[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

I J I CTR International Journal of Information & {r
Communication Technology Research ,TRC'

Volume 9-Number 3-Summer 2017(17-24)

Domain Ontology to Distinguish Different
Types of Rootkits

Ahmad Salahi
(Corresponding Author)
Information Security Department
Research Institute for ICT
Tehran, Iran
salahi@itrc.ac.ir

Javad Enayatizadeh

Information Security Department
Research Institute for ICT
Tehran, Iran
j_enayati@comp.iust.ac.ir

Received: January 11, 2017 - Accepted: May 19, 2017

Abstract— Rootkit is an auxiliary tool for sniffing, stealing and hiding, so it has become the key component in almost
all successful attacks. Analysis of rootkits will provide system administrators and security software managers the
ability to detect and prevent a computer being compromised. Ontology will provide detailed conceptualization to
represent the rootkit concepts and its relationships to other security concepts in cyber-attack domain. In this paper we
presented an ontology for rootkits which contains many concepts relating to security, cyber-attacks and operating
systems. We divided rootkits according to four attributes, and expanded the ontology for rootkits accordingly. This

ontology can be used to distinguish different types of rootkits

Keywords: Ontology, Rootkit, Malware, Security

. INTRODUCTION

Harm caused by malware is a serious problem in
information system domain. Although there are a lot
of security software to detect malware, but they can't
guarantee a perfect detection and removal of malware.
Malware authors make use of extremely sophisticated
hiding techniques to prevent malware being detected
According to [3], Malware is a malicious code that
has potential to harm any machine which executes it
or the network over which the machine
communicates. Malwares include virus, worm, botnet,
spyware, backdoor, Trojan horse, rootkit and exploits
[4]. Today malware is used to steal business, financial
and sensitive personal information for the benefit of
others. We focus on rootkit, because once a malicious
program is installed on a system, it is essential to

remain hidden to avoid detection and be hidden from
the user. The term rootkit, in the field of computer
security is used to define a set of programs which are
used by a cracker to conceal his/her activities on a
compromised computer and make it possible to return
undetected in future.

If we consider a rootkit as a “Trojan Horse” and
according to [1], it can be divided into four
categories, Direct masquerades (pretend to be normal
programs), Simple masquerades(do not masquerade
as existing programs, but masquerade as possible
programs), Slip masquerades (have names
approximating existing names), Environmental
masquerades(already-running programs that not
obvious for the user). The rootkit can be direct
masquerade and environmental masquerade because it
tries to hide its existence on an infected computer by

International Journal of Information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-32-en.html

-:E,L"CTR Volume 9-Number 3-Summer 2017

[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

modifying program binaries or legitimate code and
hooking call tables such as the Interrupt Descriptor
Table (IDT) and the System Service Descriptor Table
(SSDT) to hijacking the kernel's control flow [5]. We
should notice that a cracker must already have root
access before installing a rootkit because a rootkit just
makes it easier for a cracker to gain root level access
some other time.

The term ontology can be explained in many different
ways, for our research activities ontology defines
basic terms and relations compromising the
vocabulary of a topic area as well as the rules for
combining terms and relations to define extensions to
the vocabulary [2]. Therefore our ontology includes
concepts, concept taxonomies, relationships between
concepts, and properties that describe concepts.

As mentioned earlier, the malwares are important in
information security. There are different malwares
that cause different malwares by different concepts
and relationships between them.

The detection of malwares is one of the security
challenges. There are several methods for detection of
these malwares that use signatures and heuristics.

The malwares can be combined that makes detection
of malwares more complex.

Several knowledge representations are proposed for
malwares that are based on taxonomies that almost all
of them don’t support optimal attack detection for
complex malwares.

"Ontology is a formal, explicit specification of a
shared conceptualization that is characterized by high
semantic expressiveness required for increased
complexity."[27]

Ontology is a technology that can create objects,
concepts and relation between them. Ontology is used
for detection and prevention of different malwares it
provides a knowledge presentation for malwares that
produce a reasoning framework.

