased one unit and rank finding 
procedure will be persist until M-1 computations. After 
the identification of the rank, signal subspace 

estimation is performed. Given the signal subspace Ŝ
, MUSIC for solving the joint sparse recovery problem 

accepts each columns of Ψ  if that column is posed on 

the estimated subspace and continues until L columns 
is selected. MUSIC method is summarized in 
algorithm 1 to find the unknown virtual channel 
matrix. In algorithm 1, function Eigen refers to 
eigenvalue decomposition and returns back a diagonal 
matrix included eigenvalues.  

Algorithm 1 MUSIC 

 

1. EVs =sort(Eigen( H / KYY )) degenerately; 

2. if  K<L 

3.        r=whole of number of EVs larger than zero; 

4. else   

5.  = rank estimation from M EVs as explained in 

section IV.A; 

6. r= min (  , L ); 
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7. construct matrix 
ŝU  from r eigenvector 

proportional to r largest eigenvalues; 

8. 
ŝP = ˆ ˆ

H

s sU U ; 

9. { }   ; 

10.   for  j=1:
t rN N   

11.         ˆ
2 2

/j s j j  P Ψ Ψ     

12.  end  for   

13. {   select L largest elements of vector   }; 

14. 
†

v,( ) ( )
ˆ

 H Ψ Y ; 

B. Subspace augmentation methods 

The range of the matrixΨ  is nothing more than the 
space spanned by set of all possible linear 

combinations columns of Ψ and is denoted by ( )R Ψ . 

Practically speaking, Signal subspace, Ŝ , is estimated 

from the finitely many snapshot matrix 
v Y ΨH Ε

and exactly computed from H / KYY  when K   . 
Mathematically speaking, signal subspace is defined 
by  

             
v v,( )( ) ( )S R R  



 ΨH Ψ H                    (17) 

When v,( )H is a full row rank matrix, the range of 

signal subspace of v Y ΨH Ε , i.e. v,( )( )R  Ψ H , is 

coincided with ( )R Ψ . If we assume that v,( )H  is a 

full row rank matrix and SNR is high, then 

( ) ( )R R Ψ Y .Namely, only the columns of Ψ  that 

selected by elements of  , lie within v,( )( )R  Ψ H . 

Consequently, one can find the value of elements of 

support by projecting the columns of Ψ  into 

orthogonal subspace of v,( )( )R  Ψ H [9].  

However, in practical issue of estimating the rank, 
due to limitations in SNR, finite number of K or 
truncation of eigenvalues, estimation of signal 

subspace is inaccurate. Thus, relation ˆ 0s k

 P Ψ  is 

not satisfied and we have to minimize ŝ k


P Ψ or 

equivalently maximize ŝ kP Ψ in algorithm 1.  Also, in 

the rank defective case, i.e., v,( )rank( ) r L  H , in 

spite of exact rank estimation, it may happen that some 
of columns of sensing matrix as an element of the 
support not belong to the signal subspace S and thus 
MUSIC makes a mistake to select a true component of  
support set. To prohibit the wrong estimating of the 

support, one can estimate a subspace spanned by L r
columns of Ψ  as an augmentation subspace by 
conventional MMV algorithms like SOMP in a 
probabilistic way and attach this subspace to the r-
dimensional subspace obtained by MUSIC method 
deterministically. The details will be discussed in next 
section. 

B.1 Subspace Augmentation MUSIC-MMV 

Suppose that vH has L nonzero rows within support 

{1,..., }t rN N   and also vH is rank defective, i.e. 

r L . Let   be an arbitrary subset of   with L r

elements. If we estimate r-dimensional subspace from 

v,( )( )R  Ψ H then we can write, 

                     ˆ( ) ( )R S R  Ψ Ψ                         (18) 

where Ŝ is estimated subspace of v,( )( )R  Ψ H  which 

obtains by applying the EVD over H / NYY . The goal 

is to find an augmented signal subspace.  

