[Downloaded from ijict.itrc.ac.ir on 2025-11-18]

IJICTR

International Journal of Information &
Communication Technology Research

(.

Volume 9 - Number 2 - Spring 2017(11-17)

An Attack-Defense Model for the Binder on the
Android Kernel Level

Majid Salehi
Sharif University of Technology
Tehran, Iran
masalehi@ce.sharif.edu

Mohammad Hesam
Tadayon
Iran Telecommunication
Research Center (ITRC)
Tehran, Iran

Farid Daryabar
Iran Telecommunication
Research Center (ITRC)

Tehran, Iran
f.daryabar@itrc.ac.ir

tadayon@itrc.ac.ir

Received: December 9, 2016 - Accepted: March 2, 2017

Abstract—In this paper, we consider to seek vulnerabilities and we conduct possible attacks on the crucial and essential
parts of Android OSs architecture including the framework and the Android kernel layers. As a regard, we explain the
Binder component of Android OS from security point of view. Then, we demonstrate how to penetrate into the Binder
and control data exchange mechanism in Android OS by proposing a kernel level attack model based on the hooking
method. In addition, we provide a method to detect these kinds of attacks on Android frameworks and the kernel layer.
As a result, by implementing the attack model, it is illustrated that the Android processes are detectable and the data
can be extracted from any process and system calls. On the other hand, by using our detection proposed method the
possibility of using this attack approach in the installed applications on the Android smartphones will be sharply

decreased.

Keywords- smartphone security; android security; android penetration testing; binder component; kernel level attack

l. INTRODUCTION

Nowadays, the technology regarding smartphone
devices has shown revolutionary development over the
past few years. from year 2009 to 2014, there had been
a sharp increase in the rate of smartphone usability in
different kind of areas and applications, approximately
88% per year [1], [2]. There are vast varieties of factors
that have a great influence on our daily life, but just like
the two sides of a coin they offer both benefits and
drawbacks, and smartphones are of no exception.
Considering the fact that PCs have been around for a
long time compared with smartphones, the reported
existing malware for smartphones have been essentially

and practically simpler than created PCs’ malware so
far [3].

The usability of PCs is increasingly shifting toward
smartphones. Thus, smartphones grew to become
subjects to the same or even greater vulnerabilities as
PCs. Android malware can violate users’ privacy and
they can access users’ confidential information using
different malicious methods [4]. The majority of the
written malicious codes for Android OS thus far has
targeted the upper layers of Android OSs; however, the
lower layers including the framework layer and the
kernel layer have not been targeted and penetrated up to
this point [3].

International Journal of Information & Communication Technology Research

ITRC

http://ijict.itrc.ac.ir/article-1-37-en.html

I FHIJICTR Volume 9 - Number 2 - Spring 2017

[Downloaded from ijict.itrc.ac.ir on 2025-11-18]

@\

ntermational Journal of Information & Communication Technology Research

Moreover, the issue common among all the Android
malware is that all of which are designed with a general
knowledge in wupper layers of Android OSs’
architecture. As a result, this issue leads us to consider
on a research in detecting vulnerabilities and
conducting possible attacks in the crucial and essential
part of Android OSs architecture including the
framework and the kernel layers in depth.

In this paper, we consider the structure and
architecture of one of the most critical and fundamental
components in Android OSs that have been studied in
[23]. Moreover this significant area has lack of
literature by the researchers and practitioners. This
component is named Binder which is a vital component
and it plays the role of a bridge between upper layers
and the lower layers of Android OSs [5]. With
implementing an attack on Binder in order to take
possession of it, we will have a grant and an executed
control of all the data exchanged between applications
and services. Actually, the nature of characteristic and
features of Binder provide us accessibility to all
communicated information and sensitive data on
Android. Therefore, taking control of the Binder
approaches to take control of the whole Android OS.

As mentioned, Android services and applications
need to communicate and share data to facilitate inter-
process communication through the Binder component.
Binder is implemented in layers of application and
kernel [3], [5]. The reference of [3], is the only research
that considered the security of this critical component
in the application layer; however, there is no
consideration on the kernel layer. Moreover, the rest of
the existing literatures considered on the architecture of
Binder and there is no contribution on the security point
of view in this vital component especially the Binder in
the kernel layer. Therefore, we consider the analysis
and investigation of the Binder architecture in the
kernel layer for the first time. We provide an attack
model based on Hooking method which can be utilized
to capture and extract all the messages exchanged
through the Binder driver.

