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Abstract— A fusion method for spectral-spatial classification of hyperspectral images is proposed in this paper. In the
proposed framework, at first, the dimension of hyperspectral image is reduced by several state-of-the-art spectral
feature extraction methods, i.e., Binary Coding Based Feature Extraction (BCFE), Clustering Based Feature Extraction
(CBFE), Feature Extraction Based on Ridge Regression (FERR), Feature Extraction Using Attraction Points (FEUAP),
Feature Extraction using Weighted Training samples (FEWT), and Feature Space Discriminant Analysis (FSDA).
Then, the spatial features are calculated from the spectral features extracted from each spectral feature extraction
method individually using the proposed smoothing filters and morphological operators. Finally, majority voting
decision rule is used to obtain the final classification map. The proposed framework, in addition to removing the useless
spatial information such as noise and distortions, adds useful spatial information such as shape and size of objects
presented in scene image. The use of complement information obtained from six spectral feature extraction methods
with different ideas for class discrimination, significantly improves the classification results. The proposed framework
provides in average 6.64%, 7.07%, 8.23%, 7.52% and 20.52% improvement in classification results of three real
hyperspectral images compared to generalized composite kernel (GCK), multiple feature learning (MFL), weighted
joint collaborative representation (WJCR), original hyperspectral bands stacked on extended morphological profile
(HS+EMP) and original hyperspectral bands (HS), respectively in terms of overall accuracy.

Keywords- spectral-spatial features; feature transformation; classification; majority voting; hyperspectral data.

types. Supervised classifiers such as neural networks
[1], Bayesian [2] and kernel-based methods [3]-[4]
High spectral dimensionality of hyperspectral images ~ have provided good performance in terms of
allows accurate classification of different land cover  classification accuracy. By increasing the data

. INTRODUCTION

* Corresponding Author

International Journal of Information & Communication Technology Research


mailto:maryam.imani@modares.ac.ir
mailto:maryam.imani@modares.ac.ir
http://ijict.itrc.ac.ir/article-1-227-en.html

JED icTR

[ Downloaded from ijict.itrc.ac.ir on 2025-11-18 ]

dimensionality with a fixed number of training
samples, the classification accuracy is first increased to
a point and after that with increasing the data
dimensionality, the classification accuracy is
decreased. This is known as Hughes phenomenon [5].
Due to high dimension of hyperspectral images and
because of limited number of available training
samples, dealing with Hughes phenomenon is one of
the main challenges of hyperspectral image
classification. The high computational burden is
another  difficulty of using high spectral
dimensionality. To solve these difficulties, feature
reduction methods have been suggested [6]-[11].

In addition to spectral information, spatial
characteristics have also been shown to be very useful
for hyperspectral image classification [12]-[13].
Kernel-based methods such as support vector
machines (SVMs) have been widely utilized because
of their insensitivity to the curse of dimensionality.
Composite kernels with integrating the spectral and
spatial information provide significant improvement in
hyperspectral image classification [14]. Standard
composite kernels and also multiple kernel learning
methods generally need convex combinations of
kernels [15]. Moreover, their parameters optimization
is difficult. The generalized composite kernel (GCK)
method has been proposed to overcome these
limitations [16]. Multiple kernels can be linearly
combined without any restriction of convexity in GCK.
Combination of the spectral and spatial information is
done by GCK without any weight parameter.

Different spectral-spatial features have been used
for hyperspectral image classification. These features
are divided into two main groups: linear features and
nonlinear ones. On the one hand, some methodologies
such as maximum noise fraction [17] and independent
component analysis [18] use the linear features
extracted from the original spectral information. On the
other hand, nonlinear features can be more effective for
class discrimination in some cases. Some examples of
the nonlinear transformations based techniques for
modelling the inherent nonlinearity of data are kernel
methods, manifold regularization ones [19], and
extended multi-attribute profile [20]. Since generally
both linear and nonlinear class boundaries exist in the
scene, multiple feature learning (MFL) [21] has been
introduced to integrate multiple linear and nonlinear
features. The multinomial logistic regression (MLR)
[22], with its flexibility in construction of nonlinear
kernels, is exploited in both GCK and MFL methods.

The nearest subspace classification is coupled with
a distance-weighted Tikhonov regularization in the
nearest regularized subspace (NRS) classifier [23]. In
NRS, each testing sample is represented via a linear
combination of training pixels within each class. The
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label of class that best approximates the test pixel is
assigned to it. However, NRS just exploits the spectral
features and ignores the spatial characteristics at
neighboring locations. The joint collaborative
representation (JCR) method has been introduced in
[24] to overcome the indigenous disadvantage of the
NRS classifier. JCR uses a joint collaborative model of
training samples. Therefore, JCR involves the
contextual information in classification. The weighted
JCR (WJCR), which is an improved version of JCR
[25] uses more efficient collaborative representation
with considering the similarity between the center
pixel and its neighbors.

