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Abstract— In this paper, we propose a low-complexity model-based single-channel audio separation approach. The
proposed method presents three certain advantages over previous methods: 1) replacing commonly used linear masks
like Wiener filtering by a proposed non-linear one, we show that it is possible to lower the crosstalk of the interfering
source often occurring in a mask-based method while recovering the underlying signals from the observed mixture.
Using nonlinear masks establishes a tradeoff between acceptable level of interference and low speech distortion, 2) as
a post-processing stage, we use phase synchronization technique to enhance the perceptual quality of the re-
synthesized signals, and 3) the proposed method is based on vector quantization (VQ) codebooks. Hence, the
complexity is lower than previous GMM-based methods. Through extensive experiments, it is demonstrated that the
proposed method can achieve a lower signal-to-distortion ratio (SDR). According to our listening experiments and
according to the Mean Opinion Score (MOS) results, it is confirmed that the proposed method is able to recover
separated outputs with a higher perceived signal quality.

Keywords- vector quantization; nonlinear mask;audio source separation;model-based method; signal-to-distortion ratio.

and two unknowns (the unknown underlying signals
L INTRODUCTION forming the observed mixture). The problem, in
Single channel audio source separation has been general, is not solvable without any a priori
introduced as a challenging topic in recent years. The ~ knowledge of the underlying signals. As one important
audio source separation scenario is categorized into  auxiliary information, model-based  separation
two main groups: 1) multi-channel, and 2) single-  methods employ statistical models to model the
channel scenario. In multi-channel scenario, underlying signals and use this model for separating
independent component analysis (ICA) has been  the signals from their mixture. In this paper we only
widely used [1-4] and good results have already been focus on model-based single-channel scenario and the
reported. The separation performance of an ICA-based signals of interest are audio signals.
method, however, is confined and restricted when the
number of microphones is larger or equal to the
number of sources. In single-channel scenario, the
goal is to estimate the separated signals according to

As the most representative approach for single-
channel audio separation, model-based methods have
widely been used. For instance, in [5], each one of the
their mixture recorded by a single microphone. underlying desired sources are first b.eing modeled as
Mathematically, this is equivalent to solve a linear € SUM of elementary components with known power
equation with one observation (observed mixed signal) spectral densities (PSDs). The approach involves a
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non-negative decomposition of the spectra of the
observed mixture in a given frame into a dictionary of
PSDs. The resolution of the PSDs used in separation
varies in different iterations to another during the
algorithm. According to [3], splitting the signal into
its source components and a residual component is a
rather difficult task. In [6], independent subspace
analysis (ISA) was employed to decompose the power
spectrogram of a given audio mixture into a sum of
spectra with time-varying weights. Then the source
power spectrograms are reconstructed by grouping the
weights into subspaces and computing the source
waveforms by employing a Wiener filtering
framework. In [7], an ICA-based approach was
employed for single-channel audio separation. It was
observed that the method results in an inferior
performance for speech + music mixtures. More
specifically, it was observed in [7] that the ICA-based
method could recover mixture of two music signals
more cleanly than a mixture of speech and music
signal. In [8],[9], non-negative matrix factorization
(NMF) was introduced as a way to estimate the
spectra of the unknown sources according to the
observed mixed signal. Rather good separation results
were reported for note transcription on solo
recordings [8],[10]. In [9], the performance of the
ICA and NMF were studied for audio source
separation. According to [11], both ICA and NMF are
not capable to appropriately separate the low-intensity
notes. These methods produce spurious notes with
short duration and their ability to segregate non-
percussive instruments has not been studied. In [12],
this issue was considered by employing Factorial
hidden Markov models (HMM). By applying HMM,
accurate priors for the log-power spectra of the
sources could be learnt on solo data. According to
[13], satisfying separation results were obtained on
speech mixtures with factorial combination of source
models. However, complex parameter sharing
procedures are required on musical mixtures to avoid
overlearning, since the number of hidden states for
cach source (equivalently the number of chords it
could play) may be very large.

The statistical methods already used for the
model-based audio separation are categorized into
HMM [12-15], Gaussian mixture model (GMM),
recently Gaussian scaled mixture model (GSMM)
[16],[17], and VQ [18],[19]. Among these
approaches, the GMM-based approach has been of
more interest and has been introduced as an attractive
candidate for audio source separation. According to
[20], the GMM-based methods offer the advantage of
being general and can be used to model many types of
audio signals. These methods are called general or a
priori models, as they are based on models which
cover the range of properties for specific sources [20].