Additionally, to detect and prevent this hooking
method at the user and kernel levels, we proposed a
detection method which makes these kind of attacks
almost impossible.

This paper consists of an introduction and follows
the sections which describe the fundamental concepts
in Section 2, the related works in Section 3, the
proposed attack model in Section 4, the implementation
in Section 5, and the evaluation of the proposed model
in Section 6. In the end, we conclude the paper and
follow up with future research opportunities in Section
7.

I1. FUNDAMENTAL CONCEPTS

In this section the fundamental concepts of Android
architecture and data exchange mechanism are
provided.

A. Android architecture

As illustrated in Fig. 1, Android OS is a layered OS
and its components are divided into three layers. The
lowest layer is the kernel layer which provides Linux
kernel to the upper layers. The duty of this layer is
management of the network services, drivers, file
systems, memory, and process. Therefore, Android OS
is designed base on the Linux kernel.

The second layer is named Middleware which is
divided into three parts. The first part is C and C++
native libraries that are included libc, SQLite,
FreeType, SGL, SSL, WebK:it, surface management,
media framework and etc. The second part is the
application framework that provides APIs with
different functionalities and services such as setting an
alarm or reminder, accessing the location information,
phone calls, and etc. The application framework is
divided into two important parts. The first part is
activity manager that controls and monitors the
requested access permissions to different services. The
second part is package manager that is responsible for
installing and managing permissions. The third part of
Middleware is named Android runtime that is included
kernel libraries and Dalvik Virtual Machine (DVM).
DVM ensures that applications run in systems with
relatively smaller RAM, slower processors and without
swap space. The third layer is the application layer. It is
written in java and it provides a connection between end
users and applications. The provided applications in
this layer run in its own DVM and they can read native
codes from native libraries using JNI [3], [5].

R Middleware layer

Package Manager Activity Manager

App Installer Ref Monitor

Native libs naroid Runtime
(C/cH+) Dalvik VM Core libs

Process
Manager

Figure 1. Android’s architecture, the classic diagram.

B. Data Exchange Mechanism

In the android architecture, all the applications can
be run only in their specific process area meaning that
they can only access to their files and data. The reason
of providing this security architecture is to protect the
applications and their sensitive data from the existing
malware. However, the applications and services need
to communicate with each other. Therefore, there is a
data exchange mechanism for that reason. Regarding

http://ijict.itrc.ac.ir/article-1-37-en.html

I[Downloaded from ijict.itrc.ac.ir on 2025-11-18]

this mechanism, Intents are playing the role of
communicators between activities, services and
applications. Each Intent is a message that contains all
the information and data that need to be conveyed,
including the receiver information and the data. A
Binder driver is implemented at kernel layer. Hence, all
the transferred data between processes and applications
pass through this driver. In addition, all the intents and
the exchanged messages in the processes and processes
components pass through the Binder.

The Binder component is implemented at two
layers. The first layer, that is named “The Binder
Framework”, is a user-level library called libbinder.
This is loaded into most processes on Android OSs. The
task of this library is wrapping the requests and send
them via system calls. On the other hand, un-wrapping
objects and creating the respond objects in service
processes are done through this library. Those objects
that are created by Binder are called Parcel [5].The
second layer is named, The Binder driver that controls
all the process communications in kernel level. In fact,
the Binder library at the user level by calling system
functions sends the required messages and requests to
this driver, then the Binder driver drives them to the
specific service or process.

11. RELATED WORKS

An analysis of different malware techniques and
their countermeasures was conducted in [6]. The
authors proposed a novel method for malware
development and attack techniques in the area of
mobile botnets, usage pattern based attacks and
repackaging attacks. It takes the read contacts
permissions, send SMS permissions and their malware
sends an auto response to miscalls.