Morphological profiles (MPs) are efficient and
popular tools for spatial feature extraction [26]-[27].
MP produces a multi-scale decomposition from a
single band using opening and closing operators. A MP
concatenates a closing profile and an opening profile.
The extended morphological profile (EMP) is the
generalization of MP for hyperspectral data [28].

A spectral-spatial classification method is proposed
in this paper that is an extended version of work
presented in IST 2016 symposium [40]. The proposed
method removes the useless spatial characteristics and
adds useful spatial ones to improve the class
discrimination. In [40], the full hyperspectral cube is
divided to some sub-cubes containing the adjacent
bands. But, in this work, different feature extraction
methods containing complementary information are
used instead of them. At first, the high dimension of
hyperspectral image is reduced using some state-of-
the-art spectral feature extraction methods: Binary
Coding Based Feature Extraction (BCFE) [6],
Clustering Based Feature Extraction (CBFE) [29],
Feature Extraction Based on Ridge Regression (FERR)
[30], Feature Extraction Using Attraction Points
(FEUAP) [31], Feature Extraction using Weighted
Training samples (FEWT) [8], and Feature Space
Discriminant Analysis (FSDA) [11]. These feature
extraction methods are different approaches which use
different ideas to produce appropriate spectral features
for classification aims. This step reduces the data
dimensionality and degrades the Hughes phenomenon.
In each subgroup, we apply the proposed smoothing
filter, which removes the spectral-spatial distortions
such as noise from data. The morphological filters are
applied to the smoothed images to add useful
contextual information to them. Then, the spectral-
spatial features in each subgroup are given to an
appropriate classifier. The final classification map is
obtained by majority voting (MV) rule from decisions
made from all subgroups.

The extracted spectral features from the BCFE,
CBFE, FERR, FEUAP, FEWT, and FSDA methods,
contain complementary information and have
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minimum overlap with respect to each other. So, the
aggregation of decisions obtained from each group of
features through the decision fusion using MV rule
achieves  high classification accuracy. The
experimental results on three real hyperspectral images
show the good performance of the proposed method
compared to some state-of-the-art spectral-spatial
classification methods such as GCK, MFL, WJCR, and
integration of hyperspectral (HS) with EMP, which is
denoted by HS+EMP.

The reminder of this paper is continued as
follows. The feature extraction methods are represented
in section Il. The proposed method is introduced in
section I11. The experimental results are discussed in
section IV. Finally, section V concludes the paper.

II. FEATURE EXTRACTION METHODS

A) BCFE

The BCFE method extracts m features from d original
spectral bands by decomposition of the whole spectral
signature of each pixel to m segments. Then, it
calculates the weighted mean of spectral bands in each
segment and considers it as a new extracted feature.
Two characterizations of binary coded class means is
used to obtain a weight for each band. The first
characteristic is the binary values of class means in
each band and the second characteristic is the positive
and negative edges of class means in each band. The
BCFE calculates just a simple weighted mean. So, it is
faster than supervised feature extraction methods such
as linear discriminant analysis (LDA) [32],
nonparametric weighted feature extraction (NWFE)
[33], generalized discriminant analysis (GDA) [34],
and median-mean line based discriminant analysis
(MMLDA) [35] that need to calculate the scatter
matrices.  Moreover, BCFE achieves more
classification accuracy than other feature extraction
methods using limited training samples because other
mentioned methods need to estimate the second-order
statistics (scatter matrices) while BCFE just needs to
estimate the first-order statistics, i.e., class means. Let
x=[x1 x2- xg]T represents a pixel of
hyperspectral image where d is the number of spectral
bands and y=[¥1 Y2 ¥m]T denotes the
extracted feature vector. For extraction of m features
from d spectral bands, the spectral signature of each
pixel is partitioned to m segments containing K bands

where K = [%J In each part, the weighted mean of

bands is considered as a new extracted feature as
follows:

K .
Yi= Z:£=(j—1)1(+1 wix; , 1sj=sm-—1 1)
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The weight in each band is calculated by:
wi=aw)i+ (1 -a)wy); ; AI=si<d) (3)

where 0 <a <1 is a positive real-valued free
parameter, which is tuned in the training process, and
constitutes a tradeoff between the information
contained in the values of bands (related to w;) and the
information contained in the edges of bands (related to
w,). To understand how to calculate weights w; and
w,, the authors refer the readers to [6].

