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Abstract— Most of the data stream classification methods need plenty of labeled samples to achieve a reasonable result.
However, in a real data stream environment, it is crucial and expensive to obtain labeled samples, unlike the unlabeled
ones. Although Active learning is one way to tackle this challenge, it ignores the effect of unlabeled instances utilization
that can help with strength supervised learning. This paper proposes a hybrid framework named “DSeSAL”, which
combines active learning and dynamic self-training to achieve both strengths. Also, this framework introduces variance
based self-training that uses minimal variance as a confidence measure. Since an early mistake by the base classifier in
self-training can reinforce itself by generating incorrectly labeled data, especially in multi-class condition. A dynamic
approach to avoid classifier accuracy deterioration, is considered. The other capability of the proposed framework is
controlling the accuracy reduction by specifying a tolerance measure. To overcome data stream challenges, i.e., infinite
length and evolving nature, we use the chunking method along with a classifier ensemble. A classifier is trained on each
chunk and with previous classifiers form an ensemble of M such classifiers. Experimental results on synthetic and real-
world data indicate the performance of the proposed framework in comparison with other approaches.

Keywords- Computer Science; Data Mining; Semi-supervised learning; Classification; Data Stream.

streams of data in multi-dimensional, multi-level,

LINTRODUCTION single pass, and online manner [1, 2, 3]. The general

In many applications, such as credit card process of data stream mining is depicted in Fig. 1.
transactions, ATM transactions, network data, web-  Data streams may evolve in several ways: 1) The prior

usage data, stock market data, etc., large volumes of
data are being generated continuously that can be
characterized as data streams. Thercfore, data stream
classification has recently attracted much attention. For
extracting knowledge or patterns from data streams, it
is crucial to develop methods that analyze and process

* Corresponding Author

International Journal of Information & Communication Technology Research

probability distribution p(c) of class ¢ may change. 2)
The posterior probability distribution p(c|x) of the
class may change and 3) both the prior and posterior
probabilities may change. In either case, the challenge
is to build a classification model that is consistent with
the current concept [4, 5]. Because of essential


http://ijict.itrc.ac.ir/article-1-26-en.html

) JicTR

[ Downloaded from ijict.itrc.ac.ir on 2025-11-17 ]

Volume 9- Number 4 — Autumn 2017

Input Applying da-ta streams Output

1 1

1 1

1 1

1 1

| Lmmmmmmmm oo o :

1 [ - ----- 1 | 1

L Satellites - :> !

____________ 1

LT ! 1

! Internet Traffic | ! 'L
| b - . 1 Data Streams
| I T 1

U Call Records ro I

[ R o 1

i [ i
U U U USSR R U U | | g

=

Knowledge

Fm—————mm——————— -

Selecting Some Part of Data

Preprocessing of Data Streams

Single Pass

Incremental Learning

Knowledge Extraction

v

Fig. 1. General process of data stream mining

properties, i.e., increasing data volume and dynamic
and evolving nature, mining data streams raised several
challenges [6, 7, 8]. The length of data stream would be
infinite and an algorithm is needed to process the data
in one pass [7, 8]. Therefore, traditional learning
algorithms that require several passes on the training
data cannot be directly applied to the streaming
environment [8, 9]. To solve this problem, ensemble
classification techniques have been proposed.

Ensemble approaches have the advantage that they
can be updated efficiently, and they can be easily made
to adopt the changes in the stream. Several ensemble
approaches have been devised for the classification of
evolving data streams [10, 11, 12]. The general
technique practiced by these approaches is that the data
stream is divided into equal-sized chunks. Each of these
chunks is used to train a classifier. An ensemble of M
such classifiers is used to test unlabeled data.

Manual labeling of data is both costly and time-
consuming [14, 15]. Therefore, labeled data may be
very scared in a real streaming environment, where
huge volumes of data appear at high speed. Thus, only
a limited amount of training data may be available for
building the classification models, leading to poorly
trained classifiers [16, 17, 18]. One recently proposed
solution to address this issue is to use active learning
(AL) techniques which selectively label number of
informative instances that can form an accurate
predictive model [19, 20, 21]. The goal of active
learning is to maximize the prediction accuracy by only
labeling a limited number of instances. Meanwhile, the
main challenge is about to identify ‘“important”
instances that should be labeled to improve the model
training due to the fact that one could not afford to label
all samples [18]. For example, uncertainty sampling
[22, 23], query by committee (QBC) [20] or query by a
margin [21] principles takes instances in which the

current learners have the highest uncertainty as the most
needed instances for labeling.