The reference of [6], [7] mentioned one of the new
malware that take advantage of users and deceit them
using a technique called repackaging. This technique is
highly effective because users have difficulties to find
out the difference between a legitimate application and
the malware. In this technique, the malware tries to
reverse engineer popular and legitimate applications,
modifies them to inject malicious code after that
republish them to the market. As a result, because of the
popularity of the applications, users download them
without having a knowledge that the applications are
taking advantages of their information and
smartphones. Among the researches that has been
conducted on detection techniques of these kind of
malware, the research of [8] can be mentioned. The
authors, presented DNADroid Android malware
detection tool. The proposed tool used a technique
based on program dependence graphs (PDGS) to obtain
the similarities between the malicious and legitimated
applications and detect the repackaging technique.

In reference of [9] a tool named Applink was
extended to detect the repackaging technique using
watermarking technique. Additionally, the authors of
[10] extended DroidMOSS tool by using hashing
algorithms to extract the similarities between the
repackaged malware and eliminated applications. In the

Volume 9 - Number 2 - Spring 2017 IJICTR[E-

research of [11], a fingerprint method in the layer of
applications’ code was used to detect and analyze the
repackaging techniques. Moreover, JuxtApp is a tool
that extracts static features of codes, then by showing
the bit vectors, it compares the application to detect the
malicious activity [12].

By using and taking advantage of Firmware, some
other methods of Android malware expand and infect
smart systems these days. In this technique, there are
some applications that are pre-installed by the
Firmware creator. The users cannot uninstall these
application unless they have root access to their android
device. The pre-installed applications have privileged
access comparing to other application in the
smartphones.

In [13], Droidray tool is used to evaluate the
Firmware using static and dynamic methods, and then
they store the result in their own database and illustrate
them in an organized form. The reference of [14]
analyzed ten kind of Firmware and they investigate the
installed applications’ permissions. Additionally, they
investigated the vulnerabilities that can be lead to
information leakage or illegal access to the system
resources by the Firmware. As a result, 85.87% of the
pre-installed applications on the Firmware requested
more that required permission of the systems. Also
64.71% to 85% of the vulnerabilities in the firmware
are because the personalization that companies impose
on them.

On the other hand, Android operating system access
control model was considered by many researches. One
these researches is [15] that Android’s internal
components and their relationships were analyzed.
Based on the research of [16], most of the Android
applications request more that required permission
from users during the installation. Therefore, this is a
critical topic that is analyzed and considered by the
researches of [17]-[19]. The Coarse Grained
permissions in android is another weaknesses of
Android system. Based on this weakness the provided
permissions to applications allow them to access
multiple APIs that are unnecessarily [16]. However, the
reference of [20] proposed a tool for Fine Grained APIs.

Regarding the Android system access control
model, users are not able to give permissions to the
applications in different circumstances. Based on this
issue, the researches of [21], [22] focused on method
that provides users the ability of giving permissions
from context.

The remarkable common issue to all previous
researches on Android malware indicates the exiting
malware still have long way to go and they are created
to be executed on the upper layers of the Android OSs;
hence, they are easily detectable. Last but not least, the
only research that considered on introducing methods
to design Android malware in the Android kernel level
based on the exchanging data mechanism is the
reference of [3]. In this research, the authors used a code
injection method in the layer of framework to track the
communication data in Binder. Nevertheless, this

International Journal of Information & Communication Technology Researchlv\/\@

http://ijict.itrc.ac.ir/article-1-37-en.html

KT WIJICTR Volume 9 - Number 2 - Spring 2017

[Downloaded from ijict.itrc.ac.ir on 2025-11-18]

method is detectable by the simple detection
techniques.

V. THE ATTACK MODEL

As explained in previous sections, large amounts of
information and data exchanged between processes
pass through the Binder component. Therefore,
controlling this component means controlling the
Android OS and the users’ smartphones. Based on the
existing literature, one of the most vital issues that many
Android programmers as well as many security
researchers have not considered is that all internal
messages and intents of each process, that are
exchanged between internal components of a program,
pass through the Binder components.

For instance, an android programmer utilizes
HTTPS protocol to provide a secure media and
communicate with a web-base server, so all the related
data transfer through this media. However, before
transferring the data, the data are being passed to the
network management service through the Binder
components unencrypted and in plain text. Then data
will be encrypted in the service. Hence, there is a
possibility to access those sensitive and unencrypted
data through the Binder component.

Based on the explanation, a Hooking method can be
used in order to capture all the messages exchanged
through the Binder. The followings explain the methods
and its different types in detail.