Protege [26] is an open source platform that provides
a growing user community with a suite of tools to
construct domain models and knowledge-based
applications with ontology.

In this paper we use Protégé to create ontology for
root kits that are used for detection we propose an
ontology base behavior analysis for rootkits. We
provide information about rootkits.

Il. RELATED WORKS

Malwares are serious problem for the security of
networks that led to widespread investigations of
malwares. The detection of malwares was done by
different antivirus software.

These anti-viruses use signatures based methods that
describe the probabilities of specific malicious
behaviors. These signatures are static and can be
obtained from using behavior of malwares with
experts of information technology. Unfortunately, with
a small change of malware it will be not be detectable
by the same signature. Thus, this static software
cannot be used for unknown malwares [14-15].

Today, there are a lot of zero day malwares that sniff,
steal and change the information. These malwares
cannot be detected by antiviruses.

In recent years, several works for the behavior
detection of zero days’ malwares have been done.
These works study the behavior of different malwares.

Rootkit is a kind of malware that uses stealth methods
to hide itself from being discovered by system
administrators. E. Lacombe and F. Raynal [15] define
rootkits as “a set of modifications that allow an
attacker to maintain along the time a fraudulent control
of the information system". First Rootkits were
introduced at the end of 80’s. Rootkits are very hard to
detect by wusual anti-viruses. Jianxiong Wang
introduces a rule-based approach for the rootkit
detection because a rootkit can change some data
structures of a system by hiding itself[16].Woei-Jiunn
Tsaur and Yuh-Chen surveyed the weaknesses of
current detectors, and also discussed possible remedies
and solution for detecting the proposed subtle
rootkits[17]. Shu Zhou and Chenglong Cao suggested
a rootkit detection mechanism based on the hidden
registry information, and designed a Windows rootkit
detection method based on cross-view [18]. Endong
Wang, Long Xin, Zhongyuan Wu, Weiging Dong
and Xiaoshe Dong proposed a method of Root kit
detection based on KVM (Kernel-based Virtual
Machine) by using virtualization technology [19]. Hai
Bi suggested a method of integrity detection and
restoration based on kernel file, which is proved to
ensure correct implementation of the kernel function
[20]. Watters, P. and Xinwen Wu proposed a new
rootkit classification system and tested their system on
a sample of rootkits that use inline function hooking
[21].

Yu-Jie Hao, Yan Zhang, Zhi-Peng Lu and Rui Zhang,
according to the analysis of hiding technology of
malicious programs proposed a new idea of detecting
malware based on the raw data [22].

The ontology is a new theory in network security that
can be used to detect relation between different
attacks. Andrew Simmons [6] has defined ontology
for network security attacks and reviewed threats,
vulnerabilities and failure modes. Kim, Luo and Kang
[7] introduced ontology that describes type of security
information including algorithms, protocols,
mechanisms, objectives and credentials. John D.
Howard [9] designed a common language that
includes terms and taxonomies for gathering,
exchanging and comparing different computer security
incidents. Denker, Nguyen, and Ton [8] express
security related information for all types of resources.
Hsiu-Sen Chiang, Woei-Jiunn Tsaur [10] proposed
ontology about mobile malware behavior for
organizations and end users to increase their
knowledge about mobile malware. Tala Tafazzoli and
Seyed Hadi Sadjadi [4] used fuzzy logic to present
relationship between concepts of malware.

Jun Han described WS security threats and stated that
they have to be analysed and classified systematically
in order to allow the development of better distributed
defensive mechanisms for WS using F/IDS [22].
Modern rootkits do not elevate access, but rather are

@/\/\nntemational Journal of information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-32-en.html

I[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

used to make another software payload undetectable
by adding stealth capabilities.

In the next section, we describe the proposed ontology
for rootkit.

I1l. KEY CONCEPTS OF PROPOSED ROOTKIT
ONTOLOGY

In this section, by using ontology, we classify
different rootkits and discuss different structures of
rootkits.