Thus, in practice, only small fraction of each data
chunk is likely to be labeled, leaving a major portion of
the chunk as unlabeled. By only selecting the most
informative instances for labeling, active learning could
reduce the labeling cost when labeled instances are hard
to obtain [24]. Facing the same situation, semi-
supervised learning utilizes unlabeled instances to
strengthen trained classifiers on labeled instances [25,
26]. In general, active learning methods ignore the
effect of unlabeled instances. However, unlabeled
instances could strengthen supervised learning tasks
under suitable assumptions. A variety of semi-
supervised learning methods were proposed based on
this idea. Semi-supervised learning methods can be
used to strengthen active learners [24, 27, 28].
Therefore, this paper proposed a hybrid method that
combines active learning and semi-supervised learning
to come up with the mentioned challenges.

In this paper, we present a combination of AL and
self-training approach to which we will refer as semi-
supervised active learning for data stream mining
(SeSAL). To the best of our knowledge, no semi-
supervised active learning combination exists for data
streams. We introduce minimal variance as a
confidence measure in self-training. In multi-class
conditions, AL performs better than SeSAL. The nature
of Self-training causes this problem. Because of the
small initial labeled set, with a high number of classes,
self-training weaken itself by generating incorrectly
labeled data that redound poor classifier. To avoid such
an error propagation, we propose a dynamic self-
training algorithm and apply it in our combination
framework (DSeSAL). Concerning accuracy reduction
in the iterations of self-training algorithm, we indicate
a tolerance measure that prevents such downfall, stop
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Algorithm 1 General AL framework

Given:

B: number of examples to be selected
L: set of labeled examples

P: set of unlabeled examples

Uy utility function

Algorithm:
Loop until stopping criterion is met
1. Learn model M from L
2.Forallp; € Pru,, « Uy(P)
3. Select B examples p; € P with highest utility up,
4. Query human annotator for labels of all B examples
5. Move newly labeled examples from P to L
Return L

the semi-supervised approach and switch to AL phase.
This procedure guarantees to derive a model to predict
future instances’ label as accurately as possible.

The rest of this paper is organized as follows: In the
next section, related works are reviewed. In Section 3,
active learning and semi-supervised learning are
recalled as the foundation of our hybrid framework. In
Section 4, the proposed framework is presented.
Experimental results are reported in Sections 5. Section
6, includes the conclusion.

I|.RELATED WORK

In addition to data stream classification, our
research is closely related to the existing works on both
semi-supervised and active learning. There have been
many works in stream data classification. There are two
main approaches: single model classification and
ensemble classification. Single model classification
techniques incrementally update their model with new
data to cope with the evolution of the stream [1, 30].
These techniques usually require complex operations to
modify the internal structure of the model and may have
a poor performance if there is a concept-drift in the
stream [4, 31, 32]. In data streams with continuous
volumes, the classifier ensemble has shown to be
effective in tackling data volume and concept drifting
challenges [11, 33, 34]. [30] and [33] proposed a
streaming ensemble algorithm that combines decision
tree models using majority voting. Kolter and Maloof
in [35] proposed an AddEXxp ensemble method by using
weighted online learners to handle drifting concepts.
[28, 36] and [37] have proposed a weighted ensemble
framework for concept drifting data streams and proved
that the error rate of a classifier ensemble is less than a
single classifier trained from the aggregated data of all
consecutive k chunks. These ensemble approaches have
the advantage that they can be more efficiently built
than updating a single model and they observe higher
accuracy than their single model counterpart [4].

The combination of classifier ensemble and active
learning has been reported in much research [19, 39, 40,
41]. Semi-supervised and active learning frameworks
concerning data stream classification, are established
research areas. Here, some recent and reliable research
in this field is introduced. Clustering-training is a semi-
supervised framework that select confident unlabeled
samples using clustering. Then uses them to retrain the
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classifier incrementally which is proposed in [42, 43].
Yan Yu et al. in [44] propose an anomaly detection
algorithm for evolving data stream based on semi-
supervised learning, SSAD. The SSAD algorithm
utilizes an attenuation rule to decrease the effect of
historical data on the detection result, which can help
the algorithm to learn from current data that
characterizes the traffic pattern more accurately. SSAD
also uses semi-supervised learning to extend labeled
dataset as a training dataset to do with the problem of
lack of the labeled data.