In this paper, we use a model-based approach
based on vector quantization to separate audio sources
according to their observed mixture recorded by
single microphone. We employ a maximum
likelihood (ML) amplitude estimator as our mixture
estimator to find the two best states each from one
codebook that when mixed best represent the current

frame of the observed mixed audio signal. These
states are then passed to a reconstruction stage
(overlap and add procedure) in order to produce the
separated output signals for each source. Through
different experiments, we show that the proposed
separation approach shows certain improvement
compared to other mixture estimators including PSD
[16],[17] and log-max [21].

The rest of the paper is organized as follows: In
the following section, we present a review on existing
state-of-the-art methods for single-channel audio
separation. In section 3, the proposed model-based
approach is presented. Later in this Section, we derive
an ML mixture estimator which is used to find the
best states of the underlying signal models. We
present new concept of non-linear mask and replace
common linear masks with these new masks. Section
4 presents the experimental results. Section 5
concludes on the work.

II.  MODEL-BASED SINGL-CHANNEL AUDIO SOURCE
SEPARATION

In this section we formulate the single-channel
audio source separation problem. Consider an audio
mixture denoted as x(n) formed by speech and music
signals as

x(n) = m(n) + s(n) n=1.,N , 0"
where m(n) is the music signal and s(») is the speech
signal, N is the time window length in sample and 7 is
the time sample index. The objective of a model-
based approach for single-channel audio separation
algorithm is to use the pre-trained statistical models to
recover the unknown audio signals from their
observed mixture. Using the additivity property of the
spectral components in the short-Time Fourier
Transform (STFT) representation, the mixed signal is
given by

Xk =M&E)+Sk) . (2)

where k denotes the frequency index and X(k), M(k)
and S(k) are the frequency domain representation for
the mixed audio, speech and music signals,
respectively. In [17], diagonal covariance matrices
were used in the statistical models for both speech
and music sources. According to [17], at each frame,
the resulting Bayesian estimation for the separated
audio sources is obtained as a Wicner-like filter
defined as below,

()
MB= i+ a2®
con_ Onk) : )
SO wram ®

X(k) > 3)

where M(k) and §(k) are the estimated music and

speech signals after separation, o7, (k), 0% (k) are the

International Journal of Information & Communication Technology



http://ijict.itrc.ac.ir/article-1-266-en.html

diagonal elements in the covariance matrix related to
music and speech signals, respectively. According to
[17], using a mask-based approach as shown in (3)
and (4), could introduce some undesired cross-talk
from the interfering source signal into the separated
signal. In particular, the resulting separated signal
obtained by GMM-based audio separation algorithms
with Wiener filter often suffer from the affects of the
other source signal and the separation performance
can be degraded in terms of the perceived audio [7].
This is caused by the components of the interference
signal which remain in the separated output of the
desired source signal.

III. THE PROPOSED SEPARATION METHOD

A. Feature extraction and codebooks

According to [22], the selected feature parameters
together with the statistical models trained for the
underlying signals in the mixture play the key role and
determine the resulting performance for audio
enhancement. As our feature parameter, we usc the
STFT spectrum amplitude of the audio and speech
sources. This is comparable to the previous separation
methods which used logarithm of the spectrum as their
selected feature. As our statistical model, we train VQ
codebooks for both music and speech from
comprehensive datasets by using a modified VQ
method described in Appendix L

B. Proposed mixture estimator

In this section, we present the mathematical
analysis to derive new mixture estimator based on the
STFT features for single-channel audio source
separation. The observed mixed signal, X(k) depends
on both amplitude and phase of the underlying
discrete Fourier transform (DFT) spectra. Considering
8,,(k) and 6;(k) as the phase values of the speech

and music signals, the mixed signal is given
by M (k)e”® + S(k)e’”* and we have

X(k)= \/ M2 (k) + 8% (k) + 2M(K)S (k) cos 6(k) (5)

where 6(k) is the phase difference defined as
(k) =6,,(k)—-0;(k). 1t is already well-known that
presenting a compact model for phase values is a
difficult task; hence, in order to exclude the phase
information in current problem, it is required to have
a mixture estimator independent of phase information.
In [21] it is shown that log-max approximation of the
log spectrum of the mixed signal (here x(n)) is very
close to the element-wise maximum of the log spectra
of the two underlying signals (here m(n) and s(n)).
The audio source separation problem presented in (1)
can be considered as the problem of finding estimate
of X(k) and not its logarithm used in [21] in a mean
square error (MSE) sense and we have [23],