1:Theory Suppose that S is an augmented signal 

subspace within ( )R Ψ . If we have equation (18) as 

ˆ ( )S S R   Ψ where Ŝ is estimated subspace, then 

projection matrix on augmented signal subspace 
attains as 

                     †

ˆ ˆ ˆ( )( )
S S S S 

  P P P Ψ P Ψ                (19) 

Proof is in appendix A. 

Remember that In SOMP algorithm as a conventional 
solution for MMV, the selection rule is given by, 

( ) :,
2[ ]\

arg max
t r

R k
k N N

l





 ΨP YΨ . 

The key point in algorithm2 is replacing stacked data 

matrix Y by the estimated orthonormal signal subspace 

ŝU in step 5. That is, SA-MUSIC algorithm in step 5 

incrementally updates the partially support by the 

following selection rule, 

 

                    ˆ( ) :,
2[ ]\

arg max
t r

R s k
k N N

l







Ψ
P U Ψ          (20) 

 

where is { } at the outset of iterations. 

The implementation on (19) and (20) seems 

impractical. We know that the projection onto ( )R Ψ

is achieved by 
†

( ) 1 1

H

R    
Ψ

P Ψ Ψ U U  where 
1U  is 

attained by SVD on 
1 2 1 2[ | ] [ | ]H

 Ψ U U Σ V V [13]. A 

proper substitution to construct the projection onto 
ˆ ( )S R  Ψ is exploiting the orthonormal basis from   [

ŝU Ψ ] by SVD or QR decompositions. However, 

SVD doubles the computation time rather than QR 
factorization, but provides more reliable and consistent 
rank determination. 

1:Proposition The selection rule of augmented 

support by SA-MUSIC-MMV is attained as 

( ) ( ) 22
/H

j aug j j   U Ψ Ψ  where {1: }\t rN N   

and observed matrix is noisy.  

Proof.  According to MUSIC algorithm, every column 

of Ψ  belong to support index, lies within the range of 

v,( ) Ψ H . Provided that sU is error-free orthonormal 

basis of v,( )( )R  Ψ H , it can be orthonormal basis of 

( )R Ψ . Thus each of columns of Ψ certainly lies 

within this subspace. In the other hand, we have 
H

s s s

  P I U U and thus none of selected columns 

would not lie within s


P .Therefore one can compute

0H

s k k s s k

   P Ψ Ψ U U Ψ  if and only if k  . 

Let   be an index subset of   with cardinality of 
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L r chosen by (20), then ˆ([ ])H

srank L r  U Ψ

where ˆ
sU is noise subspace resulted by SVD on Y  and 

consists of orthonormal columns such that ˆ H

s U Y 0 . 

If we suppose the noisy model of 
v Y ΨH Ε , then 

for every {1: }\t rk N N    the term of 

:,
ˆ( [ , ])H

s krank L r  U Ψ Ψ is satisfied if and only if 

k  . Thus the term of 
( )

2

ˆ ,
H

s jmin  
 
 
U Ψ Ψ can 

be appropriate selection rule. 
Algorithm 2 describes Subspace Augmentation 

MUSIC-MMV (SA-MUSIC) as follows, 

1. { }   ; 

2. Continue by step 1 to 8 from algorithm1, exploit 

ŝU and r ; 

3. {1: }\t rN N    

4. for  j=1 : length(   ) 

5.        ˆ( ) :,
2[ ]\

arg max
t r

R s k
k N N 

 




Ψ
P U Ψ    

6.              ; 

7.  end  for  

8. ˆ=[ ; ]aug s U U Ψ  ;find augmentation subspace 

9. =orth( )aug augU U ; find orthonormal basis for the 

range of augU by SVD or QR . 

10. {1: }\t rN N   

11.  for  j=1 : length(   ) 

12.        ( ) ( ) 22
/H

j aug j j   U Ψ Ψ     

13.  end  for  

14. {   r  largest elements of   }; 

15. 
†

v,( ) ( )
ˆ

 H Ψ Y ; 

( )R 



Ψ
P is perpendicular complementary projection on 

range of Ψ .  