Realizing that labeling all stream data is expensive
and extremely time-consuming, Fan et al. in [45],
proposed an active mining (AM) framework that labels
samples only if it is necessary. In short, AM uses a
decision tree (trained from the currently labeled data) to
compare the distributions of the incoming samples and
the data collected by hand using the tree branches
(without observing the class labels). If two sets of
samples are subject to different distributions, then
labeling process is triggered to randomly select a few
incoming samples for labeling. Xingquan Zhu et al. in
[37] propose a classifier ensemble based active learning
framework, with an objective of maximizing the
prediction accuracy of the classifier ensemble built
from labeled stream data. We use this framework in our
method and describe it in more details in the next
section.

I11.PRELIMINARY

In this section, we recall the two main principles of
our hybrid proposed framework: Active learning and
Semi-supervised learning.

A. Active Learning

Algorithm 1 describes the general AL framework.
A utility function U, (P;) is the core of each AL
approach. It estimates how useful it would be for a
specific base learner to have an unlabeled example
labeled and, subsequently included in the training set
[17].

B. Semi-Supervised Learning

There are many semi-supervised learning methods
developed. Self-training learning is the one that needs
only one classifier, which is important to meet the speed
requirement [28]. We choose Self-training to strengthen
the learning engine in AL framework with unlabeled
instances. In self-training, first, a classifier is trained
with the small amount of labeled data. The classifier is
then used to classify the unlabeled data. Typically, the
most confident unlabeled points, together with their
predicted labels, are added to the training set. The

Algorithm 2 Self-training

Given:
Labeled data {(x;,y;)}j=; , unlabeled data {x;}j%t} ,

Algorithm:
L. Initially, let L = {(x;,y)}j=; and U = {x;}{Z1} .
2. Repeat:
3. Train f from L using supervised learning.
4. Apply f to the unlabeled instances in U.
5. Remove a subset S from U; add {(x, f(x))|x € S}
toL.
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classifier is re-trained and the procedure repeated [25,
29]. Note the classifier uses its own predictions to teach
it. The overall process of self-training is shown in
Algorithm 2.

IV.PROPOSED METHOD

There are two important properties in a real stream
environment which lead to many challenges [3];
incremental growth of data volumes and continuous
evolvement of decision concepts. In addition, massive
volumes of data arrive at high speed, so labeled data
may be rare, and it is not possible to manually label all
the data as soon as they arrive. In this condition, the
best way is to use the advantages of abundant
unlabeled data. So, we introduce DsesAL framework, to
overcome such difficulties and challenges. In this
framework, our contributions are as follows:

A. Combination of Active learning and self-
training.

B. Introduce minimal variance as a confidence
measure in self-training.

C. Propose a dynamic self-training algorithm and
combination with active learning.

D. Indicate tolerance measure that prevents an
accuracy reduction in the iteration of the self-training.

We apply semi-supervised learning with active
learning in a hybrid manner that benefit from both
unlabeled data and selective sampling scenario. The
way we combine semi-supervised and active learning
is shown in Fig. 2. Naturally, stream data could be
stored in the buffer and processed when the buffer is
full, so we divide the stream data into equal-sized
(user-specified) chunks and exploit our learning
process on each of them. Due to the limited number of
labeled data in each chunk, we utilize unlabeled data to
build a stronger model from each chunk, by applying a
semi-supervised approach (Fig. 3).

In order to simplify the problem and deliver an
applicable combining framework data streams, we
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assume that the concepts in the data are constantly
evolving, so the proposed framework is carried out on
a regular basis, and the objective is to find important
samples out of a certain number of newly arrived
instances for labeling.

The proposed framework in Fig. 3 can be applied to
a variety of stream applications as long as instance
labeling is of concern. The employment of a classifier
ensemble ensures that framework can handle massive
volumes of stream data effectively and adopt the
changes in the stream [1].

