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Abstract— Task scheduling is one of the main and important challenges in the cloud environment. The dynamic nature 

and changing conditions of the cloud generally leads to problems for the task scheduling. Hence resource management 

and scheduling are among the important cases to improve throughput of cloud computing. This paper presents an 

online, a non-preemptive scheduling solution using two learning automata for the task scheduling problem on virtual 

machines in the cloud environment that is called LABTS. This algorithm consists three phases: in the first one, the 

priority of tasks sent by a learning automaton is predicted. In the second phase, the existing virtual machines are 

classified according to the predictions in the previous phase. Finally, using another learning automaton, tasks are 

assigned to the virtual machines in the third phase. The simulation results show that the proposed algorithm in the 

cloud environment reduces the value of two parameters makespan and degree of imbalance.  
 
Keywords- cloud computing, learning automata, task scheduling, priorities of tasks 

 

I. INTRODUCTION 

Cloud computing has evolved as a result of the 
evolution and improvements in distributed computing, 
grid computing and service oriented architecture, and 
considered to be as the fifth utility after water, 
electricity, telephone, and gas[1]. According to the 
definition provided by the National Institute of 
Standards and Technology (NIST), cloud computing is 
a distributed, parallel, and Internet-based system. The 
system is composed of a dynamic connection of a group 
of servers and pursues some goals such as task 
processing, centralized data storage and online access 
to computer services and resources [2]. Cloud 
computing provides resources at three levels: 
Infrastructure as a Service (Iaas), Platform as a Service 
(Paas), and Software as a Service (SaaS), and resources 

                                                           
* Corresponding Author 

are allocated based on the demands and the pay-as-you-
use billing method is used to calculate the cost of 
services [3]. 

Physical resources in the cloud provided by cloud 
providers as services, are assigned to users through the 
virtualization technique. These resources distributed 
across different geographic locations are shared 
between tasks sent to the cloud. Task scheduling is one 
of the most important challenges in the cloud 
computing environment and its main purpose is to 
allocate the most appropriate resources to the tasks 
requested by cloud users [4]. Task Scheduling refers to 
the problem of mapping each task to a proper virtual 
machine that is created using virtualization technology 
on physical resources. The scheduling is an NP-hard 
problem, and many researchers have paid attention to 
this research area due to its importance and complexity 
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[5]. In order to meet demands, the cloud services and 
resources must be provided based on the required level 
of quality of service (QoS). QoS ensures a certain level 
of performance and efficiency based on the user-
defined parameters,  and provides some quality features 
such as reliability and security. Additionally, Service 
Level Agreement (SLA) is a cross-contract between 
cloud users and providers [3, 6]. Since the nature of the 
problems such as task-resource mapping; diverse QoS 
requirements; on-demand resource provisioning; 
performance fluctuation and failure handling; hybrid 
resource scheduling; data storage and transmission 
optimization is NP-hard then it is difficult to be handled 
easily [7].  

Scheduling methods are generally classified into 
three classes: static, dynamic and hybrid. Static 
methods devote tasks to resources based on simple 
information system obtained from the environment 
followed task allocations with no regards to the state of 
the resources [8]. In contrast, dynamic scheduling uses 
present information of system to schedule decisions at 
runtime and then a ready task is devoted to a selected 
VM. In various studies, it has shown that the static 
scheduling is better than dynamic one from different 
perspectives in most cases. Since the searches in the 
static scheduling are performed globally in the solution 
space and all features of tasks and virtual machines are 
predefined, then the execution time of each task in each 
virtual machine can be computed before any scheduling 
which is not possible generally in real cloud systems. 
The task execution time is determined by both virtual 
machine and task information .By a dynamic 
scheduling, the full details of the tasks are not required 
which loses the advantages of global optimization in the 
static scheduling. The hybrid scheduling enjoys the 
benefits of both static and dynamic scheduling, where 
tasks execution times are roughly estimated and tasks 
are adaptively assigned to virtual machines at runtime 
and re-scheduled, if needed [7-9]. 