B) CBFE

The CBFE method considers a vector associated with
each spectral band which contains the mean values of
training samples of all classes in that band. Then, a
clustering algorithm such as k-means groups the
vectors in some clusters. The mean of spectral bands
whose associated vectors are located in the same
cluster is considered as an extracted feature. CBFE just
calculates the first order statistics of training samples,
i.e., mean vectors and thus works well in the small
sample size situations. In the CBFE method, the mean
vector of training samples is calculated in each class
and the matrix A is composed using the mean values as
follows:

myp Mgy 0 My
My Myy 0 My

A=| . : . ) 4
Ma1 Mgz *° Mg

where m;; is the mean of training samples of jth class

in the ith band. The matrix A can be rewritten using the
row vectorsa; (i = 1,2,...,d):

a
a;

A= )

ag

where a; (i = 1,2,..,d) is the vector corresponding to
ith dimension and contains the mean values of training
samples for c classes. If two vector a; and a; (i # j)
become similar, then bands i and j are highly
correlated. So, one of them can be removed. Based on
this idea, the vectors a; (i = 1,2,..,d) are grouped
into some clusters using a clustering algorithm such as
k-means. The mean of spectral bands whose associated
vectors are located in a cluster is considered as an
extracted feature. The number of clusters determines
the number of extracted features (12 features are
extracted using CBFE in this work).
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C) FERR

In the FERR method, a feature vector is defined for
each dimension, and then, modeled as a linear
combination of its farthest neighbors. By solving the
ridge regression model, the representation coefficients
are calculated and considers as the entries of the
projection matrix. FERR can extract each number of
features and has good efficiency in the small sample
size situations. By Assuming x,.; as the original
feature vector of each pixel of hyperspectral image, the
aim is extraction of m features from it using a linear
transformation such as y,,x1 = ApxaXaxa (M K d).
The matrix of class mean is represented as follows
where ¢ and d are the number of classes and the
number of spectral bands, respectively:

Myq My Myg - My
| Mg Myp My3 - My
[ M3y M3, myz - My

|

|

R I
lmdlmdz Mgz ** mch

(6)

where m;; (i =1,2,..,d;j =1,2,...,c) is the mean
of class j in ith band. Feature vectors in d bands are
defined as follows:

h;=[my mgp m]T; i=1,2,..,d (7)
By considering h; as a central feature vector: q; = h;,
m  farthest neighbors of gq; among h;(j =
1,2,..,d;j#1i) are obtained and denoted by
h;i, h;y, ..., hy,. Then, q; is represented using a linear
combination of m farthest neighbors:

q; =winhy +wiphy + -+ winhy, + £ 50 =
12,..,d (8)

where  w;,,wi,, ..., W, are the representation
coefficients. The other form of (8) is given by:

(G)cx1 = H) exm Wdmxa + Ecxt ©
where

H, = [hy hyy . by ] 5i=12,..,d (10)

w; = [wj; wiy w17 5i=1,2,..,d (11)

To avoid the singularity problem, the ridge regression
is used. The coefficient vector w; is obtained by
ordinary least square solution as follows:

wo=H"H+61) H q ;i=12...d (12)

Note that the wvector w; describes the relationship
between the ith feature vector (q; = h;) and m feature
vectors, h;y, by, ..., Ry, , Which have the largest
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distances from it. To obtain the projection matrix, the
representation coefficients of each band is obtained in a
similar way. These coefficients vector compose the
projection matrix after normalization.

D) FEUAP

The basic idea of FEUAP is represented as follows: if
we consider an appropriate attraction point for each
class, the samples of each class can move toward the
attraction point of their class using a proper
transformation. If attraction points of different classes
are chosen away enough from each other, different
classes become separable by aggregation of samples of
each class around the attraction point of the same class.
The FEUAP method is done in two basic phases: 1-
obtaining appropriate attraction points, 2- achieving
the proper transformation to move toward attraction
points. Two approaches are proposed in [31] to obtain
the attraction points (selection based on distance
measure and selection based on dense measure). For
more details, authors refer the readers to [31]. FEUAP
has no need to estimate the statistical moments (mean
vector or scatter matrix) and so works well using
limited training samples. In FEUAP, the samples in the
reduced feature space are in such a way that: 1- Each
sample has minimum distance from the attraction point
of its class (attraction), 2- Each sample has maximum
distance from the attraction points of other classes
(repulsion). Based on this idea, two functions are
defined, attraction function (i;) and repulsion
function (y,):

P = 208, iy — yll? (13)

Y, = _2221 :Zi 2221”}% - yakllz (14)
k+#c
where x% is the attraction point of cth class and

y* = Ax“ is the attraction point of cth class in the
new feature space, i.e., y;,. = Ax,.. For finding the
transformation matrix (A), the following optimization
problem is solved:

rr}\in(ll) =1 +9,) (15)