Based on the framework in Fig. 3, we assume that
once the algorithm moves to chunk S, all instances in
previous chunks, ..., S,_3, Sp—2,S,—1, are inaccessible
except classifiers built from them (i.e., ..., C,_3, C,_,
Cn—l)-

Relying on the above assumptions, the objective
becomes labeling instances in data chunk S, such that
a classifier C,built from the labeled and unlabeled
instances in S,,. The classifier C, along with the most
recent K — 1 classifiers C,_y41,...,Cy_1, Ccan form a
classifier ensemble with maximum prediction accuracy
on unlabeled instances in S,,.

A. Variance Reduction for Error Minimization

In this part, we first argue that minimizing the
classifier variance is equivalent to minimizing its error
rate and then apply variance as a confidence measure in
our semi-supervised approach. In addition, we shortly
explain an active learning approach and optimal-weight
calculation method that we use in the classifier
ensemble.

e Confidence measure in self-training

Let x be an input instance and c; is a class label and
p(ci|x) is a classifier’s probability estimation in
classifying x, and then the actual probability f. (x) is
shown as follows:

fe,(x) = pleilx) + &(x) 1)

where g;(x), is an added error. If we consider that the
added error of the classifier mainly comes from two
sources, i.e., classifier bias and variance [46, 47, 48],
then the added error €;(x) in (1) can be decomposed
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into two terms, ie, B, and n.(x), where f
represents the bias of the current learning algorithm,
and n¢, (x) is a random variable that accounts for the
variance of the classifier (with respect to class c;),
which gives [49, 50]:

fci (x) = p(clx) + .Bc[ + nci(x) (2)

According to [51], classifiers that trained by using
the same learning algorithm but different versions of
the training data suffer from the same level of bias but
different variance values. Assuming that we are using
the same learning algorithm in our analysis, without
loss of generality, we can ignore the bias term.
Consequently, the learner’s probability in classifying x
into class c; becomes:

fe,(x) = p(cilx) +ne, (x) (3)
According to [51] concluded that the classifier’s
expected added error can be defined as:

2 2
O-T]ci + O-an GTZ]C (4)
Erradd = —S = S

Where p’(.) denotes the derivate of p(.) and p(c;|x*)
is the probability distribution of class i for all points
x*,s = p'(gx*) — p’(¢;|x*), which is independent of
the trained model. n,(x) is a random variable that
accounts for the variance of the classifier (with respect
to class c;) and o7 denotes the variance of n, (x). As

Equation (4) indicates the expected added error of a
classifier is proportional to its variance; thus, reducing
this quantity reduces the classifier’s expected error
rate.

Based on the framework in Fig. 3, we apply
variance-base self-training in SSL phase. The main
idea is first to train a classifier on labeled data. The
classifier is then used to predict the labels for the
unlabeled data. A subset of the unlabeled data, jointly
with their predicted labels, is then selected to augment
the labeled data. Typically, this subset consists of few
unlabeled instances with the most confident
predictions. The classifier is now re-trained on the
larger set of labeled data, and the procedure repeats
[43]. We use C4.5 [53] as our base learner. For
selecting a subset of unlabeled instances, we use
minimum classifier variance on current unlabeled set
in each chunk based on Fig. 3. Following above
conclusion, smaller variance means the prediction of
our model is more confident. In our system, GTZ‘Ci is

calculated by:

N (CRe)

(x,0)eAy

2
One, =

©)

where A,, an evaluation set (A, = L, UI,, where
[ denotes I,with a predicted class label.), is used to
calculate the classifier variance, |A,| denotes the
number of instances in A, y& is the genuine class
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probability of instance x. If x is labeled as classc;, then
ye, is equal to 1; otherwise, it is equal to 0 and f;, (x)
denotes the probability of base classifier in classifying
x into classc;. Consequently, the variance of the
classifier over all class ¢y, c,, ..., ¢; IS given by:

1

2 2
Gnc - Z O-T]ci

i=1

(6)

e Variance and optimal weight classifier ensemble

As shown in Fig. 3, k base classifiers form a
classifier ensemble M. The probability of the ensemble
M in classifying an instance x is given by a linear
combination of the probabilities produced by all of its
base classifier. Each classifier C,,, has a weight value
w™. The probability of M in classifying x into class c;
is given by (7), where £ (x) denotes the probability of
base classifier C,, in classifying x into class c;, i.e.,

B =i D"