 

B.2 Two stage orthogonal subspace matching pursuit 

(TOSMP) 

        In this section, we present an mmW channel 

estimation method based on subspace and MMV 

concepts no need to augmentation. At the primary 

stage, the algorithm finds 1M   the most effective  

columns ofΨ by partial orthogonal subspace matching 

pursuit (POSMP) method introduced in [11] and then 

calculates the primary estimation of vH . POSMP is a 

modified version of [20], and its criterion is based on 

minimization the angle between spaces ˆ( )R s



Ψ
P U and

( ) ( )R R
 



Ψ
P Ψ . 

Definition 1 [21]: the angle between two subspace 1S  

and 2S is as follows 

 
1 2 2 1

1

1 2( , ) sin (min , )S S S SS S P P P P    .   

 

In the secondary stage, the L nonzero rows of 

estimated channel matrix
vH via the best row-norm, is 

recognized. When the rank is deficient, i.e.

( )vrank r L H , it is proven that the TOSMP 

outperforms the SA-MUSIC specially, under the 

condition K r .   

Algorithm 3 represents the TOSMP method. 

1. { }   ; 

2. Continue by step 1 to 8 from algorithm1, exploit 

ŝU and r ; 

3. {1: }\t rN N    

4. for  j=1 : M-1 

5.        ˆ( ) ( ) :,
2[ ]\

arg max
t r

R s R k
k N N  

  




Ψ Ψ
P U P Ψ    

6.              ; 

7.  end  for  

8. 
†

v,( ) ( )
ˆ

 H Ψ Y  

9. for  j=1 : length(   ) 

10.        , ( ),:
2

ˆ
j v j  H     

11.  end  for  

12. {   L  largest elements of   }; 

13. 
†

v,( ) ( )
ˆ

 H Ψ Y ; 

 

C. The Spectral efficiency 

After estimation of virtual channel and thus extracting 
estimation of  mmW channel, thanks to assumption of 

the Gaussian signalling over the link in (2), we are able 

to achieve the estimated spectral efficiency as follow, 

         1

2
ˆ ˆ ˆ ˆlog

s

Hs

N n eff eff

s

P
R

N


 

   
 

I R H H               (21) 

where ˆˆ ˆ ˆH

eff H C HP is effective estimated channel 

with ˆ ˆˆ
r rC F G and ˆˆ ˆ

t tP F G as estimated combiner 

and precoder matrices respectively. Also, 
2 ˆ ˆˆ H

n nR CC is the estimated combined noise 

covariance matrix in the downlink. Considering the 

estimated virtual channel from one of the proposed 

algorithms and using (11), the estimated mmW 

channel model can be written  

                            v,( )
ˆ ˆ H

r tH U H U                       (22) 

By applying the singular value decomposition on Ĥ in 

(22) and choosing the first sN columns of left- handed 

unitary matrix, i.e., Û , and choosing the first sN

columns of right-handed unitary matrix, i.e., V̂ , and 

finally replacing them rather than Ĉ  and P̂  

respectively, we can design ˆ
rF , ˆ

rG , ˆ
tF and ˆ

tG by
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solving the general sparse optimization problem as 

follow, 

 ˆˆ , arg minx x F G  ˆˆ ˆ
x x x

F
W F G  , st.

  x,cod x,rf:,:, :,

ˆˆ 1 N , 1,2,..., Nx x x il l
and i l      

   
F G C

                 
2

s
ˆˆ Nx x

F
F G                                      (23)                                                     

where subscript x can be substituted for t or r , ˆ
xW  

can be replaced by Û or V̂ dependent on x and xC is 

a general codebook included of quantized steering 

vectors for transmitter or receiver and is chosen from 

              

x,cod

T
( 1)cos( )cos( )

( ), 0,1,..., N 1, N 2
N

( ) 1,e ,...,e / Nx

Q

Q

Q

j Nj

x x

k
k

  



 

 
    

 
     

v

v

   (24) 

Q  in (23) is number of bits for controlling the phase 

shifters and x,codN  is number of steering vectors 

existing in transmitter/receiver codebook.  

