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Abstract— Recent researches have determined that regularized auto-encoders can provide a good representation of data
which improves the performance of data classification. These type of auto-encoders provides a representation of data
that has some degree of sparsity and is robust against variation of data to extract useful information and reveal the
underlying structure of data. The present study aimed to propose a novel approach to generate sparse, robust, and
discriminative features through supervised regularized auto-encoders, in which unlike most existing auto-encoders, the
data labels are used during feature extraction to improve discrimination of the representation and also, the sparsity
ratio of the representation is completely adaptive with data distribution. Results reveal that this method has better
performance in comparison to other regularized auto-encoders regarding data classification.
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1. INTRODUCTION

Performance of a machine learning algorithm
strongly depends on the features extracted from the
data. Traditional feature engineering methods perform
well on low-dimensional data. But with increasing
advancement of computer sciences in several parts of
lifestyles and industry, the data used in computer
systems have been expanded significantly related to
volume and dimension. These huge data generally have
high dimensions and in the preliminary structure they
have the least information for discriminating and
classifying data. Therefore, traditional feature
engineering methods which usually rely on humanistic
knowledge for feature extraction, are unable to extract
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meaningful and structural features from these high-
dimensional data [1]. These caused scientists to focus
on methods that can produce good features by
examining data automatically and without any initial
knowledge to improve class discrimination and
revealing the underlying structure of data very well. In
the machine learning literature, the representation
learning refers to these methods and try to learn features
which can provide useful and structural information
from the data for classification and prediction [2].

Owing to a brain-like hierarchical learning system,
deep learning has been the main stream of feature
extraction over the past few years. Autoencoder is
commonly used as one of the most effective methods of
unsupervised feature learning to achieve a deep
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character hierarchy [3]. In initial idea, auto-encoders
have been used to reduce dimensions of data and show
them in lower dimensional subspace [4]. However, it
was determined in recent research that by making auto-
encoder as over-complete, i.e. the number of neurons of
hidden layer is more than input layer, the quality of
extracted features are improved significantly by adding
some regularization terms to the objective function. In
the representation learning literature, these auto-
encoders are called the regularized auto-encoders [5].

Generally, autoencoders do not use the class
information to learn features, which is why they are
classified into the category of unsupervised feature
learning approaches. However, in new researches, some
models of auto-encoders are proposed in which data
labels are used during features extraction to improve
classification of data. With regard to using data labels,
these methods are called supervised auto-encoders [6].

In this research, we propose a new discriminative
regularized sparse auto-encoder (DRSAE) which
generate sparse, robust and discriminative features and
has the following innovations:

. Despite most of popular auto-encoders, data
labels are used during feature learning in order to
improve classification of data and therefore, the
proposed model is placed among supervised auto-
encoders.

. The extracted features are robust to small
variations around each data and are sensitive to changes
along the data manifold.

. The generated features have sparsity
characteristic and despite other methods wherein the
sparsity ratio should be explicitly determined, in the
proposed model the degree of sparsity is adaptive and
dynamic with respect to the data complexity and
distribution.

. In the presented method, we try to increase the
between-class margin while maintaining locality of the
within-class data by adding some regularizers, such that
the neighboring within-class data are projected near to
each other in the feature space while the distance of
close between-class data increases and they became
apart.

Experimental results on the CIFAR and the MNIST
datasets reveal that proposed method has good
generalization and better classification than other auto-
encoders variants that have been presented so far.

II.  RELATED WORKS

A. Classic auto-encoders

Auto-encoder is a type of neural networks which are
used for unsupervised learning [7] [8]. These networks
are composed of three layers of input, encoder and
decoder. Data are imported to the network through
input layer and a different representation or encoding of
input is produced in encoder layer using fy(x) =
S (b, + Wx), where Sg, W and b, denote nonlinear
activation function, the weight matrix and bias vector
of encoding layer, respectively. Decoder layer acts
reversely and decodes information produced in encoder
layer to generate X =S,(by+ W'h). Where
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S,, W'and b, denote nonlinear activation function,
the weight matrix and bias vector of decoding layer,
respectively. Typically logistic sigmoid ( f(x) =
T o= ) is used for activation function and the weights
of encoding and decoding are tied (W' = WT).