= n )
— ; + m zn m
p(C |X) Zm:n—k+1w " l/Zm:n—k+1w
This probability can be expresses as:
fEG@ =palx) +nE® ()

where TlEi(X) is a random variable accounting for the

variance of the classifier ensemble M with respect to
class c;, and

)

n n
E _ m,m m
Ne; = E w rlci/ E w
m=n—-k+1 m=n—-k+1

The variance of nEi (x) becomes

n n 2
0'215 — (Wm)20.2m/< Wm> (10)
" m:Zk+1 b m:ZIHl

cf]g} is explained in SSL Phase. The total variance of
the ensemble M is then given by:

1 n n
2 _ 2 _ my2 2
=Y 3 wmvaef( 3
i m=n—k+1

m=n-k+1

2

Wm> 11)

According to (4), expected added error can be written
as:

2
One (12)

E _
Errjqq =

wv

Equation (12) states that to minimize the error rate
of a classifier ensemble, we can minimize its variance
instead. This objective can be achieved through the
adjustment of the weight value associated with each of
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Algorithm 3 The DSeSAL method

Input: (1) current data chunk S,; and (2) k — 1 classifiers Cp,_y41, -,

Cpn» -, C_1built from the most recent data chunks;

Parameters: (1) «, the percentage of instances should be labeled from S,, by AL; (2) B; maximum percentage of instances should
be labeled from S,, by DSSL; (3) y, # of instances labeled in each SSL iteration

Objective: Updated ensemble M
1. L, <@ U, «S,

RN

. While L, < |S,]. B
5.1. For each instance Lin U,

L, < Randomly label a tiny portion, e.g. 1~2.5% of instances from U,,.

E«0 /Irecording the iteration of SSL (E = B/y)
Build a classifier C,, from L,, and calculate the base model accuracy Acc,.

/ISSL phase continue until reach the stop point

a. Use the current classifier to predict a class label for I,,.
b. Build an evaluation set A, = L, U I, where I denotes I,with a predicted class label.
c. Calculate the confidence measure (classifier variance) on A, (Egs. (5) and (6)).

End For
52. j«0

/I recording the number of labeled instances in each SSL iteration

5.3. Choose instance I,.in U,with smallest variance, put labeled I, intoL,, i.e. L, = L, U I;; U, = U,/ I,.

54, je<j+1
55. Ifj<y
a. Repeat Step 5.3.
5.6. Else
a E=E+1
5.7. Update classifier by a new L.
5.8. Calculate the current model accuracy Acc;.
59. IfE=1
a. calculates the tolerance value T (Eqg. (11)).

5.10. If Acc; < (Acci_q —T) OR Acc; < (Acci_, —T/2)

a. Return the model to previous state.
b. Returnthe L, and U, to previous state.
c. break

End While

6. Initialize weight value w™for each classifier C,,, m = n — k + 1, ...,n, where w™is equal to C,,’s prediction accuracy on L,.
7.Use Cy_gs1s - Cpy o, Cp_q 1o Torm a classifier ensemble M as shown in Fig. 1.

8. For each instance I,in U,,, Calculate ensemble variance (Eq. (11)) as instance I,’s expected ensemble variance on M.

9. Choose instance I,.in U,with largest variance, label I,and put labeled I, intoL,, i.e. L, = L, U I; U, = U,/ I,.

10. Recalculate the ensemble variance of each base classifier C,, on L, and find optimum weight value w™(Eq. (13)) for all base

classifiers (update the ensemble by new weight values).
11. Check if a percentages of instances are labeled.

M’s base classifier C,,. In [37], an optimal-weight
calculation method is applied to assign weight values
to the classifiers such that they can form an ensemble
with minimum error rate. To find the weight
values w®, m=n—k+1,..,n, an optimization
problem is solved, and then weight values for each
individual classifier of the classifier ensemble M are
given by:

1
m

1+ opm (zgzn—k+1,t¢m 1/0315)

w

(13)

The minimization of the classifier ensemble error rate
through variance reduction acts as a principle to
actively select mostly needed instances for labeling.

B. A COMBINED FRAMEWORK OF DYNAMIC
SELF-TRAINING AND ACTIVE LEARNING

The process of the DSeSAL method is given in
Algorithm 3. Following the conclusions derived from
Section IV, we propose a combined framework of AL
and SSL approaches for data stream classification. We
introduce variance-based self-training. Self-training is
characterized by the fact that the learning process uses
its own predictions to teach it.