A. Rootkit types

In most information systems there are mechanisms to
protect data and functionality from malicious
behavior and fault. Operating systems provide
different level of access to resources. These levels are
called rings. The inner most ring is called Ring 0 and
this level is the most protected which interacts most
directly with the physical hardware such as the CPU
and memory. Linux and windows only use two rings,
kernel level and user level. According to this
categorization as shown in figure [1] there are
generally two main types of rootkits: user-mode and
kernel-mode. User-mode rootkits run within the
environment and security context of a user on the
system and kernel-mode rootkits operate within the
operating system at the same level as drivers for
hardware. There are some different types of rootkits
such as:

Hybrid rootkit: It combines the easiness
characteristics of the user-mode and stability
characteristics of the kernel-mode. This allows a
rootkit which has access to all procedures that have
access to the user-mode and all data structures in the
kernel-mode. FU is a hybrid rootkit which has
components operating in the kernel mode and the user
mode and utilizes Direct Kernel Object Manipulation
(DKOM) to hide processes, device drivers, and ports
and alter process properties. The FU rootkit can hide
processes, elevate process privileges, fake out the
Windows Event Viewer so that forensics is
impossible, and even hide device drivers. It does all
this by Direct Kernel Object Manipulation. (25)

Firmware rootkit: Uses platform firmware or devices
to create a persistent malware image in hardware,
such as the system bios, a network card or hard drive.
Therefore the rootkit can hide itself in firmware and
reinstall itself when the computer restarts. The most
interesting feature is that even if security software
identifies and removes it; it can install itself again,
when the computer is switched on. For example in
March 2009, researchers Alfredo Ortega and Anibal
Sacco published details of a BIOS-level Windows
rootkit that was able to survive disk replacement and
operating system re-installation. [24]

Virtual rootkit: The early works of Goldberg and
Popek have defined some of the hardware

Volume 9-Number 3-Summer 2017 IJICTR ILCIIN

requirements to be able to run a hypervisor, i.e. the
software that controls different physical systems and
virtual machines. The capability to host a hypervisor,
also known as virtual machine monitors (VMM). This
kind of rootkit is almost invisible and prevents being
detected by security software through hiding rootkit
software in virtual machine environments. There are
two rootkit architectures based on virtual machines,
namely full virtualization and partial virtualization.

A Thig kel
- I | fimware
"~ Persistent
Rootkt ——1{ virtual
i
N] \
/]
/ 4 | user
{ .4
J /’
i .
" Propagation
hytrid
+

"~ (oals

Fig. 1. Different types of rootkits.

B. Persistent rootkits

There are two types of rootkits: hard resident and
memory resident.

Hard resident: In order to remain in host after a
reboot, a rootkit must physically alter the data of the
hard drive to automatically start itself up. For
example by adding auto start entry to the registry, it
can be loaded into memory and executed
automatically.

Memory resident: It just exists in memory and is not
capable of automatically running again after the
system has been restarted. Therefore it makes rootkits
a lot harder to detect because they have no physical
trace of their existence on the hard drive.

International Journal of Information & Communication Technology Researct:\/\/\@

http://ijict.itrc.ac.ir/article-1-32-en.html

mL"CTR Volume 9-Number 3-Summer 2017

[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

hard
Fring |—>—{pometent |
/ 7 memory
/ ,

p
* Rootkit A

'\ 'l
N
N\

= Components

Fig. 2. Different types of persistent rootkits

C. Propagation

Kernel-level access is usually installed by a dropper
component that may come to the system from
different sources. Rootkits usually employ attacks
against platforms and applications such as Microsoft
Windows, Linux and Mac OS. We should notice that
rootkits can't propagate by themselves. Indeed,
rootkits are just one component of a blended threat
that consists of a dropper, loader and rootkit. The
dropper is the code that gets the rootkit's installation
to start and the loader loads the rootkit into memory.
In the following sections, we discuss how rootkits can
reach to a victim system. Fig [3] shows the relation
between propagation and other objects in this
ontology.