Hooking is a notion of obtaining control of
application execution flow without any change and
recompile the source code. This is achieved by stopping
the function calls and redirecting them to tailor made
codes. By injecting the custom code, any operation can
be performed. After that, the main function capabilities
can be executed and the result can be returned simply
or it can be changed to be returned to the code that
recalled the Hooked function. The hooking methods are
conducted in two levels as follow:

1) Hooking at the user level: in this method, a code
is injected to the related library. Using this code, a small
number of the commands in target system function (the
function that we want to be tracked) is replaced by an
unconditional jump to the diversion that is created by
the attacker. Those Target function commands are
stored in a temporary function, which are included
commands that have been removed from the target
function and it created an unconditional jump to the rest
of the target functions. This type of Hooking is the
simplest and most widely used approach to intercept the
functions.

It is noteworthy that anti-malware programs with a
simple hashing functions can detect and prevent the
injection codes to services and sensitive processes of
Android OS. According to the code injection that is
done via a particular system functions, anti-malware
programs can track these functions and prevent the code
injection.

2) Hooking at the kernel level: typically, to organize

uses an interface table named "system call table". This
table contains the addresses of most system functions in
the Android OS. When a system function is called
within an application by using this table, first
application control is returned to the Android OS. Right
after that, the OS refers to the system call table and
depending on the type of the requested system function
and the arguments, the address of the required system
function is find and it is called.

Consequently, in order to intercept the system
functions, we need to replace the existing addresses in
the system call table with our own function addresses,
and after utilizing our own function we jump to the
original function address.

Considering that this method is done in kernel level,
anti-malware applications are not able to detect them
easily, and the prevention is much more difficult than
the previous method.

Due to the fact that the Binder library uses a system
function called ioctl to connect with the Binder driver
and transfers data, with intercepting ioctl system
function it is possible to get access and extract all the
exchanged data and information using the Hooking
method in Kernel layer.

V. COUNTERMEASURE

According to the previous explanation in the attack
model section, it is evident that the main and
fundamental methods used in these type of malware is
the hooking method. Therefore, in our prevention
proposed method, possibility of using this attack
approach in the installed applications on the Android
smartphones goes away. A detailed explanation of the
hooking attack restriction and prevention methods is
provided in the following subsections.

A. Hooking prevention at the user level

In order to prevent and deal with this hooking
method, a hashing method is utilized to investigate code
injections to the critical android OS’s services and
processes. Considering the fact that this method of
hooking attempts to change some part of the application
codes, it changes the hashing value of the application or
the service as well. Thus, it is obvious to prevent and
detect the attack with storing the existing services and
applications’ hash values on the users’ system.

B. Hooking prevention at the kernel level

Fig. 2 illustrates the proposed solution architecture
to prevent and deal with the hooking attack on kernel
level. As explained the hooking attack method at the
kernel level in section 5, the attack is successfully done
when the attacker is able to intercept and change the
existing addresses in the system call table. Hence, to
avoid and deal with these kind of attacks, it is necessary
to prevent changing the addresses in the system call
table. For this purpose, with developing a kernel
module which is periodically check the integrity of the
addresses in the system call table, occurring the
hooking techniques by malware can be prevented.
Details of how the table is going to be checked is set out
in the prevention implementation section.

: and instant access to the system functions, Android OS

International Journal of Information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-37-en.html

Downloaded from ijict.itrc.ac.ir on 2025-11-18]

Volume 9 - Number 2 - Spring 2017 WICTRIEEEE

Dalvik VM

Application

Module Loader

libandroid_runtime.so
libbinder.so

Dalvik VM

System Services

libandroid_runtime.so

/system/lib*.so

/system/libbinder.so

Loadable Kernel
Module

System Calls

Syscall vmlinuz-
Table linux
File

/de‘l/binder m

Application Layer

Kernel Layer

System Calls

System Calls

Figure 2. Proposed architecture the hooking attack prevention on the kernel level

VI. IMPLEMENTATION

Implementation of the attack model and detection
method are explained in the following subsections.

A. Attack Implementation

In order to extract the data exchanged between
processes and applications in Android OS, we designed
a kernel module for the Android OS kernel. This
module changes the system call table and it modifies
ioctl system function address.