In addition to the type of scheduling, various 
objectives and constraints can be considered in the task 
scheduling on resources which also affect the design of 
the scheduling method. Some methods are for the 
problems with only one objective, such as minimizing 
makespan, while many scheduling techniques in the 
cloud are multi-objective and consider several 
objectives such as execution time, cost, energy, and 
security in the task scheduling [10-12]. Therefore, 
considering the dynamic nature of the scheduling 
problem in the cloud and the existence of various 
parameters, it is very difficult to provide an accurate, 
optimal and predefined solution in real cloud 
environments. Thus, it seems to be better to use some 
methods to find near-optimal solutions. Therefore 
heuristics and meta-heuristics methods can be useful 
methods for solving a wide range of hybrid and multi-
objective optimization problems that fall into the static 
scheduling class. Therefore population-based 
algorithms such as the Genetic Algorithm (GA) [13, 
14], Particle Swarm Optimization (PSO) algorithm [15, 
16], Ant Colony Optimization (ACO) [17], Tabu 
Search [18] and the Simulated Annealing (SA) 
algorithm [19] are various methods being used to solve 
task scheduling problems in the cloud. 

It worth to note that, generally, the scheduling 

algorithms in the cloud environment cannot be adapted 

to the dynamic nature of resources and environment 

conditions. These scheduling algorithms usually 

choose a specific and predefined method to schedule a 

single task and allocate tasks to the machines based on 

the schedule. Thus, if the existing resources or 

environmental conditions change over time, cloud 

performance will significantly decrease. Hence, in this 

paper, a dynamic learning automata (LA) based 

algorithm is proposed to solve the task scheduling 

problem in the cloud environment. In the proposed 

approach, a learning automaton is used to predict the 

priority of tasks sent to the cloud and another one is 

used to assign tasks to virtual machines based on their 

priorities. In this paper, the learning automata-based 

task scheduling algorithm is called LABTS and tasks 

are assigned to the virtual machines based on the 

capacity and capability of each virtual machine as well 

as the experiences and predictions obtained over time. 

Therefore, the LABTS scheduling algorithm is 

performed in three phases including the prediction of 

input tasks’ priority, grouping of virtual machines, and 

task scheduling on virtual machines in each cluster. 

The proposed method is expected to reduce the 

execution time of tasks and provide the load balancing 

on virtual machines in the cloud. The major 

contributions of this paper are as follows: 

• A Fixed Action-set Learning Automaton is 

used to estimate the probability of tasks entering 

different priorities, which updates the probability 

vector according to the input rate of tasks with 

different priorities.Predicting the priority of input 

tasks can improve system performance. 

• The main purpose of this paper is to assign 

tasks to the appropriate virtual machine based on 

their priority.So that by changing the entry rate of 

tasks with different priorities, virtual machines 

with different processing powers are not idle. 

Hence, virtual machine grouping is based on the 

probability vector of learning automaton. 

• A variable action-set learning automaton is 

used to allocate tasks to virtual machines in each 

cluster without performing any highly time-

consuming calculations, which makes reducing 

migration and it is suitable for real-time systems. 

• Since, the task scheduling decision is made 

considering the arrival rate of tasks with different 

priorities in the cloud system; the scheduling 

algorithm is well suited for the dynamic cloud 

environment. 
 

The rest of this paper is organized as follows. In 
Section II, related works for scheduling are expressed. 
Cellular automata are discussed in Section III and 
proposed algorithm is described in Section IV. We 
express the simulation and the results of the proposed 
method in Section V and finally we conclude the paper 
in Section VI. 
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II. RELATED WORK 

Scheduling is the problem of mapping a set of tasks 
to a set of distributed resources. Thus many researchers 
have made significant efforts to provide effective 
solutions to solve this problem. The problem of 
scheduling in a simpler case is a hybrid optimization 
problem that can be considered as the bin packing 
problem, in which tasks are items needed to be 
packaged and the virtual machines are bins with 
different capacities [20]. Due to the complexity of the 
scheduling problem, solving it by using complete 
search methods may not be suitable because it will be 
expensive in operation counts and thus time [21]. Thus, 
by considering some parameters in allocating tasks to 
virtual machines, different scheduling methods 
including meta-heuristic algorithms and the swarm 
intelligence algorithm have been introduced in the 
literature. A new parallel bi-objective hybrid genetic 
algorithm has been proposed in [13], reducing the 
makespan as well as consumed energy. Two models: 
island parallel model and the multi-start parallel model 
are investigated in this paper. The dynamic voltage 
scaling (DVS) is used to minimize the energy 
consumption. Yu et al. use the Genetic Algorithm to 
optimize cost and execution time by considering 
deadline and budget[22]. Ramezani et al. use the multi-
objective PSO algorithm (MOPSO) to minimize 
execution time, transfer time and the cost of the tasks in 
scheduling.[23]. Netjinda et al. aimed to optimize the 
cost of purchasing the IaaS in order to execute the 
workflow in the specified deadline. In the proposed 
system, the number of purchase distances, instance 
types, purchasing options, and task scheduling are the 
main constraints in the optimization process. In this 
paper, particles swarm optimization augmented with a 
variable neighborhood search technique have been used 
to find the configurations of purchasing options with 
optimal cost and budget to meet task requirements, 
which shows excellent results in terms of overall cost 
and fitness convergence compared to other algorithms 
[24]. Parthasarathy et al. presented a scheduling 
algorithm which is oppositional-GSO algorithm using 
heuristic search methods in cloud computing 
environment. In this paper, a population that contains a 
group of members are generated with their respective 
jobs and the fitness are calculated for each member. 
Based on the fitness, different operations such as 
producer operation, scrounger operation, ranger 
operation and oppositional operation are applied to 
generate the best schedule [25].  