Social engineering: The oldest and most effective
method for propagation of rootkits across a network is
trust relationship. Social engineering is a term that
describes a non-technical kind of intrusion that relies
on human interaction to trick people to break
computer security procedures. Crackers use this
technique thorough email attachments, website, peer-
to-peer network and phishing to install a rootkit on
victim systems.

File Execution: This is the most straightforward
method for rootkit infection. Today, crackers
compromised systems through social engineering
techniques to make users click an infected file that
maybe renames or embedded within another file, such
as Microsoft Office Documents, PDFs, Zips and other
popular file types.

DLL Injection: DLL injection refers to a method for
attackers to manipulate programs and processes to
execute another program. DLL injection provides a
manner for attributing the malicious .dll to running
processes. Processes are tasks that are being handled
by the operating system. DLLs are Dynamic Link
Libraries, i.e. they are shared code that may be
executed by a running process. There are two kinds
of injection: static and dynamic injection. Static
injection occurs prior to program execution. Dynamic
injection occurs when processes are loaded into
memory. It provides a way to piggy back the
malicious code onto a process. This gives attacker

two advantages: secrecy and trust. By DLL injection,
trusted applications can be exploited. Rootkits use
DLL injection to inject code into a process that has
some privileges.

D. Goals

A rootkit is designed to enable continued privileged
access to computer and hide its process and programs
from normal methods of detection. Therefore we
divided these goals into two categories: Data theft and
Concealment. Fig [4] shows all aspects of goals.

socialEngineeri
ng
& Thing [— i Propagation }—-’?— dilinjection
* Rooki ’ fileExecution

Fig. 3. Different types of rootkit propagation

Data theft: A rootkit is used to steal information from
a host such as identity, financial information and click
fraud. Keylogger is immensely used in order to steal
information and broadcast recorded data from the host.
Software keyloggers capture keystrokes by running
procedures and can be further categorized into three
types: kernel based, hook based, and user space
method.

1-Kernel based: This type of keylogger is at the
kernel level and receives data directly from the input
device (typically, a keyboard). Codes are written in
the kernel to directly intercept key events from
hardware. It can be programmed to be virtually
undetectable by taking advantage of the fact that it is
executed on boot, before any user-level applications
start. Since the program runs at the kernel level, one
disadvantage to this approach is that it fails to capture
auto complete passwords, as this information is
passed to the application layer

2-Hook based: The program has access to kernel calls
and captures keystrokes by subscribing to keyboard
events detected by OS. This type of logging is
accomplished by using the Windows function
SetWindowsHookEx() that monitors all keystrokes.
The spyware will typically come packaged as an
executable file that initiates the hook function, plus a
DLL file to handle the logging functions. An
application that calls SetWindowsHookEXx() is
capable of capturing even autocomplete passwords. It
is impossible for Anti-Virus software to remove
kernel-based and hook-based keyloggers because they
reside in/close to kernel and enjoy direct access to
keyboard resources.

@/\N‘Intemaﬁonal Journal of Information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-32-en.html

[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

3-User space: This logs key by calling system API
that allows checking key state. GetAsyncKeyState is
an example of such API In MSDN,
GetAsyncKeyState function determines whether a key
is up or down at the time the function is called, and
whether the key was pressed after a previous call to
GetAsyncKeyState.

Concealment: Concealment is the most important
part of a rootkit such as concealment of process
injection, device driver's entries, registry key, file,
communication link and process. Rootkit uses
hooking or modify some system binary files to
conceal its activity.

There are two types of hooks, (1) APl hooking and
(2) System tables hooking.

(1) API hooking: the term hooking covers a range of
techniques used to alter or augment the behavior of an
operating system, of applications, or of other software
components by intercepting function calls or
messages or events passed between software
components. Programs in user-mode communicate
with kernel through an application programming
interface (API). Most rootkits modify the address of
APIs in the important address table (IAT) of user
process in order to make sure the operating system
returns only filtered results. For example, it may hook
the APIs that are used by Windows Explorer to
display files and folders or the APIs that Task
Manager uses to shows its list of active processes.