On the other hand, in stream environments, initial
labeled data may be very scarce. So, it is conceivable
that an early mistake made by the base classifier

(which is not perfect to start with, due to a small initial
labeled set) can weaken itself by generating incorrectly
labeled data. Re-training with this data will lead to an
even worse classifier in the next iteration. It is so
expected in multi-class condition. Due to the limited
initial labeled set, the base classifier may not be able to
identify and learn unseen classes. To alleviate this
problem, we propose dynamic self-training, as shown
on Steps 5.1 to 5.10 in Algorithm 3.

To avoid error propagation in self-training
iterations, we specify a tolerance value T for accuracy
reduction. In our system, T is calculated by:

T = | Accy, — Acc| (14)

where Acc, is the base model accuracy on unlabeled
data in the related chunk and Acc, is the accuracy of
the model that build from the first iteration in self-

Acc; > (Acci_y — T) and Acc; > (Acci_, — T/2)  (15)

training. Self-training iterations continue provided:

This condition prevents classifier accuracy
deterioration and guarantees to derive a model to
predict future instances’ label as accurately as possible.
The way that the condition in Equation (15) is applied
in self-training algorithm, is shown in Fig 4. In
Algorithm 3, steps 6 to 11, present the AL procedure.

International Journal of Information & Communication Technology Research
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Selecting the informative instance and update the
ensemble are shown in Steps 6 to 9 and Step 10,
respectively.

V. EXPERIMENTAL RESULT

A. Implementation

A set of experiments is carried out to compare our
algorithm with the results of [37] (MV), random
sampling (RS) and uncertainty sampling (US). All
methods are implemented in MATLAB with an
integration of WEKA data mining tool (Witten, &
Frank, 2005). All the tests are conducted on a PC
machine with a 2.71GH CPU and 2.0G memory.

B. Data Streams

Synthetic data: In order to simulate the magnitude
and speed of concept drift in data streams, a hyper-plane
based synthetic data stream generator is applied which
is so popular in stream data mining research [11, 12,
33]. The hyper-plane of the data generation is
controlled by a non-linear function defined by Equation
(16). Given an instance x, its f(x) value defined by
Equation (16) determines its class label. Assume f(x)
value larger than a threshold 6 indicates that x belongs
to class A, otherwise, x belongs to class B, then
changing the values of a;,i =1, ..., d and threshold 8
may make an instance x have different probability
p(c;1x) with respect to a particular class ;.

f(x) =Zd S - (16)

i=1X; + (x)?

In Equation (16), d is the total dimensions of the
input data x. Each dimension x;,i = 1, ...,d, is a value
randomly generated in the range of [0, 1]. A weight
value a;,i =1,...,d, is associated with each input
dimension and the value of a; is initialized randomly in
the range of [0, 1] at the beginning. In data generation
process, we will gradually change the value of a; to
simulate concept drifting. The general concept drifting
is controlled through the following three parameters [1,
11, 33]: (1) t, controlling the magnitude of the concept
drifting (in every N instances): (2) p, controlling the
number of attributes whose weights are involved in the
change; (3) h and n; € {—1, 1}, controlling the weight
adjustment direction for attributes involved in the
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Table. I. Data characteristics of the real-world data used for
evaluation

g 25 2o Zo o33

® 2 g 3 3 3
Adult 48,842 15 2 0.761:0.239
Magic 19,020 10 2 0.351:0.649
Covtype 581,012 55 7 0.488:0.005
Shuttle 58,000 9 7 0.034:0.8
Letter 20,000 17 26 0.041:0.037

change. After the generation of each instance x, a; is
adjusted continuously by n; - t / N (as long as a; is

involved in the concept drifting), and value a, is
recalculated to change the decision boundaries
(concept drifting). Meanwhile, after the generation of
N instances, there is a h percentage of chances that
weight change will invert its direction, i.e., n; = —n
for all attributes ai involved in the change. In
summary, c2-1100k-d10-p5-N1000-t0.1-h0.2 denotes
a two-class data stream with 100k instances, each
containing 10 dimensions. The concept drifting
involves 5 attributes, and their weights change with a
magnitude of 0.1 in every 1000 instances and weight
inverts the direction with 20% of chance.