E) FEWT

In popular feature extraction methods, all spectral
bands of each training sample have the same role in the
feature extraction process. But, different spectral bands
have different abilities in identification of classes.
FEWT considers the relative importance of each
feature (spectral band) in predicting the class label of
sample as a weight for that feature. Each arbitrary
feature extraction approach can use these weighted
training samples. In [8], the weighted training samples
are used in the supervised locality preserving
projection (LPP).
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Let X, xq = [x1,x5,..,x,]T be the training
samples where n is the number of training samples and
L € R™ be the class label matrix. The entries of
matrix L are zero or one. If ith sample belongs to kth,
then, in the ith row of L just column k is one and other
columns are zero. The relationship between the
training samples and the class labels can be modeled as
follows:

Lnxc = andwdxc + 1an (16)

where b € R** is the bias term and 1,, is anx 1
constant vector whose elements are all one. The entries
of the weight matrix W are w;,(j=1,..,d;k =
1, ..., ¢) where w;, measures the relative importance of
jth feature (band) in predicting the class k. The least
square with ridge regularization is used to calculate the
weight matrix W as follows:

miny(W,b) = | XW + 1,b" — LIl +ylIWII (17)

y > 0 is a tradeoff parameter and ||-||» denotes the
Frobenius norm. The matrix W is obtained using the
matrix theory:

W= X"HX +yl;) *X"HL (18)

where H=1,—(1/n)1,1," and I,, is an nxn
identity matrix. The matrix W is used for weighting the
training samples. If x; belongs to class k, then, the
bands of x; are weighted as follows:

where wj,, is the weight of jth feature in class k, x;; is
the jth feature of ith sample and z;; is jth feature of ith
weighted sample.

F) FSDA

Popular feature extraction methods such as LDA-based
methods just use the class discrimination for feature
extraction. In addition to separability between classes,
FSDA considers the difference between spectral bands
in the transformed feature space. FSDA extracts
features such a way that: the extracted features are as
different from each other as possible, and, separability
between classes is increased. For extraction of features
with minimum redundant information, FSDA at first
estimates the between-spectral band scatter matrix as
follows:

S¢ =Xt Xk (hy; — hy) (hyj - ’_'j)T (20)

where h;; and I_zj are considered as follows:
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hjj=[Xuj Xwj o Xgl"; i=1,2,..,d, j=

1,2, ..,n; (21)
= 1

hj =3 ?:1 hij (22)

where the jth training sample of class k in ith feature
is denoted by x;; (i =1,2,..,d; k=1,2,..,¢; j =
1,2,...,n, ) and n, isthe number of training samples
per class. With maximizing tr(S¢), the projection
matrix W is calculated and then, the new feature space
is obtained by:

(gij)cxl = WCXC hij)cxl; l = 1! 2! "'!d' ] =
1,2,..,n,. (23)

According to W transformation, training samples x; ;
are transformed to r;; where 7y ; is the jth training
sample of class k in ith dimension of the transformed
feature space. Then, the between-class scatter matrix
(Sy,) and within-class scatter matrix (S,,) are defined
as follows:

Sy = 2?21 i=1(Rkj - 1_3) (Rkj - E)T (24)

T
Sw=Xien 218 Xty (R — Rij) (Rys — Ryj)” (25)
where

Ry = ["kj Takj Tarj]T; k=1,2,..,c
j=12,..,n (26)

and
cxng Sj=14k=1 k]

To maximize the class discrimination, tr(S,,~'S}) is
maximized. For more information, the authors refer the
readers to [11].

Il.  PROPOSED METHOD

The proposed method is a spectral-spatial
classification  framework that improves the
classification accuracy by controlling spatial
information involved in the classification process. The
flowchart of the proposed method is shown in Fig. 1.
At first, the huge hyperspectral cube is given to six
different feature extraction blocks for dimensionality
reduction. The BCFE, CBFE, FERR, FEUAP, FEWT,
and FSDA methods are used for feature extraction.
These feature extraction methods use different
approaches and ideas for feature transformation and so
the feature spaces obtained by them contain
complement information. Using this step of the
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? BCFE Smf(fothing | Morphological | — Classifier
ilter filter
Smoothin, Morphological Classifier
CBFE | & | Vorphological |
\ filter filter
FERR Smoothing Morphological Classifier
> filter filter ‘: MV
F
Smoothin Morphological Classifier 4
FEUAP | g | Morphological |
filter filter
Smoothin, Morphological Classifier
| FEWT | g || Morphological | _J
filter filter
Smoothin, Morphological Classifier
FSDA | g | Morphological |
Y filter filter
Fig.1. Block diagram of the proposed spectral-spatial classification framework.
. T
dist(xF,xf) = (xF — xF) (xF — x) (30)

proposed method, the dimensionality of data is reduced
and the Hughes phenomenon is degraded. So, the
proposed method can work well in small sample size
situations. Moreover, the complement information
extracted by different feature extraction methods, after
spatial processing, are fused using decision rule.