(2) System Tables hooking: Kernel mode rootkits
involve system hooking or modification in kernel
space. Kernel space is generally off-limits to standard
authorized (or unauthorized) users. One must have
the appropriate rights in order to view or modify
kernel memory. The kernel is an ideal place for
system hooking because it is at the lowest level and
thus, is the most reliable and robust method of system
hooking. The system call path through the kernel
passes through a variety of hook points.

As a system call’s execution path leaves user mode
and enters kernel mode, it must pass through a gate.
The purpose of the gate is to ensure user mode code
does not have access to kernel mode space, protecting
the kernel space. This gate must be able to recognize
the purpose of the incoming system call and initiate
the execution of code inside the kernel space and then
return results back to the incoming user mode system
call. The gate is effectively a proxy between user
mode and kernel mode.

A popular hook point is to modify the System
Service Descriptor Table (SSDT) which is a function
pointer table in kernel memory that holds all the
addresses of the system call functions in kernel
memory. A system call is a function supplied straight
by the kernel and usable by all user-mode processes.
For example by modifying this table, the rootkit can
redirect execution to its code instead of the original
system call.

Volume 9-Number 3-Summer 2017 |J|CTRﬂ-

Some rootkits may modify system binary files to
change their functionality. For example, rootkit
changes ps utility (short for "process status") which
displays the current process running on a system to
hide the attacker's activity from the system

administrator.
-
'

LDT

=)

w
3
S
E
g
| -
E
Eﬁ
018 (4] |3 e
m%?éz
EE%E;@:S:
|
J
:
i |z
-
§l | =
Q| |ao
[
n
m
8

Fig. 4. Rootkit's goals

IV. FAMOUSE ROOTKITS

In this section, we discuss some new famous rootkits
introduced in recent years and describe them
according to proposed ontology.

Stuxnet: is a computer worm discovered in June 2010,
this worm can steal code and design projects and also
hide itself using a classic Windows rootkit. Stuxnet
has the ability to take advantage of the programming
software and also upload its own code to the PLC

(Programmable logic controller) in an industrial :

International Journal of Information & Communication Technology Research

http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Message_passing
http://en.wikipedia.org/wiki/Event_%28computing%29
http://en.wikipedia.org/wiki/Module
http://en.wikipedia.org/wiki/Module
http://ijict.itrc.ac.ir/article-1-32-en.html

ﬁlJlCTR Volume 9-Number 3-Summer 2017

[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

control system that is typically monitored by SCADA
systems (Supervisory control and data acquisition). In
addition, Stuxnet then hides these code blocks, so
when a programmer using an infected machine tries to
view all of the code blocks on a PLC, they will not
see the code injected by Stuxnet. Stuxnet hooks the
programming software, which means that when
someone uses the software to view code blocks on the
PLC, the injected blocks are nowhere to be found.
Duqu: is a computer worm discovered on 1,
September, 2011. It is built on relatively old
technology but infections can lead to confidential
information theft, loss of intellectual property and
other risks associated with the presence of a
keylogger. Duqu rootkit protects a keylogger
component that gathers information from the infected
computers.

Flame: is a modular computer malware discovered in
2012. Flame can spread to other systems over a local
network (LAN) or via USB stick. It can record audio,
screenshots, keyboard activity and network traffic.
The malware determines what antivirus software is
installed, then customizes its own behavior to reduce
the probability of detection by that software [11].
Additional indicators of compromise include mutex
(mutex is a synchronization mechanism for enforcing
limits on access to a resource in an environment
where there are many threads of execution) and
registry activity, such as installation of a fake audio
driver which the malware uses to maintain persistence
on the compromised system [12].