V. SIMULATION RESULTS 

In this section, we evaluate numerical results of 
proposed algorithms to estimate a typical millimetre-

Wave MIMO channel with hybrid precoding structure 

and compare their performance to conventional MMV 

and SMV problems.  

BS and MS are equipped with 64 and 32 miniature 

antenna and 10 and 6 RF chains respectively. We 

assume that scatterer number is 6 independent on 

indoor or outdoor environment. 

Each scatterer as a cluster further assumed to 

contribute a single propagation path between the BS 

and MS. RF phase shifters in analog parts of precoder 
and combiner are able to be controlled with 7 

quantization bits. The operational carrier frequency of 

the system is 28GHz with consideration of bandwidth 

of 100MHz. the path-loss exponent is assumed to be 

3.5loss  . The angles of arrival and departure are 

selected randomly with a uniform distribution from 

range of [0,2 ] .  

In Fig.2, we evaluate the NMSE behaviour of virtual 

channel estimation in the proposed algorithms for the 

cases 6L  as multipath number or sparsity level of 

channel and set 2K   to 6 while number of training 
beam vectors, i.e. M is held to constant to 20. The 

impact of K on the performance of the proposed 

algorithms especially on measurement in an 

environment with constant AoDs and AoAs and 

variable channel gain, has incremental growth. When 

K=1, the algorithm turns into the SMV and needs to  

increase the number of measurements, i.e., M, for 

better results. However, enlarging of the measurement 

vector increases the time of solving the problem 
exhaustingly.  

 The performance of proposed SA-MUSIC (MMV is 

selected here to be SOMP) with deployments of M=20 

and decreasing rank to 3 outperformances than the 

Full-Rank MUSIC and SOMP.  

 

Fig.3. Spectral Efficiency of Estimated mmW-Channel  
Fig.2 Normalized Minimum Mean Square Error of Estimated Channel  

Fig.4 NMSE versus SNR for 

t rN =32,N =8,L=5,M=40,different-rank and K  

Fig.5 NMSE versus SNR for 

t rN =32,N =8,L=8,M=40,K=5,different-rank  
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The performance of MUSIC has more improvement 

when K, i.e. number of columns of In Fig.2. The 

spectral efficiency in terms of quantized bit number of 

phase shifters is represented in Fig.3. The desired 

MS antenna number with different RF chains and 
quantized bits in phase shifters, and compared with the 

spectral efficiency of the perfect channel.  

In Fig.4, performance of the algorithms TOSMP and 

SA-MUSIC under the metric of NMSE is examined. 

As is clear of figure, TOMSP outperforms SA-MUSIC 

chiefly in low rank condition. The arrangement for this 

simulation is t rN =32,N =8,L=5-M40 for different rank 

and different measurement K. As shown in this figure, 

SA-MUSIC fails when ( )vrank KH . It means that 

TOSMP is having less sensitive to rank-deficiency. 

Another simulation is tested for

t rN =32,N =8,L=5,M40,K=5  and different ranks in 

Fig.5. Since K<L, ( )vrank H is limited to K. When 

( )vrank KH , TOMPS outperformance SA-MUSIC. 

However in condition of ( )vK rank L H SA-

MUSIC can estimate augmented subspace properly. 

Impact of variations over M, K and rank investigate in 
Fig.6. in the case K=6 and rank=5, increase of M from 

20 to 40 improves performance both of SA-MUSIC 

and TOSMP but, TOSMP outperforms SA-MUSIC 

specially in moderate and high SNRs. 

Fig.7 shows success rate comparison of two mentioned 

algorithms for fixed deployments of 

t rN =32,N =8,L=5-M40 . Success rate is a metric for 

recognizing the percentage of true support extraction. 