Most of the spectral-spatial classification methods
just add contextual features to data. But, two main
contributions are used in this work. At first, the useless
contextual information such as noise which causes
spectral-spatial distortions is removed. Then, the
useful spatial information is added to data. The
proposed smoothing filters and then morphological
filters are applied to each subgroup of extracted
features to remove useless spatial information and add
useful spatial information, respectively.

For implementation of the proposed smoothing
filter, a spatial neighborhood window is considered
around each central pixel where its spectral feature
vector is modeled by its surrounding pixels. If x¥
indicates i th pixel in k th subgroup, it can be
represented by:

X{-( = Zjewi alkj le'( (28)
where w; is a local window containing (2a + 1) x
(2a + 1) pixels around pixel x¥ where a indicates the
radius of the window. x denotes jth neighbor of x¥ in

the local window and afj- measures the similarity

between central pixel (x¥) and its neighbor, (x¥), in
subgroup k. The weight & is defined by:

1
1+dist(x’i‘,x;§)

af; = (29)

where

is the Euclidean distance. Then, the morphological
filters are applied to the smoothed images. In other
words, the spatial features are added to images using
EMP. The morphological filters are efficient tools for
spatial feature extraction. The degree of processing of
input image is determined by the geometrical
characteristics of the structure element (SE). The
opening profile (T1,) and closing profile (I1,,) are
concatenated to provide a MP:

I, (z) = {Hﬂ: I,; =y; (2),vA € [0, n]} (31)
M,(2) = {I,: Ty = @; (2),¥A€[0,n]}  (32)

where z denotes a pixel of single band image I, y; (2)
and ¢; (z) indicate the morphological opening and
closing operators by reconstruction using SE with the
size of A, respectively. A MP consists of 2n + 1 bands
is provided from the single band image I by applying
n opening operators and n closing operators by
reconstruction:

MB,(D) = {pi (D, ..., o (D, Lyi (D), ...,y (D} (33)

To handle the hyperspectral images, EMP is used. The
principal component analysis (PCA) transformation
[36] as a dimension reduction method is used to reduce
the hyperspectral image dimensionality. In the
proposed method in this work, the PCA transformation
is applied to each subgroup of extracted features to
reduce the dimensionality from d; to (p < d;). Thep
principal components (PCs) of data corresponding to
the p largest eigenvalues of covariance matrix of each
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Table 1. The individual results for each of BCFE, CBFE, FERR, FEUAP, FEWT, and FSDA branches in the proposed block diagram

compared to the final fused result obtained by the MV rule.

Dataset | BCFE | CBFE | FERR | FEUAP | FEWT | FspA | MV

Indian | 8489 | 8354 | 7951 | 7338 | 7602 | 7845 | 9405
Pavia | 9533 | 9442 | 9297 | 8099 | 9052 |s8o.90 | %895
Salinas | 9357 | 9357 | 9333 | 9304 | 9284 |o9394 | P74

subgroup are chosen and the remained components are
discarded. EMP in each subgroup is formalized as
follows:

EMP = {MP,(PC,), MP,(PC,), ... MB,(PC,)} (34)

The spectral channels are integrated with the spatial
features extracted by EMP in each subgroup and the
spectral-spatial features are fed to an efficient classifier
such as SVM. Finally the classification maps provided
by different subgroups of extracted features are
contributed to achieve the final classification map
using the MV rule.

IV.  EXPERIMENTAL RESULTS
The performance of the proposed method is evaluated
in comparison with some spectral-spatial classification
methods such as GCK [16], MFL [21], WICR [25],
HS+EMP (an integration of hyperspectral data with
EMP), and original hyperspectral (HS). In each class,
20 training samples, which is a small training set
relative to the high dimension of used datasets, are
randomly selected for doing experiments and
evaluation of the proposed method in small sample size
situation. Three hyperspectral datasets are used in the
experiments: Indian pines with agriculture/forest
context and low spatial resolution of 20 m by pixel,
University of Pavia with an urban context and high
spatial resolution of 1.3 m per pixel, and Salinas with
a spatial resolution of 3.7 m. The Indian image
collected from Northwestern Indiana by Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) has
145x145 pixels containing 16 classes, and 224 spectral
channels where the number of channels is reduced to
200 by removing water absorption bands. Ten classes
of Indian are selected for doing experiments.
University of Pavia image acquired by the ROSIS
instrument over the city of Pavia, Italy has 610x340
pixels with 115 spectral bands and 9 classes where 103
spectral channels are remained after discarding noisy
and water absorption bands. The Salinas hyperspectral
image collected over the valley of Salinas, Southern
California by AVIRIS contains 512 x 217 pixels, 16
classes, and 224 spectral channels where 204 channels
are remained after removing absorption bands. Several