V. EVALUTION OF THE ONTOLOGY

In this paper, we use OntoQA [28], an approach that
analyzes ontology schemas and their populations and
describes them through a well-defined set of metrics.
OntoQA, is a tool that evaluates ontologies related to
a certain set of terms and then ranks them according a
set of metrics that captures different aspects of
ontologies. Since there are no global criteria defining
how a good ontology should be, OntoQA allows users
to tune the ranking towards certain features of
ontologies to suit the need of their applications. We
use OntoQA to evaluate the quality of proposed
ontology on the different dimensions mentioned in
OntoQA.

The OntoQA framework is one of the metric based
approaches as well. OntoQA defines the quality of a
populated ontology as a set of five schema quality
features and nine knowledgebase (or instance-base)
quality features.

The quality of ontology classified to two groups:
schema and knowledgebase. The first category
evaluates ontology design and knowledge
presentation and the second category evaluates
instance data within the ontology and the effective
utilization of the knowledge modeled in the schema
[5]. In this section, we describe the different metrics
that can be used in two groups.

A. Schema Metrics
Schema Metrics describe the design of the proposed

proposed ontology. It can be used to measure the
richness, width, depth, and inheritance of an ontology
schema design.

There are three important metrics in schema metrics.

A.1 Relationship Richness

The relationship richness shows variant kinds of
relations in the ontology. The ontology with more
types of sets of relationship has more information in
comparison to inheritance relationships.

The relationship richness is shown as the percentage
of the non-inheritance relationships (P) between
classes compared to all of the possible connections
that can include inheritance and non-inheritance

relationships (H).
P

RR =
[Pl+[H]

A.2 Inheritance Richness
The inheritance richness of the schema (IR)is defined
as the average number of subclasses per class.

H|

IR =
€]

A.3 Attribute Richness
The number of attributes that are defined for each
class can indicate both the quality of ontology design
and the amount of information pertaining to instance
data. The attribute richness (AR) is defined as the
average number of attributes (slots) per class. It is
computed as the number of attributes for all classes
(att) divided by the number of classes (C).

latt
cl

B. Knowledgebase Metrics

The way data is placed within ontology is also a
very important measure of ontology quality because it
can indicate the effectiveness of the ontology design
and the amount of real-world knowledge represented
by the ontology. Instance metrics include metrics that
describe the KB (Knowledgebase) as a whole, and
metrics that describe the way each schema class is
being utilized in the KB.
The results of metrics calculation for ontology of
rootkit shown in Fig.5 are given in Table 1.

AR =

Table 1. Different metrics and their values for rootkit

ontology
Metric Value
Relationship Richness (RR)
0.33
Inheritance Richness (IR)
0.9
Attribute Richness (AR)
0.5
Axioms (Triples) 20
Concepts 12
Object Properties 6
Data Properties 2

: ontology. These metrics are not used to correct the

International Journal of Information & Communication Technology Research

http://en.wikipedia.org/wiki/Malware
http://en.wikipedia.org/wiki/Local_network
http://en.wikipedia.org/wiki/Local_network
http://en.wikipedia.org/wiki/USB_stick
http://en.wikipedia.org/wiki/Screenshot
http://en.wikipedia.org/wiki/Keystroke_logging
http://en.wikipedia.org/wiki/Packet_capture
http://en.wikipedia.org/wiki/Antivirus_software
http://en.wikipedia.org/wiki/Mutex
http://en.wikipedia.org/wiki/Windows_Registry
http://ijict.itrc.ac.ir/article-1-32-en.html

[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

VI. CONCLUSION

Rootkits are dangerous malwares that can steal,
modify and sniff the information of a system without
knowledge of administrator.

In this paper, we have presented ontology for rootkit
which shows the relationship between diverse
concepts, with the conceptualization drawn in figure
5. The next step, after getting feedback and refining
this proposal, we are going to customize our rootkit
ontology which can detect user-mode and kernel-
mode rootkits.