log X .5, (k) = E{log X (k)| log S(k),log M (k)}

(©)
=max {log S(k),log M (k)}
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with &=1,2,...,D as the frequency index and D as the
number of DFT-points used. In the following, we
derive an ML mixture estimator in the DFT-domain.
We find the probability distribution function (PDF) of
the mixed signal, X(k) as a random variable. We
derive an ML mixture estimator for X(k) based on the
audio unknown signals in the mixture i.c. S(k) and
M(k). The ML estimation can be considered as

X(ky=max p,,, (X (k)| S(k), M(K)) - (7

To derive the ML-estimator, one needs to calculate
the PDF for the mixed signal given by

px(k)(X(k)|S(k),M(k)). In order to sake the

simplicity in our notations, hereafter, we let as
follows p, , (X () = pyq, (X (k)| S(k), M(K)). It is
already shown that for audio signals the phase
distribution can be well approximated by a uniform
distribution [21],[24]. Considering a uniform phase
distribution for both speech and music, then we have
p,(0.(k))=1/27 and p, (6, (k) =127 ,-n< 0, (k)< 7
. As a consequence, the distribution of the mixture
phase O(k) is ps(k)(e(k)) = Pe, (k)(em (k)= Py &, (k)

where * denotes the convolution operator. The PDF
for the mixed signal p,, (6(k)) , is then obtained as

Pa(k)(e) = pHm(l()(gm (k) * pH_r(k)(es(k))

|41—2(9(k)+27r), 27<0k)<0 . (8)
T

———(6(k)-27), 0<O(k)<2m

1
”2
Considering the periodicity of phase, then we obtain

Pa(k)(e(k))= —1_ -t L8kys€zr - (9)

2z

Given the distribution for mixture phase, #k), the
PDF of X(k) can be obtained by the following formula
(23],

Pow(0K)) (10)
X (k)
96(k)

px(k)(X(k)) =

Using (5) and (10) together then we obtain

oX (k) _ —S(kyM (k)sin 8(k) )
00(k)  Js* (k) + M (k) + 25(k) M (k) cos B(k)

Finding the equivalent from for termsin #(k) in (5),
and then plugging the result into (11) we have
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X(k) , (12)

I] _[' XY - Sy - My
VU 2Mwsi J

PX(k) (X(k)=

2MU)S (k)

and [S (k)™ ~ M(k)e™ | < X (k) <|S(k)e™ © + M(k)e™ |
i.e. the audio mixture, X(k) is limited by two extreme
cases: 1) ’S(k)e"’s“) —M(k)ef”M“‘" =0 when the DFT

amplitude of the sources are too close to each other,
and 2) when one of the sources dominates the other
ie. S(k)>> M(k) or M(k)>>S(k) then we have

’S(k)ej”‘“‘)—M(k)e’”““‘"=S(k) and Mk

respectively. Fig. 1 depicts the PDF given by (12). As
it is observed from these plots, S(k)+M(k) can be
considered as the ML mixture estimate since its
occurrence is most probable for either of the two
extreme cases mentioned above. The ML mixture
estimator is expressed as below

X, () =max p (X(K) = S(k)+ M(k) , (13)

where |.| denotes absolute value for frequency bin £.
To verify the mixture estimator in (13) in practice, we
calculated the distribution of the phase information of
the mixed signal X(k) using 100,000 frames extracted
from audio signals selected from the database (sec
Section 4).

The audio mixtures we used are composed of
speech and music signal where music signals are
selected as solo and piano and speech signals are
selected from our database. Fig. 2 shows the results as
histogram plots for two extreme cases: 1) when the
DFT spectrum amplitude are too close, and 2) when
one of the underlying signals is dominant than the
other. It is observed from these figures that the
occurrence for the proposed mixture estimator is the
most probable for both cases. This confirms that the
mixture estimator is a ML-based estimator.