The purpose of training auto-encoders is finding
desired parameters 6 = {W,b,,b;} to minimize
reconstruction error between the output of autoencoder
and the input which corresponds to minimizing the
following objective function:

minJup = min ¥ L(x, %) (1

Here L(x,y) =l £ — x |I?> is reconstruction error.
The auto-encoder provides a different representation of
data in encoder or hidden layer. In basic auto-encoder,
typically the number of neurons or features in encode
layer is generally less than input layer and thus have
been used as a method to reduce the dimensionality of
data because of its compact representation of data at
hidden layer.

B. Auro-encoder variants

The performance of standard auto-encoder with
lower dimensions of encoded features and using linear
activity function is very similar to the principal
component analysis. Of course, nonlinear activity
functions can improve the extracted features; however,
the extraction features still suffer from uncovering the
underlying data structures that cause good data
discrimination. [9]. The lower dimensions of the feature
space, is a bottleneck which forces autoencoder to learn
meaningful features from input. If this bottleneck is
removed and using autoencoder as over-complete (i.c.
the number of neurons in the hidden layer is higher than
the input), then the autoencoder moves towards
learning the identity function. Therefore, researchers
focused on adding restrictions on over-complete
autoencoder through architectural change or adding a
regularizer. These researches are stated under title of
regularized auto-encoder [10]. Some of the most
important research are presented follow:

One of the first attempt for improving features
quality in autoencoder is denoising auto-encoders [11]
[12] which uses corrupted version of data as input
feeding to the model and try reconstructing original data
in decoder layer based on the corrupted one. Corruption
is generally an additive Gaussian noise or a binary
masking noise and a discrepancy between the output
and the original data makes the objective function. This
approach encourages model to become robust against
noise. In contractive auto-encoder [13] [14] a jacobian

.. 2 ohji(x .
regularization (||]f(x)||p = Zi,j(%i))z) is added to
the objective function which tries to minimize first and
second derivative of hidden layer in relation to input.
This causes saturation of many hidden layer neurons
(i.e. several hidden units are near the extremes of their
range, and their derivative is near zero) and makes
invariance features against input perturbations.
However, combining this regularizer = with
reconstruction error, counterbalance its effect and give
a representation which is sensitive to changes along
direction of the data manifold and is invariance in other
directions. Another method that has recently been
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proposed is a sparse auto-encoder that attempts to
observe some degree of sparsity in extracted features,
resulting in a limited number of active features in the
encoder layer. The sparsity of features usually is done
in implicit and explicit ways. In implicit method [15]
[16] [17], a big part of features is disabled by adding
following penalty term to the objective function:

Jsparse = KL(Pl|p) = S, plog 2+ (1= pllog =2 (2)

where KL(+||-) denotes Kullback-Leibler divergence
between two distributions, d is the number of neurons
in hidden layer, p is the sparsity parameter which
determines the sparsity ratio of features, and p, =
%E;cl=1 h; is the average of ith hidden unit representation

in n training samples. The drawback of this approach is
that it does not always provide a sparse representation
for all data. In explicit method [18] [19] [20], the auto-
encoder disables a certain proportion of neurons during
training which leads to same degree of sparsity for all
data. Laplacian auto-encoder [21] considers manifold
learning approach during of training auto-encoders and
generates features by applying a Laplacian graph-
adapted regularizer to the objective function to preserve
locality in the feature space as following formula:

2N = ) ECg(f() +
X €S
P s WD) = FODIL (3)

Where fand gare the encoder and decoder function
respectively, £ is reconstruction error, A > 0 balances
effect of the regularizer and x;, x; are neighboring
sample from input data S. HSAE [22] adds hessian and
sparsity regularizers to the objective function to
produce sparse and robust features which leads to
revealing underlying structure of data while
maintaining locality in the feature space. LDSAE [23]
stacks two Denoising and Sparse auto-encoders with
lossless-constraint ~ denoising  regularizer ~ which
enhances the anti-noise ability and robustness of
representation.