International Journal of Information & Communication Technology Research

measurements are used for evaluation of classification
accuracy: classification accuracy (Acc.), classification
reliability (Rel.), average accuracy, average reliability,
overall accuracy as the percentage of correctly
classified samples and kappa coefficient [37]. In the
formulas of the accuracy Acc = N/A and reliability
Rel = N/B N denotes the number of testing samples
that are correctly classified, A indicates the total
testing samples of class and B denotes the total
samples that are labeled as the class. Moreover, the
McNemars test is used [38] to assess the statistical
significance of differences in the classification results.
The sign of McNemars test parameter Z,, indicates
whether classifier 1 works more accurate than
classifier 2 (Z,, > 0) or vice versa (Z;, < 0). If
|Z2] > 1.96, the difference in the classification
accuracies of two classifiers is statistically significant.
SVM implemented by LIBSVM [39] is used as
classifier in the proposed method, HS+EMP, and HS.
The polynomial kernel with default parameters in the
LIBSVM is used. MLR is used as classifier in GCK
and MFL (according to their definitions in [16] and
[21]) and the spectral-spatial version of the nearest
regularized subspace method is used as classifier in
WIJCR (according to its definition in [25]).

The individual results for each of BCFE, CBFE,
FERR, FEUAP, FEWT, and FSDA branches in the
proposed block diagram are obtained and compared
with the final fused result obtained by the MV rule. The
overall accuracies are reported in Table I. As seen from
the results, it can be found that the fused results with
MV rule are the best. It is expected because the features
extracted by different ideas are fused together which
provide complementary information for image
classification. The classification results for Indian,
Pavia, and Salinas datasets are represented in Tables
I1-1V respectively. The associated ground truth map
(GTM) and the classification maps are also shown in
Figs. 2-4. The McNemars test results are reported in
Table V. The following conclusions can be seen from
the obtained results:

1- The proposed classification framework achieves
the highest classification accuracy.
2- In Indian dataset, MFL is superior to GCK, but in

Pavia dataset, GCK is better than MFL.
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Table I1. The classification results for Indian dataset.