Real-world data: Due to the unavailability of
public benchmark data streams (from classification
perspectives), we select five relatively large datasets
from UCI data repository [54] and treat them as data
streams for our experiments. The datasets we selected
are Adult, Magic Gamma Telescope, Covtype, Shuttle
and Letter (as listed in Table 1).

Among these datasets, all of them except Letter are
considered dense datasets, which means that a small
portion of examples can learn genuine concepts quite
well. The class distribution in the Covtype and Shuttle
datasets are severely biased. Letter is a sparse dataset
and 26 classes of examples are evenly distributed, and
a small portion of examples are insufficient to learn
genuine concepts underlying the data.

C. Evaluation

All results are 10-fold cross-validation accuracies
which we set in Weka. C4.5 is our base learner in all
experiments.

Learning with Fixed o and p Values: We apply
our proposed framework to two types of synthetic data
streams: two-class (Table 2) and four-class (Table 3).
The accuracies in the tables denote an ensemble
classifier’s average accuracy in predicting instances in
the current data chunk Sn, with chunk sizes varying
from 250 to 2000. We fix the o and B values to 0.1 and
set the k value to 10, which means that 10% of the
instances are labeled for each data chunk, and only the
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Fig. 6. SeSAL average accuracy on synthetic data (chunk
size=500, 0=0.1)

most recent ten classifiers are used to form a classifier
ensemble.

The results from Table 2 and 3 indicate that the
performance of all methods deteriorates as a
consequence of the shrinking chunk size. This is
because a smaller data chunk contains a few examples,
and sparse training examples usually produce inferior
learners in general. The advantage of having a small
chunk size is the training efficiency.

For any particular method, Table 2 and 3 indicate
that the results in multi-class data streams are
significantly worse than a binary class data stream.

Table. I1. Average classification accuracy on c4-150k-d10-
p5-N1000-t0.1-h0.2 (o and p=0.1)

Chunk Size RS US MV SeSAL DSeSAL

This shows that learning from a multiclass data stream
is more challenging than a binary class data stream.

Fig. 5 shows the results from Table 2 and 3 as two
histograms. Comparing all five methods, we can easily
conclude that SeSAL and DSeSAL receive the best
performance across all data streams. The US is not an
option for learning from data streams, and its
performance is constantly worse than RS regardless of
whether the underlying data are binary or multiple
classes. The results from RS are surprisingly good, and
it is generally quite difficult to beat RS with a
substantial amount of improvement.

2) Learning with Different p Value:  is a percentage
of instances should be labeled from S,, by self-training
in SeSAL model. In Fig. 6, we compare SeSAL average
accuracy w.r.t. different p values on synthetic data.

3) Learning with Different a Value: In Fig. 7, we
compare all five methods w.r.t. different a values. Not
surprisingly, when a value increases, all methods gain
better prediction accuracies. This is due to the
increasing number of labeled instances helps build
strong base classifiers.

Overall, SeSAL, DSeSAL and MV achieve the best
performance, and US is inferior to RS in the majority
of the cases. For multiclass data streams, the
performance of US is unsatisfactory and is largely
inferior to the RS. To get the best performance and the
lowest cost, we choose 0.1 for a value.

Table. I11. Average classification accuracy on c4-150k-d10-
p5-N1000-t0.1-h0.2 (o and p=0.1)

ChunkSize RS US MV SeSAL DSeSAL

250 74.54 7551 81.84 83.35 84.02

500 83.07 85.16 87.62 89.56  89.79

750 86.10 88.14 89.48 92.63  92.67

1000 86.43 88.79 90.12 94.17  94.37

2000 86.47 88.69 89.16 93.78 94.15

250 42.27 41.3447.21 51.13 53.76

500 50.47 49.9154.51 57.98 59.24

750 58.11 56.48 60.12 64.63 67.04

1000 63.08 61.9265.14 68.52 71.51

2000 71.87 70.98 73.09 77.84 79.86
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4) Time Complexity and Runtime Performance:
The time complexity of the proposed model in
Algorithm 3 can be decomposed into two major parts:
time complexity of semi-supervised phase and active
learning part. As mentioned above, we use MV for
Active learning phase. The time complexity of this
phase is O(N2. M) [37].

same measure (variance) in semi-supervised and
active learning phases of the unlabeled instance
selection. The total time complexity is bounded by two
important factors: 1) the number of instances in each
chunk N and 2) the number of data chunks M. Because
model training in each chunk is nonlinear w.r.t. the
chunk size, we may prefer a relatively small chunk size
to save the computational cost.