C. Supervised auto-encoders

Although Auto encoders are often used as
unsupervised, recent researchers have proposed
methods for exploiting data labels during feature
learning. Authors in [24] presented a supervised auto-
encoder for single sample face recognition wherein they
tried to extract certain features relative to each person.
In this regard, given a set of k classes training images
that include gallery images (called clean data) and
probe images (called “corrupted” data) and their
corresponding class labels were used as training dataset.
In this paper, gallery image along with a corrupted
picture are fed into two identical auto-encoders
(weights and biases are the same) and auto-encoders try
to make close representation for these two images as
well as reconstructing gallery image from corrupted one
in decoder layer. This idea has been improved in [24]
which three deep and stacked layers are used for face
recognition and gives better results than most presented
methods. Limitation of these two methods is that they
only can be used in single sample face recognition and
can't be used in other data even the general face
recognition problem.
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Another approach that has been studied recently by
researchers is the discriminative auto-encoders [25]
which simultaneously try to minimize within-class and
maximize between-class scatter by adding a
discriminative  regularizers  L(e) = tr(S,,(h)) —
tr(S,(h)) to the objective function which S,, and S,
are expressed as follows:

Sw(h) = Xizy Xy jei(hi; — h)(hy; —h)T (4
Sy(h) = Xy m;(h, = R)(h, — h)” (%)

h; jis representation for jthsample from class i and
h,, hare denoted as mean vector of h i and h. This
regularizer minimizes the distance between each
sample representation with the mean vector
representation of its class. The key drawback of this
method is that it ignores class distribution and considers
the mean vectors of classes for the within-class and the
between-class.

LMAE [26] is another type of supervised auto-
encoders in which discriminative regularizer try to
minimize the distance between each sample pre-
activation with other within-class and between-class
samples and has the following expressions:

]la‘rge—margin = Z;’cnlzl Zﬁ:l Mkyk, ||W(xk1 - xk2)||2+

o Z;cnl=1 Zﬁﬂ ka3=1 nkl,kz(l - Tkl,k3)h(sk1,kz,k3) (6)

Here 7y, x, = 1 indicates that x;,is target neighbor
of Xp1, Ty, k, = 1 determines that x;; has the same
label as x; and  h(sy, k,k,) = max(L+ ||W(x, —
x)IF = 11w (e, = xe,)|1”,0) is a slack variable.

LCCSEAE [27] integrates both sparsity regularier
and label consistency constraints into the objective
function and maximize the intra-class margin through
center loss. In [28], another form of supervised auto
encoder was proposed that combines reconstruction
error and classification error as a single objective
function. The input is constructed by fusing noisy
concatenated input and label. The experimental results
showed its good performance compared to other
existing methods. In another research authors
introduced the Discriminatively Latent Regularized
Variational Auto-Encoder (DLR-VAE) [29] which
applied a discriminative regularization on the latent
embedding of a wvariational auto-encoder and
investigate its effects on classification and regression.

[II. THE PROPOSED METHOD

In this section, we introduce proposed model. It is
supposed that input data D = {x*,x2, ..., x"}are in m-
dimensional space x! € R™ and auto-encoder encodes
data to a d-dimensional space h' € R* and >m
fo(x) = Sg(b, + Wx) . In decoding layer, auto-
encoder decodes representation of hidden layer to
primary input X = S,(b; + W'h). Activity functions
in both layers are sigmoid and tied weights are used. In
Fig. 1 the architecture of the proposed model is shown.