Task scheduling is often used in distributed systems 
for optimizing one or more specific quality-of-service 
parameters that are often throughput or makespan. In 
some of the proposed methods, in addition to 
scheduling, the features such as cost, security and load 
balancing are taken into account. For example, the 
multi-QoS load balancing resource allocation method 
(MQLB-RAM) is proposed in [26].  In this algorithm, 
the requirements of users and service providers are 
combined to form multi-QoS indexes. In order to 
provide load balancing, the algorithm compares the 
weight of each index in peers to make full use of 
resources and for saving cost. The resource allocation 
in the algorithm (MQLB-RAM) consists of two main 
parts. The first one is to assign virtual peers to physical 

hosts, and the second part assigns tasks sent by the user 
to virtual peers. In the first part, the virtual machines are 
first created on physical resources at the lowest possible 
cost using genetic algorithms, and then the improved 
greedy algorithm is used to assign tasks to virtual 
machines. Several authors have used the winner-bid 
auction for resource allocation in clouds. In [27], a 
winner-bid auction game is introduced to allocate 
resources which is a lightweight mechanism and can be 
used in real clouds. In this method, users’ bids are 
determined based on the valuation-based bid function 
and their expected values in the scheduling. This 
method is an online auction and users can provide their 
bids over scheduling period. Throughout the 
scheduling, the auctioneer allocates virtual machines to 
users with the most number of bids. The main purpose 
of this scheduling method is to increase the profits of 
providers and cloud users. In [28], a game model is 
proposed to determine the winner using a Bayesian 
method, in which each user approximates the other 
competitors' actions in the next stage of auction. In this 
paper, the ultimate goal is not only to maximize the 
benefits of the service provider, but also to meet the 
budget constraints and given deadlines of users as well 
as maximizing the resource efficiency. 

Some researchers use prioritization and ranking 
methods to classify tasks or resources before scheduling 
process. Honey bee behavior inspired load balancing 
(HBB-LB) has been proposed in [29]. In this method, 
the tasks and resources are considered honey bees and 
food respectively. The algorithm balances the priorities 
of the tasks on the machines in minimum waiting time. 
Ergu et al. presented a model for allocating resources to 
tasks in the cloud environment. In this paper, the tasks 
are ranked based on existing resources and user 
priorities using the pairwise comparative matrix 
technique and the Analytic Hierarchy Process. In 
addition, an induced bias matrix is used to identify 
inconsistent elements in task ranking to increase the 
consistency ratio [30]. Mishra et al. introduced an 
adaptive task allocation algorithm (ATAA) for 
heterogeneous cloud environment to minimize 
makespan and reduce the energy consumption. In this 
approach, tasks are classified into four sections: CPU-
bound task set, urgent CPU-bound task set, IO-bound 
task set, and urgent IO-bound task set. CPU-bound 
tasks and urgent CPU-bound tasks are assigned to CPU-
bound virtual machines by SCHEDULER1 and IO-
bound tasks and urgent IO-bound tasks are assigned to 
IO-bound virtual machines by SCHEDULER2. Both 
SCHEDULERs first assign urgent tasks to virtual 
machines and, upon their completion, CPU-bound tasks 
and IO-bound tasks are assigned to VMs [31]. In [32] a 
dynamically hierarchical resource-allocation algorithm 
(DHRA) is proposed for the cloud environment in 
which nodes and tasks are dynamically divided at 
different levels according to computing power and 
storage factors using fuzzy pattern recognition. If a new 
task enters the system, the task level is first calculated 
based on the resource requirement and only the suitable 
nodes are suggested which reduces the communication 
traffic in allocating resources to tasks. A new static 
scheduling algorithm is proposed [33], to minimize the 
execution cost according to the deadline specified by 
the user. This algorithm consists of two main phases: in 
the first one, the workflow is clustered using a primary 
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clustering algorithm and a sequence of related tasks is 
considered for each cluster. In the second phase, the 
best cluster combination among the available ones is 
selected through a novel scoring approach and tasks in 
each cluster are mapped to the processing resources 
using step-by-step method. In [34], an ordinal 
optimization method is proposed based on ordinal 
optimization (OO) and evolutionary OO algorithms that 
considers the volume of workloads, load balance, and 
the volume of exchanged messages among virtual 
clusters. This method involves three phases: Primary 
scheduling phase, Similarity calculation phase, and 
Scheduling Improvement phase. In the first phase, the 
number of virtual clusters is determined according to 
the number of initial workloads and virtual machines 
are equally distributed among the existing clusters. In 
the second phase, the newly entered jobs are compared 
with the previous jobs and their similarity is calculated. 
If the similarity is greater than the predefined threshold, 
the scheduling continues like before; otherwise another 
scheduling method must be used according to the new 
information. 