'_
’_
al |2l |=| |§] | 5
O [< | 1] a
R S P
al
a
Q
i
=
Q
w 2=
> Q
0 <
|
A"
=
- £
B k-] 0 2
sl (8] (& |2 2
m o
o o2 a 5 c 5 g
0 o o 3 = 7 | =
5 = £ =} Z k=]
Bl (5] (3] |EDNE[BN |2
3 x o W T 2 s
=\ |/ -
\==) =
B) c @
o a S £
st B 18] [|3] |2
s~ el |8 |g] [g| |[% 2
8 IR EN & (3] |B :
=) o
o la] = E = & e g
= 3 W R Q
’\ i
{ A
-
2 B
et
- c
- 1=}
Bl 7= =
D | o o L
T = @ 3 z - af T
£ 3 L, & - s E T
& £ 5 i o 2 o
O = 17} 2 = £
& = o 3 o = = 0]
< \ o
[0}
e ¢ o
<] I
Q
14

Thing

Fig. 5. Ontology of rootkit

[1]

[2]
(3]

(4]

(5]
(6]

—
)

]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Volume 9-Number 3-Summer 2017 1JIC TR IZZ I

REFERENCES

H. Thimbleby, S. Anderson, P. Cairns, “A Framework for
Modeling Trojans and Computer Virus Infections,” The
Computer Journal, vol. 41, no.7 pp. 444-458, 1998.

A. G” omez-P” erez, M. Fern” andez-L" opez, and O. Corcho,
ntological Engineering, 1st ed. London: Springer, 2004.

Gruber, T., Towards Principles for the Design of Ontologies
used for Knowledge Sharing. International Journal of Human
-Computer Studies, 1995. 43(5/6): p.907 -928.

Tala Tafazzoli and Seyed Hadi Sadjadi. Malware fuzzy
ontology for semantic web. IJCSNS International Journal of
Computer Science and Network Security, VOL.8 No.7, July
2008.

Manuel Corregedor and Sebastiaan VVon Solms, Implementing
Rootkits to Address Operating System Vulnerabilities

Andrew Simmonds, Peter Sandilands, and Louis van Ekert,
An ontology for network security attacks, RAID 2003, LCNS
2820, Springer-Verlag,2003.

Kim, A, Luo, J & Kang, M 2005 ‘Security Ontology for
Annotating Resources’, paper presented to the 4th
International Conference on Ontologies, Databases, and
Applications of Semantics, ODBASE 2005.

Denker, G, Nguyen, S & Ton, A 2004 ‘OWL-S Semantics of
Security Web Services: a Case Study’, paper presented to SRI
International, Menlo Park, California, USA.

John D. Howard, Thomas A. Longstaff, A common language
for computer security incidents, Sandia National Laboratories,
Sandia Report, 1998.

Hsiu-Sen Chiang, Woei-Jiunn Tsaur, Ontology-based Mobile
Malware Behavioral Analysis

A Complex Malware for Targeted Attacks". Budapest
University of Technology and Economics. 28 May 2012.
Archived from the original on 30 May 2012. Retrieved 29
May 2012.

Flamer/sKyWIper Malware: Analysis. FireEye. Archived
from the original on 31 May 2012. Retrieved 31 May 2012.

[12] M. Christodorescu, S. Jha, S.A. Seshia, D. Song, and
R.E. Bryant,“Semantics-aware malware detection,” in Proc.
the IEEE Symposium on Security and Privacy, Oakland,
California, pp. 32-46, May 2005.

[13] J. A. Morales, P. J. Clarke, Y. Deng, and B. M. Golam
Kibria,“Testing and evaluating virus detectors for handheld
devices”,Journal in Computer Virology, vol. 2, no. 2, pp. 135-
147, 2006.

E. Lacombe, F. Raynal, V. Nicomette, Rootkit modeling and

experiments under Linux, Journal in Computer Virology, vol.
4,no. 2, 2008, pp:137-157.

Jianxiong Wang,” A Rule-based Approach for Rootkit
Detection”,The 2nd IEEE International Conference on
Information Management and Engineering (ICIME), Pp. 405
—408,2010.