As illustrated in Fig. 1, the presented auto-encoder
composed of one hidden layer and one reconstruction
layer with sigmoid activation and tied weight. In the
training stage, in addition to the input, two other types
of data (near-hits, near-misses) are fed into the model
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and their representations are retrieved. The similarity
between those representations is used in the objective
function and updating parameters.

The main difference between the proposed model
and the basic auto-encoder is the objective function,
which consists of three important parts and is expressed
as follows:

Jsss =Jag + Mip + Blpis @)

Where A, 8 and y are the parameters to balance the
different regularizers, respectively.

Here Jap = Yxep L(x,g(f(x))) is reconstruction
error which exists in all auto-encoders and aims to
reduce the difference between input data and their
reconstruction.

The locally-preserving regularizer ( Jip) has
following formula:

Jup = Eioy I KBest(f (Xnearnit)) — KBest(FCO) 17 (8)

KBest(x) is a function that takes a vector as input
and its output is a vector with the same size as input
which the K maximum elements retain their values, and
other elements set to zero, f(xleqr_nie) is the
representation or encoding for the i nearest neighbor
of x with the same label which is called near-hit of x.
Presence of this term in the objective function causes
extracted features in hidden layer to have within-class
locality-preserving property, and the neighboring input
data remain close within the feature space.

Jois = = Xiz1 | KBest(f (Xnearmiss)) — KBest(f(x)) I? s
the discriminative regularizer and f (X;,cqr—miss) 1S the
representation for i nearest neighbor of x with different
label which is called i near-miss of x. The aim of this
term is the opposite of the second regularizer and makes
it possible to increase the margin of the neighboring
between-class data within the feature space.

The idea of using KBest function is inspired from
the k-sparse auto-encoder [30] [31] and Kate [32]. In
those works, the authors add a select K best constraint
on encoding layer and use this new representation for
reconstruction. They show that this method creates a
competition between the neurons to get the right for
responding to a subset of input data and as a result,
makes each neuron specific to a certain structure of
input. In our method, we apply KBest function on the
J.p and Jp; rather than the reconstruction error to
express important discriminative pattern among only
competition-winning neurons.

A. The quality of extracted features

The performance of machine learning is heavily
depending on the quality of extracted features. The
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robustness, sparsity and discrimination are three of the
most important criteria for evaluating the quality of
features. The robustness examines the sensitivity of
features against input variations. Usually, two types of
variation can occur in data: 1. variations which are
perpendicular to the data manifold and don’t change
nature of data. 2. Variations along the direction of the
data manifold which cause movement from one data to
another in the data distribution [2] [35]. Robust features
are invariance against the first type and in contrast, are
sensitive to variations of the second type to be able to
reveal data discrimination [13]. In the proposed
method, the locally-preserving regularizer make similar
representation for the neighboring within-class data to
encourage the robustness of features.

This regularizer projects neighboring within-class
inputs to a more compact area in the feature space
which leads to the invariance of features around each
example in the data distribution. However, a very
similar representation for all neighbor data causes the
representation to be invariance to all directions around
inputs which is not appropriate at all. That is why we
put restrictions on the equality of just K best features
and the rest of features can express specific information
of each data and discriminate it from others.

Discrimination is another important measure for
feature evaluation which consider inter-class margin in
data distribution. Inter-class overlapping often occurs in
various datasets and leads to major problems in
discrimination and classification. In the suggested
method, the discriminative regularizer has been
proposed to maximize between-class margin in data and
improve data classification. This regularizer targets
superior features in the representation and by
minimizing it, the distance between each data with its
between-class neighbors is increased in the feature
space and leads to better discrimination.

The motivation to maximize between-class-margin
was also proposed in LMAE. The key difference,
however, is that in LMAE linear transformation of
samples is considered for increasing margin while in
our method, we use k-best items of non-linear
transformation of near-miss samples for margin
maximization. Also, in LMAE, the large-margin
regularizer uses all between-class samples rather than
using just k near-miss samples; as it is done in our
method which decreases time complexity.