The time complexity of the semi-supervised part is
also O(N2.M), where M is the number of chunks, each
of which contains N instances. Because we use the

In Fig. 8, we report the system runtime
performance, where the x-axis denotes the chunk size,
and the y-axis denotes the average system runtime
w.r.t. a single data chunk. Not surprisingly, RS has
demonstrated itself to be the most efficient method due
to its simple random selection nature. The MV, SeSAL
and DSeSAL methods is the most time-consuming
approach mainly because the calculation of the
ensemble variance and the weight updating requires
additional scanning in each chunk. The larger the
chunk size, the more expensive the MV, SeSAL, and
DSeSAL can be, because the weight we obtain the best

| RS s MV SeSAL DSeSAL

Ruutime (s/chunk)
=3 3

t 1
50 500 1000 2000 3000 4000 5000
Chunk Size

Fig. 8. System runtime with respect to different chunk sizes
(c4-150k-d10-p5-N1000-t0.1-h0.2 stream, o. and p=0.1)
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tradeoff between computational cost and accuracy,
when the chunk size is 500.

5) SeSAL and DSeSAL Performance on Real-
World Data: For each data stream, we report its results
using chunk size 500. We fix o and 3 value to 0.1 and
set value k to 10, which means that only the most recent
10 classifiers are used to form a classifier ensemble. In
Fig. 9, we report the algorithm performances on five
real-world data.

According to the results illustrated in Table 4 and
Fig. 9, SeSAL provides superior performance than MV
on four datasets. These are dense datasets, which
means that a small portion of examples can learn
genuine concepts quite well. The Letter is a sparse
dataset and 26 classes of examples are evenly
distributed, and a small portion of examples are
insufficient to learn genuine concepts underlying the
data. In letter, SeSAL performs inferior to MV in the
majority of cases, but DSeSAL solves this problem and
provides a reasonable result. The performances of
SeSAL and DSeSAL in binary class datasets are close
to each other. In fact, DSeSAL eliminates the lack of
SeSAL in multi-class problems.

Different from synthetic data streams where the
decision concepts in data chunks gradually change
following the formula given in Eq. (13), the data
chunks of the real-world data do not share such
property, and the concept drifting among data chunks
are not clear to us (in fact, we do not even know the
genuine concepts of the data). Because of this, we
compare algorithms on two types of test sets. In Fig. 9,

Table. IV. Average accuracies on real-world datasets

Datasets MV SeSAL DSeSAL
Adult 83.5756  86.0346 86.1398
Magic 79.1676  83.3018 83.7278

Covtype 66.9895 71.3863 78.9498
Shuttle 97.8795 98.8871 99.567
Letter 37.3099 27.9810 47.3161
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the algorithms are tested on all instances in data
chunkS,. In Fig. 10, the algorithms are tested on a
separate test set generated from 10-fold cross-
validation. The x-axis denotes the ratio of the initial
labeled set to chunk size.

The results in Figs. 9 and 10 indicate that, overall,
the accuracies evaluated on individual data chunks are
slightly better than the accuracies acquired from the
isolated test set. But overall, an algorithm’s relative
performance on each individual data chunk or on a
separate test set does not make a big difference.

VI.CONCLUSION

In this paper, we propose a new research topic on
the combination of active and semi-supervised
learning for data streams with increasing data volumes
and evolving nature. Our goal is to derive a model to
predict future instances’ label as accurately as possible.
In a real stream environment, labeled data may be

fairly scarce and labeling all data is quite difficult and
expensive. Active learning and semi-supervised
learning are two approaches to alleviate the burden of
labeling large amounts of data. We use Active learning
and semi-supervised learning to get the advantage of
both methods, to boost the performance of learning
algorithm.

In our proposed framework, we use self-training
with a new confidence measure to take advantage of
unlabeled instances to augment the performance of
learning algorithm. In multiclass conditions, we face
an error propagation and accuracy reduction in SSL
phase. To address this problem, we propose a dynamic
self-training algorithm (DSeSAL). We control the
accuracy reduction by specifying a tolerance measure.
Moreover, in our experiments on real data sets, we
compared our algorithm with a fully supervised active
learning method. The experiments show that the

proposed method outperforms the compared methods.
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