Since there are millions of calls per minute in ioctl
system function on Android OSs, processing this size
of information in the OS kernel level is almost
impossible. It is because of the real-time processing.
Thus, in order to analyze, intercept and extract the
exchanged data between two specific processes
accurately and more quickly, we can filter the incoming
messages by examining the UID process of the function
which has called ioctl system function and the UID of
the called services.

Fig. 3 illustrates the structure related to the ioctl
system call and the data structure within the ioctl [5].
As shown, the first argument of ioctl system call is the
name of the driver that is supposed to receive the data
in the form of this system call. The second argument is
the request code that is supposed to be given to the
drive. And the third argument is an address to the data
structure of binder_write_read which contains the
information and sent commands to the defined service
or component. As illustrated the submitted information
are sent marshalled.

All data are sent one after another in relevant
format. In order to obtain this information and
determining the data, it is necessary to unmarshall them.

Moreover, with checking the InterfaceToken and code
fields, the service and the function will be specified.
Then, considering the signature of the service function,
the data from the Hooked system call will be extracted.
For instant, as illustrated in Fig. 3, the receiver is Isms
and the function is sendText.

ioctl (binder_fd, BINDER_WRITE_READ, &binder_write_read);

—

f A
write_size

write_consumed

— write_buffer

read_size

e g

AN

=

target

ejep UoT3joesurI] ISpPpUTqg

code

uid

ISms.sendText (1234
“'Hello'')

g

JonIays

data_size

buffer

InterfaceToken | Param 1 | Param 2 | Param 3]

Figure 3 A Binder Payload for SMS process [5].

International Journal of Information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-37-en.html

I IJICTR Volume 9 - Number 2 - Spring 2017

[Downloaded from ijict.itrc.ac.ir on 2025-11-18]

At the end we need to consider that the function
address we replace with the original function address of
ioctl in the system call table, should have a signature
similar to the original one meaning that the input and
output parameters must be defined exactly like the
original function.

B. Detection Implementation

Implementation explanation of the hooking attack
prevention methods is provided in the following
subsections.

Implementation of hooking prevention at the user level:
Hooking for intercepting Binder transactions at user
level performed through “Libbinder.so” library as
shown in Fig 4. Before making any changes in this
library, it is necessary to get a hash value of the related
file and in different periods of time this hash value be
compared with new hash values of the file. Therefore,
if any difference is detected during the hash value
comparison, the attack is detected and the users can be
warned.

Implementation of hooking prevention at the kernel
level: In order to correct those addresses that are exist
in the memory in the system call table, it is required to
find out the actual and primitive addresses of the system
functions exist in the table. On the Android OS the
system function addresses exist in a file named
“Vmlinuz-linux”. In fact, “Vmlinuz-linux " file contains
static parts of the Linux kernel such as system calls,
which are loaded on the memory during the OS booting
operation. Adding these addresses with the address of
the “Vmlinuz-linux ” file in the memory gives the actual
address of the system functions in the memory. In this
method, firstly the binder library at the user level loads
a kernel module. Then, the loaded kernel module
performs the system call table correction in case of any
changes has occurred.

VII. EVALUATION

In order to evaluate the proposed model, we
designed and implemented a kernel module for the
Android OS Goldfish kernel with version 2.6.29. As
specified in the following code, that is hooked in a
system function, it is necessary to extract the required
data initially. Then we call the main system function.

int hooked_open (const char *pathname, int flags)
{

Before_transaction (buff);

int ret = open (fd , command, buff);
After_transaction (buff);

returnret ; }

To verify the implemented kernel module, we
hooked three system functions called Open, Read and
Write, and we capture the logs from their calls by
applications or Android OS services. As illustrated in

Fig. 5, this module is properly implemented and the
system functions are being hooked. In detail, when a
system function is called, first the system function of
our_sys read, our_sys_open, or our_sys write is
executed then the Handle is returned to the original
system call.

As shown in Fig. 3, the UID of the process which
has called this system function is extractable. For
instance, three processes with the UIDs of 1000 and
2987 are visible in the Figure. Consequently, it is
possible to hook and analyze the only system function
which was called by a process with a unique ID.