International Journal of Information & Communication Technology Research
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Fig. 1. Architecture of the proposed model (DRSAE) with 1st near hit and 1st near miss

As illustrated in section II, the sparsity of features
could improve the quality of features. Sparse Features
in auto-encoders means that a limited number of
features are active for each data and it forces the auto-
encoder to put more specific and important pattern into
active features to reconstruct and discriminate data [33]
[34]. In the presented model, the sparsity approach is
implicit. The presence of j,, and j,;, regularizers
encourage the representation to have some degree of
sparsity. Given the fact that the locally-preserving
regularizer attempts to make k best features of near
within-class data become similar, the auto-encoder is
forced to disable those features representing the trivial
and very specific information of each data and instead,
enhance the essential features which are common
among the within-class near data.

Also, with regard to the discriminative regularizer
which increases distance of the neighboring between-
class data, it tries to inactive common features of these
data to prevent them located among the k best features.
Therefore, the combination of these two regularizers
with reconstruction error causes the features which are
to some extent common between close within-class data
and/or can discriminate the data are maintained while
other trivial and very specific features and also common
features between neighboring between-class data are
disabled. The main difference in this approach with
other types of proposed sparse methods is that the
sparsity ratio is adaptive and dynamic according to the
data distribution.

Finally, the combination of these regularizers with
reconstruction error improves quality of features for
discrimination and gives sensitive features against
variations along the data manifold and makes
robustness to other directions. On the other hand, taking
into account the sparsity approach of the presented
method, those features remain active that reveal
changes along the data manifold and are necessary for
discrimination and reconstruction, and variations along
off-manifold directions are not revealed in active
features.
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B. Optimization and Computational complexity

Auto-encoder performance depends upon its
parameters (weight and bias). With respect to training
data, the objective function of the neural network is
optimized to obtain best values for parameters. In the
suggested method, first, all weights are sampled
—¥°__ which
VNin+ Nout
Ni,, Ny are number of neurons in the input and output
layer respectively [36]. Bias values are also set equal to
zero. In order to maximize the objective function and
learn parameters value, stochastic gradient descent
optimization is used.

randomly from U[—b, b] where b =

The significant difference in terms of time
complexity between the proposed method and the
classic auto-encoder is in the k-nn algorithm which is
performed on all data once before training to determine
near-hit and near-miss of each input. The time
complexity of this algorithm is O(sn2) where s is the
number of near hit and near miss samples and n is
number of the input samples. Further, during training,
the time complexity of obtaining the regularizers and
their gradients w.r.t. the parameters are exactly the
same as the reconstruction error which is O(dmn) for
each iteration. Where m is dimensionality of input and
d is dimensionality of hidden representation [26].
Therefore, the overall time complexity of the presented
model is O(sn2+dmn).

IV. EXPERIMENTS AND RESULTS

In this section, two different experiments are
performed to precisely assess the proposed model’s
effectiveness. First experiment examines the quality of
feature learning based on criteria described in section
III. The second experiment focuses on classification
performance of the presented model compared to other
popular similar models.

Considered models: based on the literature
reviewed in section II, the following autoencoder based
models have been chosen for comparison:

e  AE: Basic Auto-encoder

e AE + WD: Auto-encoder with weight decay
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e DAE-g: Denoising auto-encoder with Gaussian
mask noise

e  CAE[13]: Contractive auto-encoder
e LAE [21]: Laplacian auto-encoder

e HSAE [22]: Hessian regularized sparse auto-
encoder

For all models we used one hidden layer units, tied
weight, a sigmoid activation function and the stochastic
gradient descent (SGD) was used for optimizing their
objective function. All hyper-parameters were tuned on
the validation set based on the best classification
performance from the candidate set {1 X 10°|e =
—10,-9, ...,10} and the number of near miss and near
hit samples was selected among the values (1 to 9)
empirically.