class Proposed GCK MFL WJCR HS+EMP HS
No Name of class sam#ples Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel.
1 Corn-no ill 1434 | 9421 | 88.94 | 7107 | 8650 | 7357 | 72.76 | 91.21 | 79.13 | 8096 | 89.58 | 62.27 | 5588
2 Corn-min till 834 | 9568 | 82.35 | 86.93 | 71.57 | 91.97 | 79.40 | 86.09 | 72.23 | 87.89 | 62.54 | 50.72 | 34.09
3 Grass/pasture 497 | 9859 | 9280 | 97.38 | 83.30 | 96.58 | 97.76 | 97.99 | 92.41 | 98.39 | 8150 | 93.96 | 6354
4 Grassltrees 747 | 9813 | 96.19 | 9759 | 9592 | 97.46 | 9554 | 88.62 | 99.85 | 9344 | 97.21 | 86.88 | 89.52
5 Hay-windrowed 489 | 9959 | 97.01 | 9959 | 99.80 | 9959 | 10 | 1090 [ 1000 | 9939 | 9950 | 9918 | 98.38
6 Soybeans-no tll 968 | 89.88 | 9446 | 8574 | 6505 | 86.47 | 73.94 | 80.99 | 90.01 | 8492 | 7352 | 58.16 | 57.16
7 Soybeans-min tll 2468 | 88.21 | 98.28 | 7326 | 88.41 | 7350 | 88.19 | 6386 | 91.05 | 7318 | 89.94 | 33.39 | 57.78
8 | Soybeans-clean till 614 | 98.05 | 92.33 | 92.35 | 76.93 | 9055 | 84.63 | 99.84 | 57.24 | 7850 | 7359 | 7557 | 47.54
9 Woods 1204 | 97.30 108'0 9065 | 99.83 | 99.15 | 99.84 | 86.71 | 9956 | 96.52 108'0 66.60 | 98.18
10 | Bldg-Grass-Tree-Drives | 380 | 99.74 | 9523 | 98.16 | 8289 | 96.84 | 8402 | 96.84 | 61.44 | 99.74 | 90.02 | 8132 | 46.33
Average Acc. and Average Rel. 9594 | 93.76 | 89.36 | 84.99 | 90.57 | 87.61 | 89.21 | 84.29 | 89.29 | 85.75 | 70.81 | 64.84
Overall Acc. 94.05 84.20 86.12 8357 85.40 61.08
Kappa coefficient 0.93 0.82 0.84 0.81 0.83 0.56
Table 11. The classification results for Pavia dataset.
class Proposed GCK MFL WJCR HS+EMP HS
No Name of class sam#;)Ies Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel.
1 Asphalt 6631 | 99.98 | 98.73 | 9047 | 87.04 | 86.85 | 9240 | 81.68 | 98.71 | 7831 | 9837 | 6427 | 9560
2 Meadows 18649 | 96.76 108'0 9182 | 9813 | 89.92 | 98.09 | 91.46 | 9440 | 89.26 | 98.65 | 75.90 | 92.72
3 Gravel 2099 | 99.62 | 84.66 | 9119 | 71.10 | 8757 | 66.38 | 7551 | 7321 | 91.62 | 64.25 | 76.89 | 59.40
4 Trees 3064 | 91.85 | 93.09 | 9145 | 86.06 | 8352 | 76.96 | 97.23 | 66.27 | 96.90 | 88.73 | 92.62 | 67.88
5 | Painted metal sheets 1345 108'0 108'0 9941 | 8457 | 85.35 108'0 108'0 9912 | 9814 | 8483 | 9963 | 9585
6 Bare Soil 5029 108 0 108'0 9050 | 9216 | 97.41 | 8479 | 80.77 | 8863 | 9563 | 76.22 | 81.13 | 56.16
7 Bitumen 1330 108'0 9864 | 98.80 | 65.08 | 99.62 | 94.04 | 98.42 | 79.77 | 99.40 | 5829 | 9248 | 43.10
8 | Self-Blocking Bricks 3682 | 86.83 108.0 7520 | 96.35 | 9354 | 8165 | 88.67 | 8054 | 77.24 | 88.74 | 76.15 | 75.95
9 Shadows 947 108'0 9941 | 9947 | 8771 | 81.31 | 96.25 | 97.68 108'0 9937 | 9958 | 99.79 | 99.89
Average Acc. and Average Rel. 97.23 | 97.17 | 92.03 | 8535 | 89.45 | 87.84 | 90.16 | 86.74 | 91.76 | 84.18 | 84.32 | 76.28
Overall Acc. 98.95 90.59 90.03 88.70 88.76 777
Kappa coefficient 0.97 0.88 0.87 0.85 0.85 0.72
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Fig. 2. The classification maps for Indian dataset.
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Table I11. The classification results for Salinas dataset.
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Fig. 4. The classification maps for Salinas dataset.
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class Proposed GCK MFL WJCR HS+EMP HS
No Name of class # Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel.
samples
1 | Brocoli_green weeds 1 | 2009 108'0 90.50 108'0 108'0 108'0 108'0 43.06 | 7419 108'0 9838 | 97.11 | 99.90
2 | Brocoli_green_weeds 2 | 3726 | 97.34 108'0 99.49 108'0 98.93 108'0 9181 | 7494 | 95.12 108'0 9914 | 98.32
3 Fallow 1976 | 98.76 | 99.50 | 99.80 | 96.62 | 99.80 | 99.85 108'0 99.90 | 9545 | 9833 | 99.14 | 9547
2 | Fallow_rough plow 1394 | 9943 | 89.87 | 99.21 | 97.88 | 99.43 | 9747 | 99.00 | 97.11 | 99.64 | 9713 | 9957 | 9442
5 Fallow_smooth 2678 | 97.52 | 99.18 | 98.69 | 98.62 | 98.36 | 99.28 | 98.32 | 99.32 | 98.10 | 96.44 | 98.02 | 98.65
6 Stubble 3950 | 9859 108'0 98.71 108'0 94.42 108'0 97.30 108'0 95.98 108'0 9750 | 99.95
7 Celery 3579 | 99.02 | 9884 | 99.75 108'0 99.44 | 9950 | 99.86 | 99.97 | 99.55 | 93.74 | 99.69 | 96.88
8 Grapes_untrained 11271 | 9614 | 9657 | 78.74 | 9491 | 6956 | 92.81 | 89.14 | 86.64 | 7449 | 97.80 | 70.19 | 81.58
9 | Soil vineyard develop | 6203 108'0 108'0 99.94 | 9841 | 9927 | 9812 | 99.27 | 9963 | 97.95 | 99.51 | 98.13 | 98.93
10 Com—sec\‘f:ggg—gree”— 3278 | 95.35 108'0 9311 | 97.32 | 9530 | 9955 | 98.96 | 93.19 | 91.76 | 82.77 | 89.48 | 76.28
11 Le““w—ml’(';a'”e—‘“"’ee 1068 | 99.85 108'0 9831 | 90.28 | 98.78 | 96.97 | 98.88 | 99.81 | 99.81 | 89.43 | 9757 | 8506
12 | Letweetomaine s 1927 | 98.78 | 99559 108'0 9827 | 99.84 | 9752 | 99.90 108'0 97.98 | 9818 | 98.39 | 9354
13 Le“”“\i;ggl'(’;a'”e—fs 916 9829 | 9359 | 99.89 | 9581 | 99.34 | 95.89 | 99.56 | 97.85 | 97.49 | 77.12 | 98.91 | 98.05
14 Le“““\i;gglf;a'”ej 1070 | 98.45 | 9671 | 98.32 | 96.60 | 97.76 | 95.18 | 97.48 | 98.12 | 92.43 | 77.81 | 97.01 | 89.95
15 | Vineyard_untrained 7268 | 9564 | 95.84 | 93.26 | 7461 | 92.00 | 6461 | 8017 | 8419 | 95.60 | 7584 | 7233 | 66.13
16 V'”eyard—"srt'ca'—”e"' 1807 | 95.75 108'0 9751 108'0 96.29 108'0 97.62 108'0 9579 | 9459 | 9436 | 99.30
Average Acc. and Average Rel. 98.06 | 97.51 | 97.17 | 96.21 | 96.16 | 96.05 | 93.15 | 94.05 | 9545 | 92.32 | 94.16 | 92.03
Overall Acc. 95.74 93.85 91.40 91.78 92.04 88.34
Kappa coefficient 0.95 0.93 0.90 0.91 0.91 0.87
GTM Proposed HS+EMP
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Table V. The McNemars test results.
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Indian
Proposed GCK MFL WJCR | HS+EMP HS
Proposed 0 1541 10.01 20.78 14.09 57.11
GCK -15.41 0 5.11 2.16 -2.99 4257
MFL -10.01 5.11 0 6.33 2.02 43.05
WICR -20.78 -2.16 -6.33 0 -4.99 39.65
HS+EMP -14.09 2.99 -2.02 4.99 0 42.10
HS 5711 | -4257 | -43.05 | -39.65 -42.10 0
Pavia
Proposed GCK MFL WICR HS+EMP HS
Proposed 0 40.72 44.14 48.68 50.56 86.70
GCK -40.72 0 3.04 9.84 11.29 53.58
MFL -44.14 -3.04 0 6.69 6.70 50.67
WJCR -48.68 -0.84 -6.69 0 -0.29 45.46
HS+EMP -50.56 -11.29 -6.70 0.29 0 45.72
HS -86.70 -53.58 -50.67 -45.46 -45.72 0
Salinas
Proposed GCK MFL WJCR | HS+EMP HS
Proposed 0 15.93 241 3.02 3.00 20.17
GCK -15.93 0 22.84 14.79 14.28 43.81
MFL -2.41 -22.84 0 -2.45 -4.56 21.34
WICR -3.02 -14.79 2.45 0 -1.79 21.75
HS+EMP -3.00 -14.28 4.56 1.79 0 25.28
HS -20.17 -43.81 -21.34 -21.75 -25.28 0