C. Separation stage

In order to find the best states of models of the
underlying signals in the mixture, we employ the ML
mixture estimator in (13). We search all possible
states of the VQ codebooks of the signals to find
those two indices which when combined minimize a
distortion measure. Mathematically, these indices are
found by solving the a minimization problem as

bt Jope = ATEMIn{ X (K) = M, (k) =S, ()}, (14)
Ly

where M(k) and S{k) are codevectors related to the
state ith and jth states corresponding to the VQ
codebooks of the music and speech, respectively. The
proposed mixture estimator in (14), is comparable to
the previously proposed PSD method in [16],[17] as

fyesJipe = g0 X ()~ M} ()=} (K)

ij {13)

P (X (kY

iy

»

[S(k)- M(k)| IS =M

(a)

P (X(E)

sl

IS0+ MG

| S(k)- ML)

(b)
Fig. 1. Showing the PDFs of the mixed signal in (12), X(k) for two
extreme cases: (a) |S(k)-M(k)|= S(k) or M(k), and (b) the amplitude
spectra of the signals are close to each other i.e. |S(k)-M(k)|= 0

[

WEERRRNANE

(®
Fig. 2. Showing the PDFs of the mixed signal in (12) and verifying
it by calculating the histograms of the DFT amplitude for X(k) for
two scenarios: (a) [S(k)-M(k)|= S(k) or M(k), and (b) the amplitude
spectra of the signals are close to each other i.e. |S(k)-M(k)|= 0
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Another well-known mixture estimator is the
conventionally used log-max approximation in [21]
given as

ippi> o = argmin{log X (k) - max (log M. (k),log $; (k))} (16)
i,] ’

where i and ; indicate the possible states for music
and speech signal, while i, , jo denote the best states
in the codebooks of the music and speech,
respectively. The log-max approximation only
considers the maximum element-wise of the
logarithm spectrum magnitude of the signals in the
mixture.

D. Using nonlinear masks

According to our derivations in the separation
stage, the ML-estimate for mixture is given by

X(k) = M, (ky+S, (k) . a7

The states of the two sources are sent to the
reconstruction stage and are used along with the
mixture phase to re-synthesize the recovered audio
signals using a Wiener type formula as

A M, (k)
M) = Mask X B =y vs, o~

S (k)
M, (k)+S§, (k)

«(18)

S(k) = Mask, (k)X (k) = X (k)

where Mask; and Mask, indicate the masks to recover
music and speech signals, respectively. These
estimates are then used along with the mixture phase
in order to reconstruct the separated signals as

$(n)= DFT™ {S‘(k)efm“}

#(n) = DFT {M(k)e’*®} - (19)

The linear mask in (18) causes large amount of
undesirable crosstalk in the audio separation results.
In order to solve the undesirable crosstalk problem
occurred in linear mask (Wiener filtering), here, we
propose a new mask called nonlinear mask. In the
proposed mask the frequency bins whose values are
higher than 0.5 are retained the same as they are using
a linear transfer function. As a result in this region we
block any interference to be introduced in the
separated output signal. Such linear function ranges
between [0.5,1] and would result in a better
perceptual quality in the separated output signal. On
the other hand, the values lower than 0.5 implicitly
state that the second audio source has higher
frequency amplitude. As a result, it is reasonable to
set the audio source with smaller amplitude to zero.
This will guarantee to remove crosstalk effects
already existed in separated audio signals in previous
masks. We call this new mask as semi-soft mask
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which result in the high perceptual signal quality by
setting crosstalk to its minimum value. Fig. 3
demonstrates the semi-soft mask.

In general, we propose non-linear mask defined as
follow; a non-linear mask emphasizes the spectral
components with values higher than 0.5 while
attenuating those with values smaller than 0.5. In
particular, according to the definition of ideal binary
mask we expect that a mask should satisfy the
following constraint to establish a tradeoff between
low crosstalk and low speech distortion. These
constraints are defined as follow. Assume that x is the
value of the mixture spectrum at kth frequency bin.
Then it is required that the slope of the mask curve
gets to zero at x=0 and x=1. Hence we have
OMask(x=0)/0x=0 and JMask(x=1)/0x=0 where
i={1,2} denoting each of the two underlying signals.
The value of mask at x=0 and x=1 is required to
satisfy some boundary constraints at x={0,1} requiring
that Mask(x=0)=0 and Mask(x=1)=1. In addition, to
have a symmetric mask, we need that the mask curve
satisfy a symmetry property around x=0.5. Taking all
these constraints into account, we can show that the
function satisfying all these constrains is of the form

1+42X -1 : (20)