In order to evaluate the performance of all models,
5-fold cross-validation was applied, and each
experiment was repeated four times to report the
average.

Datasets: for all experiments, two benchmark
related to image classification are used. The first one is
the standard MNIST (hand-written digit classification)
[37]. This dataset includes 70000 (28*28) grayscale
images of hand-written digits which 50000 are used for
training model, 10000 for validation and 10000 for
testing. The second dataset is The CIFAR-10 [38]
(image classification) which includes 60000 (32%32)
RGB images of 10 classes. In our experiments a gray-
scale version of the CIFAR (CIFAR-bw) is used which
50000 are used for training, and 10000 for testing.

A. Feature Learning quality

In this section, the quality of proposed method’s
learning features is evaluated. Intuitively the learn
features should have more discriminative information
and also be robust against some input perturbations.
Corruption by noise and affine transformation are from
this type of changes and should be ignored in the feature
space. Generally visualizing the encoding weights of
hidden layer neurons as filter, gives insight information
about the quality of features. When learned features are
so global, the representation is so sensitive against
training set and filters are so similar to the input. In
contrast, too local features are so robust to the input
perturbations and filters do not factor input into parts.
The good representation should be neither too local nor
too global to capture underlying manifold of data with
enough class discrimination information.

In fig. 2, the visualization of encoding weights of
hidden layer is shown for AE, CAE (with high
contraction) and the proposed method which are trained
on the MNIST. As we can see, the learned features of
AE are so global and some filters are the blurred parts
of digits (fig. 2a). In CAE the features are too local and
all filters are so similar and input are less visible in the
filters (fig. 2b). This is due to high contractive degree
of CAE which leads to too invariance against input
variations. The filters of the proposed method show

Volume 11- Number 2 — Spring 2019

good balance of locality and globality (fig .2c) These
features are appropriate to capture underlying structure
of data and contain more information for classification
which will be examined in next section.

Another characteristic of good representation is
sparsity. As it was mentioned, the presence of certain
regularizers in the presented model encourages sparsity
of the representation. To evaluate the degree of sparsity
of the models, we introduce sparsity ratio measure as
follows:

ZI'V NHidden—a(f(xl))
=' _ Niidden
N

Sparsity Ratio = x 100 (9)

Where f(x%) is the hidden layer representation for
i" input sample, Nyiggen—a(f(x)) is the number of
active (non-zero) elements in f(x) and Ny;gqen 1S the
number of neurons in the hidden layer.

Fig. 3 demonstrates sparsity ratio of the proposed
model for a various number of hidden units. It can be
seen that in the proposed model, the degree of sparsity
of features is dynamic and depends on the number of
hidden units. This is quite different than many sparse
auto-encoders in which the ratio of sparsity is constant.

Tablel. Sparsity ratio of features of different models
on the CIFAR-bw and MNIST

Dataset Model Sparsity

Ratio
z Denoising Auto-encoder 49%
z  Contractive Auto-encoder 18%
4 Proposed Method (DRSAE) 10%
a Denoising Auto-encoder 48.5%
E Contractive Auto-encoder 18%
~  Proposed Method (DRSAE) 6%

For a better evaluation, the sparsity ratio of our
model is compared to CAE and DAE which similar to
our model, do not have explicit a sparsity penalty in the
objective function as well. In this regard, all models are
trained on the CIFAR-bw (1500 hidden units) and the
MNIST (1000 hidden units) and the sparsity ratio of
extracted features are reported in Tablel.

Based on the result, it is clear that the proposed
model generates sparser features and despite other
models, on the various datasets, the sparsity ratio is
different and adaptive with regard to the complexity of
data. However, the sparsity of features is useful when
the generated features have better performance in term
of classification which is considered in the third
experiment.

To evaluate robustness of generated features, we
compare the average discrepancy of representation
between the input image and the changed images by
noise and rotation and also the random image and the
results are reported in Table2.