3- In Indian, HS+EMP is superior to WJCR. But, in
Pavia, the performances of HS+EMP and WJCR
are similar.

4-  The worst classification results are related to the
use of just spectral bands (HS).

5- The spatial neighborhood information
significantly attenuates the salt and pepper noise
in classification maps obtained by the proposed,
GCK, MFL, WICR, and HS+EMP methods.

The main advantages of the proposed framework can
be represented as follows:
The use of different feature extraction methods with
different ideas provides the useful features for
classification. The features obtained by different
feature extraction methods contain complement
information and have minimum overlap with respect to
each other. This is an important principle in the
decision fusion rule.

1- It copes with the small sample size problem with
dimensionality reduction of hyperspectral image
and by providing some groups of useful extracted
features and classification of each subgroup
individually.

2- The useless spatial information such as noise and
distortions is removed from the image by applying
the smoothing filter on each subgroup of data.

3- The useful spatial information is added to data by
applying morphological filters to the smoothed
images.

4- For exploiting the complement information
contained in different subgroups of extracted
features, the MV rule is used as a decision fusion
technique.

V.  CONCLUSION

A spectral-spatial classification framework was
proposed in this paper. The proposed method uses the
complement groups of spectral features extracted from
several different state-of-the-art feature extraction
methods with minimum redundant information. The
proposed framework utilizes the smoothing filters for
removing the useless spatial information while utilizes
the morphological filters for adding the useful spatial
information to hyperspectral image. The proposed
method copes with the curse of dimensionality by
feature extraction of the high dimensional data in six
different groups and data processing on each subspace
individually. The experimental results on Indian
hyperspectral image with low spatial resolution and
Pavia and Salinas hyperspectral images with high
spatial resolution demonstrate the superiority of the
proposed framework compared to several spectral-
spatial classification methods.
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