B6R] 39169.362579: our sys open: 1686:0ur Sys Open
666] 30100.362646: our sys read: 1088:0ur Sys Read
B60] 30169.362762: our sys open: 1688:0ur Sys Open
666] 30100.362793: our sys read: 108:0ur Sys Read
B60] 30169.362946: our sys open: 1686:0ur Sys Open

666] 30100.363586: our sys read: 2987:0ur Sys Read
660] 30160.368683: our sys read: 1088:0ur Sys Read
666] 30100.368835: our sys write: 1680:0ur Sys Write
666] 30160.369568: our sys write: 1888:0ur Sys Write

Figure 4. Hooking the system function.

[
[
[
[
[
[666] 30166.362976: our sys read: 1088:0ur Sys Read
[
[
[
[

Considering that the proposed method is designed
in a kernel module form and it hooks the system
functions in real time mode and extract the information,
its executive overhead is equal to calling a normal
system function and it is very meager.

VIII. CONCLUSION

In this paper, from a security perspective, we
described the Binder component on Android OS then
we investigated its security architecture. Furthermore,
with designing an active malware in OS Kernel, we
demonstrated how to penetrate into the Binder and
control data exchange mechanism in Android OS. By
considering the fact that most android malware that
have been designed so far, are operating in the higher
levels of Android OS. Hence, the detection and
confrontation with them can be easily conducted.
Besides, the only mechanisms that the malware use to
protect themselves are included obfuscation,
encryption, social engineering, and etc. These
mechanisms are easily detectable. Consequently, it is
the time for android malware to be more advanced and
be equipped with the knowledge of lower levels of
android OS.

As explained, this method is done in kernel level
and anti-malware applications are not able to detect
them easily, and the prevention is much more difficult
than the previous and existing methods. Therefore, we
proposed a detection method for these kind of attacks at
the user and kernel levels. As a result, using the
detection method, the possibility of conducting those
kind of attacks will go away.

International Journal of Information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-37-en.html

[Downloaded from ijict.itrc.ac.ir on 2025-11-18]

ACKNOWLEDGMENT

This research has been supported by Iran
Telecommunication Research Center (ITRC), and we
are thankful to them for providing us the vast range of
materials besides their encouragements and support to
conduct this research.

REFERENCES

[1] N. Samet, A. Ben Letaifa, M. Hamdi, and S. Tabbane,
“Forensic investigation in Mobile Cloud environment,”
2014, pp. 1-5.

[2] F. Daryabar, A. Dehghantanha, B. Eterovic-Soric, and K.-
K. R. Choo, “Forensic investigation of OneDrive, Box,
GoogleDrive and Dropbox applications on Android and
i0S devices,” Aust. J. Forensic Sci., pp. 1-28, 2016.

[3] N. Artenstein and I. Revivo, “Man in the binder: He who
controls ipc, controls the droid,” Eur. BlackHat Conf, 2014.

[4] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner,
“A survey of mobile malware in the wild,” in Proceedings
of the 1st ACM workshop on Security and privacy in
smartphones and mobile devices, 2011, pp. 3-14.

[5] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro,
“CopperDroid: Automatic Reconstruction of Android
Malware Behaviors.,” in NDSS, 2015.

[6] R. Raveendranath, V. Rajamani, A. J. Babu, and S. K.
Datta, “Android malware attacks and countermeasures:
Current and future directions,” in Control, Instrumentation,
Communication and Computational Technologies
(ICCICCT), 2014 International Conference on, 2014, pp.
137-143.

[7] L. Lookout, “Lookout Mobile Threat Report August 2011,”
2011.

[8] J. Crussell, C. Gibler, and H. Chen, “Attack of the clones:
Detecting cloned applications on android markets,” in
Computer Security-ESORICS 2012, Springer, 2012, pp.
37-54.

[9] W. Zhou, X. Zhang, and X. Jiang, “AppInk: watermarking
android apps for repackaging deterrence,” in Proceedings
of the 8th ACM SIGSAC symposium on Information,
computer and communications security, 2013, pp. 1-12.

[10] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting
repackaged smartphone applications in third-party android
marketplaces,” in Proceedings of the second ACM
conference on Data and Application Security and Privacy,
2012, pp. 317-326.