For the full rank case with sufficient measurements, 

SA-MUSIC has a better behaviour. But for the rank-

defective case, TOSMP outperforms for middle to high 

SNRs. 

We also evaluate the performance of spectral 
efficiency versus Quantized bit numbers of phase 

shifter in Fig.8. By adopting the structure of 

t rN =64,N =32,L=8,M40 ,
t

rfK=5,N =10 and N 6r

rf  , 

comparison between two algorithm for different 

quantized bit numbers of phase shifters have been 

done. The simulation result represents that TOSMP is 

robust under rank-defective conditions. 

Fig.9 shows the performance of spectral efficiency of 

hybrid precoder and combiner system versus SNR 
under the condition of

t

rfL=8,M40,K=5,N =10 and N 6r

rf  with different

, ,t

t rf rN N N and
r

rfN . This figure clearly shows that 

TOMPS is more efficient than SA-MUSIC under the 

condition of rank K . It is also shown the role of 

transceiver antenna gain and size in improvement of 

spectral efficiency. 

 

VI. CONCLUSION  

 We have explored the ability of MUSIC algorithm 
based on subspace augmentation for Rank-defective 
mmW-channel estimation with large antenna array. 
We introduce robust TOSMP algorithm based on 
orthogonal matching pursuit inside of SA-algorithm 
when number of measurements is lower than the rank. 
However, TOSMP has higher computational 
complexity than SA-MUSIC. Numerical results show 
that SA-MUSIC provides good a spectral efficiency 
and normalized 

Fig.6 Impact of M,K,rank over NMSE  Fig.7 Success rate of support extraction  

Fig.8 Spectral efficiency versus Quantized bit numbers of phase shifter  Fig.9 Spectral efficiency versus SNR  
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MSE than the MUSIC and conventional MMV 
methods specially, when the rank is deficient. for  
compensating of such shortage, we proposed TOSMP 
algorithm that outperforms SA-MUSIC when the 
measurement numbers is smaller than the rank. It 
would be interesting to extract the hybrid 
precoding/combining of rank-defective multi-user 
mmW according to some studied articles such as [22] 
for the future works. 

 

Appendix A. Proof OF Theory 1 

By assuming ˆ[ , ]
S S

orth U U Ψ  as an enhanced 

basis matrix with L columns within ( ) Ψ  such that 

Ŝ
U  as is a r r  estimated signal subspace within 

v v,( )( ) ( )  ΨH Ψ H  we have, 

ˆ( ) [ , ]
S S  U U Ψ                (A.1)                                          

On the other hand, ˆ ˆ( ) ( )
S S

 U Q where 
Ŝ

Q is 

an estimation of noise subspace of H / KYY . By 

applying the projection update rule on (A.1) we have, 

ˆˆ ˆ( ) ( ) ( ) ( ) ( )
SS S S 

     U ΨU U P Ψ Ψ P U    (A.2) 

 

Since 
Ŝ

Q
P is equivalent to 

ˆ ˆS S

 
U U

I P P then we have, 

          
ˆˆ( ) ( ) ( )

SS S   
Q

U U P Ψ      (A.3)                                                   

By applying the projection operator in both of 

equation (A.2) and consideringS and Ŝ instead of 
S

U

and
Ŝ

U respectively and knowing that 
†

G
P GG for an 

arbitrary matrix of G, we have 

           
ˆ ˆ ( )ˆ

[ ] ( ) ( )S S
S

S  



  
  

U
U Ψ U P Ψ

P P P P     (A.4)                                 

          
†

ˆ ˆ ˆ( )( )s sS  

  P P Ψ P Ψ  

In practical issues, one can calculate 
S

P by 

considering of the unitary matrix part of QR 

decomposition on ˆ[ ]
S U Ψ since the columns of 

orthogonal projector matrix can be obtained from any 

set of orthonormal vectors onto ˆ[ , ]
S  U Ψ  . 
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