Detectors' Vulnerabilities Using a New Woei-Jiunn Tsaur and
Yuh-Chen,” Exploring Rootkit Windows Hidden Driver
Based Rootkit”, IEEE Second International Conference on
Social Computing (SocialCom), pp.842-848,2010.

Shu Zhou and Chenglong,” A Windows Rootkit Detection
Method Based on Cross-View”, International Conference on
E-Product E-Service and E-Entertainment (ICEEE),pp.1-
3,2010.

Endong Wang, Long Xin, Zhongyuan Wu, Weiging Dong
and Xiaoshe Dong,” KVM-based Detection of Rootkit

Attacks “,International Conference on Intelligent Networking
and Collaborative Systems (INCoS), PP. 703 — 708,2011.

Hai Bi, “Anti-rootkit Technology of Kernel Integrity
Detection and Restoration”, International Conference on
Network Computing and Information Security (NCIS), Pp.
276 —278,2011.

Watters, P. ; Xinwen Wu ,” RBACS: Rootkit Behavioral
Analysis and Classification System”, Third International
Conference on Knowledge Discovery and Data Mining,pp.78-
80,2010

International Journal of Information & Communication Technology Research

http://www.crysys.hu/skywiper/skywiper.pdf
http://en.wikipedia.org/wiki/Budapest_University_of_Technology_and_Economics
http://en.wikipedia.org/wiki/Budapest_University_of_Technology_and_Economics
http://www.webcitation.org/682bQ4f6J
http://blog.fireeye.com/research/2012/05/flamerskywiper-analysis.html
http://en.wikipedia.org/wiki/FireEye,_Inc.
http://www.webcitation.org/6846KWz2y
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Watters,%20P..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Xinwen%20Wu.QT.&newsearch=partialPref
http://ijict.itrc.ac.ir/article-1-32-en.html

IFZWIJICTR Volume 9-Number 3-Summer 2017

[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

[22] Yu-Jie Hao, Yan Zhang, Zhi-Peng Lu and Rui Zhang ,”A
New Malware Detection Method based on Raw Information”,
International Conference on Computing and Intelligence
Analysis, pp- 307 - 310,2008.

[23] Jun Han ,’Security Attack Ontology for Web Services”,
Second International Conference on Semantics, Knowledge
and Grid,pp.42-50,2008. Sacco, Anibal; Ortéga, Alfredo
(2009-06-01). "Persistent BIOS Infection: The Early Bird
Catches the Worm®. Phrack. 66 (7). Retrieved 2010-11-13.

[24] Sacco, Anibal; Ortéga, Alfredo (2009-06-01). "Persistent
BIOS Infection: The Early Bird Catches the Worm". Phrack.
66 (7). Retrieved 2010-11-13.

[25] http://studylib.net/doc/9005710/lab-5-rootkits--backdoors--
and-trojans

[26] Protégé https://protege.stanford.edu/

[27] Feilmayr, Christina; WoRB, Wolfram (2016). "An analysis of
ontologies and their success factors for application to
business”. Data & Knowledge Engineering: 1-23. Retrieved
23 May 2017

[28] Ontology Evaluation and Ranking using OntoQA - IEEE
Xplore ..., ieeexplore.ieee.org/document/4338348/

Ahmad Salahi received his B.Sc.
degree from Tehran university in
1970,M.Sc. from Kansas University,
Lawrence Kansas in 1974, and his
Ph.D. from Purdue uiversity, West
/ Lafayette,Indiana,U.S.A. in 1979 all
4 in electrical engineering. He is
= currently an associate professor in
Iranian Research Institute for ICT (ex. ITRC). His research
interests are network security, switching and routing.

Javad Enayatizadeh received his
M.Sc. degree in Information
Technology from Iran university of
science & technology in 2010. His
main interest is software
programming with focuses on
network.

International Journal of Information & Communication Technology Research

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jun%20Han.QT.&newsearch=partialPref
https://protege.stanford.edu/
http://ijict.itrc.ac.ir/article-1-32-en.html
http://www.tcpdf.org