[11] R.Potharaju, A. Newell, C. Nita-Rotaru, and X. Zhang,
“Plagiarizing smartphone applications: attack strategies and
defense techniques,” in Engineering Secure Software and
Systems, Springer, 2012, pp. 106-120.

[12] S.Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song,
“Juxtapp: A scalable system for detecting code reuse
among android applications,” in Detection of Intrusions and
Malware, and Vulnerability Assessment, Springer, 2012,
pp. 62-81.

[13] M. Zheng, M. Sun, and J. Lui, “DroidRay: a security
evaluation system for customized android firmwares,” in
Proceedings of the 9th ACM symposium on Information,
computer and communications security, 2014, pp. 471-482.

[14] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang, “The
impact of vendor customizations on android security,” in
Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, 2013, pp. 623-634.

[15] W. Enck, M. Ongtang, and P. McDaniel, “Understanding
android security,” IEEE Secur. Priv., no. 1, pp. 50-57,
2009.

[16] A.P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner,
“Android permissions demystified,” in Proceedings of the
18th ACM conference on Computer and communications
security, 2011, pp. 627-638.

[17] K.W.Y.Au, Y.F.Zhou, Z. Huang, and D. Lie, “Pscout:
analyzing the android permission specification,” in
Proceedings of the 2012 ACM conference on Computer and
communications security, 2012, pp. 217-228.

Volume 9 - Number 2 - Spring 2017 WICTRIEKFAE

[18] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A
Study of Android Application Security.,” USENIX Secur.
Symp., vol. 2, p. 2, 2011.

[19] S.Janaand V. Shmatikov, “Memento: Learning secrets
from process footprints,” in Security and Privacy (SP),
2012 IEEE Symposium on, 2012, pp. 143-157.

[20] J.Jeonetal., “Dr. Android and Mr. Hide: fine-grained
permissions in android applications,” in Proceedings of the
second ACM workshop on Security and privacy in
smartphones and mobile devices, 2012, pp. 3-14.

[21] M. Conti, V. T. N. Nguyen, and B. Crispo, “CRePE:
context-related policy enforcement for android,” in
Information Security, Springer, 2010, pp. 331-345.

[22] S.Bugiel, S. Heuser, and A.-R. Sadeghi, “Flexible and
Fine-grained Mandatory Access Control on Android for
Diverse Security and Privacy Policies.,” in Usenix security,
2013, pp. 131-146.

[23] M. Salehi, F. Daryabar, and M.H. Tadayon, “Welcome to
Binder: A kernel level attack model for the Binder in
Android operating system.,” in 8th International
Symposium on Telecommunications (IST), 2016.

Majid Salehi received his
B.Sc. degree in computer
engineering from Isfahan
University, Isfahan, Iran in
2010, and his M.Sc. degree in
computer engineering from
Sharif University of
Technology, Tehran, Iran in
2016. He is currently a

S0 researcher with the DNS
Laboratory at Sharif University of Technology. His
research interests include Malware detection, OS security,
and information forensics.

Mohammad Hesam Tadayon

received his M.Sc.
degree in mathematics from the
University of Tarbiat

Modares, Tehran, Iran, in 1997,
and his Ph.D. degree
in applied mathematics (coding

and cryptography)
from the University of Tarbiat
Moallem of Tehran

(Kharazmi), Tehran, Iran, in 2008. He has been
holding an Assistant Professorship position with Iran
Telecommunication Research Center (ITRC) since
2008. He is a member of national councils in the
Iranian Ministry of Science and Technology. He has
served in many research and industrial projects. His
research interests include information theory, error-
control coding and data security.

Farid Daryabar is a
cybersecurity researcher-
developer with Iran
telecommunication ~ Research
Center. He graduated from the
University Putra Malaysia with a
Master of Science
(Cybersecurity/Forensic). He
has (co)authored several
publications in Cybersecurity
area. Farid has awarded a silver
and two bronze medals in R&D Invention/Innovation
(PRPI12 and MTE13), CEH and CHFI.

International Journal of Information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-37-en.html

KW IJICTR Volume 9 - Number 2- Spring 2017

[Downloaded from ijict.itrc.ac.ir on 2025-11-18]

@Mntemational Journal of Information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-37-en.html
http://www.tcpdf.org