Mask® (X) = 5

whose values are determined based on the values of
the desired signal X(k). Equation (20) is considered as
the general formulation for the family of non-linear
masks. Fig. 4 illustrates some examples for curves for
the proposed non-linear masks obtained by several
values of K in (20). Applying the nonlinear mask in
(20) into our audio separation problem, the masks
required to recover the music and speech signal are
found as below,

1+ §2MASK (k) -1
MASK (k):———S( J

2 _ Q1)

1+%2MASK,, (k) -1

2

MASKE (k) =

It is important to note that by employing different
values for parameter K in (21) results into different
separation scenarios described as below

K=1
K=35]7
K=o

: linear soft mask
:nonlinear soft mask . (22)

:binary mask

Letting K=1, leads into linear mask which maximizes
the cross-talk of the other source but the re-
synthesized perceived signal quality for the separated
output signal is rather acceptable. This is confirmed
through our experiments as discussed in the following
Section. This indicates that by using linear masks
(K=1) in (18), the interference is audible along with
the desired audio source in the separated signals. This
degrades  the  separation  performance  and
consequently would result in an inferior separation
performance. As another extreme case, by letting
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K=o, the resulting mask is degenerated to the well-
known binary mask where the crosstalk is maximum
and the perceived signal quality of the underlying
sources is significantly dropped but the signal
distortion is low (high signal intelligibility). Here, by
considering the nonlinear mask proposed in (20), we
try to keep the advantages of both binary mask (K=)
and linear mask (K=1) discussed above. In our
experimental results we demonstrate that using
nonlinear mask results in a lower signal to distortion
ratio (SDR).

Semi soft mask function

"___"‘V____"I'__’
) 1

0 0.2 0.4

T

— K=infinity

0.8 0.8 1

Fig. 4. Showing examples of curves for the non-linear mask in (20)
evaluated for different values of K=1,3,5,7, [25]

E.Separation scenario

The whole separation method is shown as a block
diagram in Fig. 5. The audio mixture, x(r) is entered
to a DFT block. The result, X(k) is entered to the ML
mixture estimator in (14). Two states are found
denoted by i, and j,, for music and speech,
respectively. These indices encode the magnitude
spectrum vector in the VQ codebooks of the
underlying signals in the mixture. These selected
states in the codebooks along with the mixture phase
are then passed to an inverse DFT (IDFT) block. The
separated music and speech signals are reconstructed
using an overlap-add procedure. In the reconstruction
stage we use phase synchronization proposed in [26].
This is implemented by making phase values coherent
at the frame boundaries also called phase coherency.

Audio Mixture x(n)

DFTY(.)

MASKy gy =l nml-: Xtk) =M, (k)-S5 (& I]
C D i

3

Codebook Music Codebook Speech

Codeward(1) Codeward(1)

Conteword(2) Codeword( 3}

Er"m|

Coadeword(l) Cadeward(f)

Codrward(4096) Condeword(4198)

—— o ——

Separated speech  Separated music

Fig. §. The block diagram for the proposed method in single-
channel audio separation.

IV.  SIMULATION AND EXPERIMENTAL RESULTS

A.System setup and database

As a proof of concept, in this section we evaluate
the separation performance obtained by the proposed
method and compare it with other benchmark
methods in audio source separation. As our speech
database, we use a rather comprehensive database
prepared by our laboratory members consisting of
100,000 sentences uttered by more than 25 speakers
including 15 male and 10 female speakers. The
sentences to be uttered by the speakers are collected
from 230 phonetically balanced sentences. Each
speaker uttered one sentence in five different ways
differing in the stress point. As our music database we
collected 2 compact discs consisting of 2 hours of
piano and solo audio tracks. The number of vectors
extracted from the audio files is 200,000. These
vectors are then used to produce codebooks as signal
models for the signals in the mixture. We trained
speaker dependent codebooks for each speaker
male/female and music.

As shown in Fig. 5, the core of the separation
system is composed of two VQ codebooks: one for
speech source and the other for music source. The
mixture estimation stage finds the indices denoted by
iopeandj,p, as the optimal indices for speech and music
codebooks, respectively. These indices are then used
to produce nonlinear masks proposed in this paper.
These masks are then applied to the mixed signal. The
filtered signals are then used along with the mixture
phase to recover the time domain separated output
signals for speech and music signals.