International Journal of Information & Communication Technology Research
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(a) Basic Auto-encoder

(b) CAE with high contraction
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Fig. 2. Filters of Basic Auto-encoder, CAE with high contraction and DRSAE. These filters are visualized from

encoding weights of hidden layer, trained on MNIST.

As it is shown in Table2, the proposed model is
robust against some perturbation around each data and
also the huge difference between the representations of
inputs with the random image, confirms that the
generated features well capture the underlying structure
of the data distribution.

Table2. The average discrepancy of representation for
various perturbation on 100 test samples

Model 25% 50% 10° 20°  Random
corruption corruption Rotation Rotation Image

DAE 59.03 92.29 72.03 11735 234.60
CAE 30.1 78.12 34.03 57.52  143.03
AE 71.11 112.21 13641 17416  261.32
DRSAE 21.46 37.24 34.06 56.48  145.48

B. Classification performance

In this section, the classification performance of the
proposed model is compared to other popular auto-
encoders variants. Considering that all models are
unsupervised, to take advantage of them in
classification a pre-train/fine-tune approach are used
[39].

In pre-training step, all models are trained with one
hidden layer and then in fine-tuning step, a multilayer
perceptron network is built and trained in a supervised
manner by using parameters (weights and biases)
learned from the previous step as initial values and
adding a softmax layer on top of the last layer with
random weights. Final classification results on the
MNIST and the CIFAR-bw are reported in Table 3. As
it can be seen, the existence of special regularizers in
the objective function of the presented model leads to
the representation which makes better discrimination
among between-class data and has better classification
performance than other models.

Table3.  Average  Classification  performance
comparison (Error rate (%)) among different methods
on MNIST and CIFAR-bw datasets.

Model MNIST CIFAR-bw
AE 1.78 55.47
AE+wd 1.68 55.03
DAE-g 1.18 54.81
CAE 1.14 47.86
HSEA 1.05 46.36
LAE 1.07 46.74

DRSAE 1.03 46.21
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Fig. 3. Sparsity ratio of the representation with different
hidden units

In order to compare classifiers and to show whether
the performance differences between different
classifiers are statistically significant, we have to give
the comparison a statistical support [40]. To do so, we
use nonparametric  tests according to the
recommendations made in [41], where a set of proper
nonparametric tests for statistical comparisons of
classifiers is presented.

Due to the number of datasets and classifiers, the
Wilcoxon paired signed-ranks test [42] are performed
to find out whether there exist significant differences
between a pair of classifiers. This method is widely
used for comparing two classifiers on multiple datasets.

Considering 5-fold cross validation on two datasets,
10 different experiments are performed for each
classifier. Table 4. shows the results of the Wilcoxon
rank-sum test for multiple pairwise comparisons
between the purposed method and the other methods
with a significance value of @ = 0.05. As it is shown
the null hypothesis is rejected for all comparisons, i.e.
the difference between the classifiers does not follow a
symmetric distribution around zero.

Table4. WILCOXON Test for Classifier .

DRSAE Hypothesis (¢ = 0.05) p-value
AE Not Rejected 6.402E-9
AE+wd Not Rejected 3.840E-7
DAE-g Not Rejected 1.253E-6
CAE Not Rejected 2.344E-5
HSEA Not Rejected 4.648E-4
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LAE Not Rejected 1.338E-4

Also HSEA has the best performance among the
other methods, but DRSAE outperforms it, and there
are significant differences between the two algorithms
with a confidence level higher than 95%.

V. CONCLUSIONS

In this paper, a new supervised regularized auto-
encoder was presented for features generation. Presence
of some regularizers in the objective function
encourages auto-encoder to generate features which
have an appropriate degree of sparsity and are robust
against variations around each input. In addition by
increasing margin of within-class data, this model
enhances discrimination of data. Results show better
performance of the proposed model in term of
classification in comparison to other similar models.
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