As our settings for separation, we use an analysis
window of 32 msec with a frame shift of 16 msec.
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The sampling frequency is set to 8 kHz. The
codebook size is 12 bit (with 4096 codeword entries).
Note, the scenario taken here is more difficult than the
scenarios already reported in [5],[8],[10],[16] where
the audio mixtures are only composed of music tones
and vocal speech frames which are highly harmonic.
In this work, we consider a more challenging
separation problem where speech and music signals
are highly overlapped in their spectrum.

In order to evaluate the separation performance of
the proposed method, we use SDR as our objective
measure proposed in [27]. The SDR is considered as a
measure to ensure how much interfering signal is
separated from the mixture. The SDR measure is
calculated in the frequency domain defined as

> X ()

(X (k)= Xh))

SDR =10 log,,

(23)

where X(k) and X (k) are the DFT spectrum for the

original and the reconstructed signals, respectively.
The results are reported after averaging the SDR
measures obtained from different pairs of speech +
music signals mixed at 0 dB level. Listening
experiments were conducted. A total of 7 persons of
various ages participated and were trained for the
test. The subjects included 5 women and 5 men
with graduate-level educations. The participants
listened to the original and synthesized signals by
the proposed method and other benchmark methods
(PSD and Log-max). Then they were asked to give
an opinion score from 1 to 5 (where 1=bad and
5=excellent quality). The clips played for the
participants consisted of ten clips composed of
speech + music mixed signals. The MOS was
obtained by averaging the results. The results of the
mean opinion score (MOS) are reported in Tables 3
and 5 as our subjective evaluation.

B.  Results

Table 1 and 2 summarizes the results for the
averaged SDR for two different mixing scenarios:
music signals are mixed with 1) male speaker, and 2)
female speaker. The results are reported for the
proposed method in this paper and benchmark
methods: log-max mixture estimator in (16) [21], and
the PSD method given in (15) used in [16],[17]. It is
observed that, the averaged SDR results for the
proposed method outperforms log-max by 1 dB and
PSD by 2 dB. Table 3 demonstrates the obtained
MOS score for various estimators including the
proposed method, log-max and PSD. In addition, the
effect of employing phase synchronization is also
explored in the Table 3. It is observed that the phase
synchronized separation output signals
advantageously lead to significantly more acceptable
perceived signal quality as indicated by the MOS
results. The significant difference between the results
in Table 2 and 3 confirms that the SDR measure may

Volume 2- Number 1- May 2010 IJIC T IEA

not fully reflect the real perceived quality of a
separation scenario which is in agreement with [27].

Table 4 shows the averaged SDR results for
different masks. We included linear mask (with K=1),
binary mask (with K= o) and other possible values of
K=3,5,7. From the results shown in Table 4, it is
concluded that selecting K=3 in the proposed
nonlinear mask results in the least SDR. On the other
hand, the binary mask results in the poorest
performance as indicated by the SDR values. Fig. 6
depicts the mixture of speech and music as well as the
accordingly their separated outputs both in a time and
a spectrogram representation.

As our subjective results, we use the MOS results
to evaluate the separated signals while using different
masks to compare the performance of our proposed
nonlinear masks with both linear mask and binary
mask. Table 5 shows the MOS results for different
masks. From the results in Table 5, it is observed that
the proposed non-linear masks outperforms others.

Table 1: Averaged SDR in (dB) for separated male speech and
music signals using the proposed, log-max and PSD algorithms.

Signal PSD | Log-max | Proposed

Speech(male) 5.44 6.23 8.51
Music 9.76 11.74 12.24

Table 2: Averaged SDR for separated female speech and music
signals using the proposed, log-max and PSD algorithms,
Signal PSD Log-max | Proposed
Speech(female) 7.61 940 9.91
Music 10.39 12.09 12.03

Table 3: MOS results for the output signals obtained by different
separation methods.

Method Scenario Svnthesis Method MOS

Phase Synchronization 4.3

Male No Phase Synchronization 3.7

o Femal Phase Synchronization 3.2
i No Phase Synchronization 2.8

Pr

Phase Synchronization 2.5
No Phase Synchronization 2
Phase Synchronization 24

Male

Female No Phase Synchronization 1.9

Phase Synchronization 2.2

ol no Phase Synchronization 1.7

Phase Synchronization 2.1

Female

no Phase Synchronization 1.6

Table 4: Averaged SDR for separated speech and music in
masking approach

Method Category SDR
Speech 7.88
Music 18.77
Speech 8.27

Music 19.55
Speech 8.15
Music 19.50
Speech 8.04
Music 19.42
Speech 7.06
Music 17.91

Linear mask

nonlinear mask (K=3)

nonlinear mask (K=5)

nonlinear mask (K=7)

binary mask (K=eo)

International Journal of Information & Communication Technology



http://ijict.itrc.ac.ir/article-1-266-en.html

IJICT volume 2- Number 1- May 2010

T I

4000 ¢

2000 e ik P e

: X Phb, L -.t- Sy ety i - :
o R T e e T e
time
®
Fig. 6. Corresponding spectrograms and time domain of (a,b)

mixed signal composed of speech+music, (c,d) speech, (e,f) music,
(g,h) separated speech, (i,j) separated music signal.

Table 5: MOS results for output signals using mask.

Method Category MOS

male + music 23 |
female + music 25
male + music 3.5
female + music 3.4

Linear mask

nonlinear mask (K=3)

male + music 1.7

binary mask

female + music 1.8

V. CONCLUSION

In this paper a low complexity mode-based audio
source separation approach was proposed. The
separation method was based on VQ codebooks
trained on speech and music signals. We derived a
maximum likelihood (ML) mixture estimator based
on the spectrum amplitude of the short-time Fourier
transform (STFT). We also proposed new nonlinear
masks which could establish a tradeoff between lower
crosstalk and high quality in the separated audio
signals. Through extensive simulation and
experiments we compared the separation performance
of the proposed method with log-max and power
spectral density (PSD) approach as our benchmarks. It
was observed that the proposed method outperforms
in terms of signal-to-distortion ratio (SDR). The
method also attained higher perceived quality in its
separated output signals. It was also observed that
nonlinear mask resulted into a higher perceived signal
quality as indicated by their high MOS results.

APPENDIX I: HISTOGRAM-BASED VECTOR
QUANTIZATION
The method used for initialization stage of a vector
quantization plays an important role in the overall
quantization performance [9]. The problem lies in the
fact that there is no guarantee to reach at the global
minimum. In this appendix, we present a method to
mitigate this problem and prevent the algorithm to be
trapped in local minima during VQ centroid update.

In the following, consider that we have a large set
of training vectors composed of frames from audio
signals. Each vector is denoted by T; where i
represents the number of the training vector with
ie[1,R] and R as the number of training vectors. As
our initialization step, we select M reference vectors
from the training set, 7. To this end, we scan all
training vectors and calculate their Euclidean distance
from each other. Then those training vectors having a
distance lower than a pre-defined threshold denoted
by & are selected. This threshold is then used to
determine which training vectors are close to each
other. To select an appropriate value for & we have
tested the range of [0.01,0.1] and found that 6=0.05
results in an acceptable result. The procedure is
repeated for all training vectors, and the repetition of
each of these vectors are counted in a temporary
vector called histogram index vector denoted by H; in
Table 6. By repeating the procedure for other vectors,
the entries in the histogram vector are filled. Then
after sorting this histogram vector in a decreasing
manner, we select the first A/ indices. The related
vectors to these indices are the most probable vectors.
The pseudo-code for the proposed histogram-based
initialization is shown in Table 6.

The Euclidean distance used in the VQ centroid
update during the VQ design may not efficiently
represent the closeness of two really similar vectors in
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the clustering process. We use a perceptual weighting
shown in Fig. 7. Since the frequency range within [0, 1
kHz] has the most perceptually importance, we put a
fixed weighting and a exponentially decaying weight
function is assigned to the rest of frequencies. As a
consequence, the frequency components lying in the
frequency range of higher than 1 kHz are
deemphasized as shown in Fig. 7.

Table 6: The pseudo-code for the proposed histogram-based
initialization for codebook design.

Stepl:
T . -
H i ,R: Histogram vector
M, k=12
Step 2:
H, =
for i=1:R-1
if H = 0
Jor j=(i+1):R
if dist (T, -1 )<é
H - H,+]
Hj =0

end

,R: Training set vector

LR: :Initial vector for VQ algorithm

end
end
end
Step 3:
Sort histogram decreasingly and select first M,
H = sort( H, )

k=M™ 1:' >

i€ index(H,)

» f{kHz

Fig. 7. Weighted distance employed in VQ algorithm.
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