 Singh et al proposed QoS-based resource 
provisioning and scheduling framework (QRPS) that 
helps distributing and scheduling available resources. 
There are two units resource provisioning unit and 
resource scheduling unit in this algorithm. In the 
resource provisioning unit, workloads are first analyzed 
and identified based on QoS requirements. After 
determining the workload patterns, workload clustering 
is performed according to the specified patterns. At this 
stage, workloads are re-clustered using the k-means-
based clustering algorithm and weights determined for 
QoS parameters. In resource scheduling unit, the 
resource scheduling is performed based on 4 policies 
(Compromised cost-time-based (CCTB) scheduling 
policy, time-based (TB) scheduling policy, cost-based 
(CB) scheduling policy, and bargaining-based (BB) 
scheduling policy). Then Decision tree-based 
scheduling is used to select one of the four above-
mentioned policies according to the user needs [35]. 
Ding et al proposed a scheduling mechanism to provide 
resources according to users’ demand. This method 
involves three main steps: resource matching, resource 
selection, and feedback integration. In the resource 
matching step, all available resources are compared 
with the user requirements, and the resources with 
degree higher than a pre-defined threshold are placed in 
the same set. In the resource selection phase, the 
resources in the set are reviewed and the resource with 
maximum efficiency is allocated to the user. In the 
feedback integration step, the selected resource is used 
as the relevance feedback information to update the user 
requirements and priorities. Updating user 
requirements makes it possible to allocate resources to 
the near-real needs of user at later stages [36]. Akbari 
[37] proposes a learning automata-based job scheduling 
algorithm for Grids. In this method, two LA are 
associated with each scheduler one of which is for 
scheduling the user submissions and another one for 
allocating the workload to the Grid computational 
resources. Simulation results show that the algorithm 
improves makespan, flowtime, and load balancing. 

Sahoo et al. presented a Learning Automata based 

Energy-Aware Scheduling (LAEAS) algorithm for 

real-time task scheduling in the cloud system. In this 

algorithm, the scheduler consists of a schedulability 

analyzer and task allocator. Schedulability analyzer 

uses a mathematical model based on LA to find the 

optimal assignment[38]. In [39] the task scheduling 

problem is considered as a bi-objective minimization 

problem which includes minimization of energy 

consumption and makespan. In this paper a novel 

learning automata-based scheduling framework for 

deadline sensitive tasks in the cloud is proposed. The 

scheduler invokes LA model to generate the best 

scheduling decision possible through the 

reinforcement learning process. Misra et al.[40] 

proposed an LA-based framework to improve the 

performance of QoS-enabled cloud services 

concerning response time and speed-up. The LA-based 

QoS system not only improves the performance of the 

virtual computing machines, but also ensures that all 

the agreed conditions are fulfilled by the 

provider.Ranjbari et al. proposed a LA-based 

algorithm which improves resource utilization and 

reduces energy consumption. The algorithm considers 

changes in the user demanded resources to predict the 

PM, which may suffer from overload. It improves 

PMs` utilization, reduces the number of migrations, 

and shuts down idle servers to reduce the energy 

consumption of the data center[41]. In [42] authors 

have utilized LA theory to develop a prediction model 

for cloud resource usage. Venkataramana et al.[43] 

suggested task assignment architecture based on 

learning automata for a heterogeneous computing 

system to achieve load balancing and minimum 

execution time. 

III. LEARNING AUTOMATA 

Learning Automata (LA) [44] is an adaptive 
decision making unit which is able to learn and improve 
its performance by choosing the optimal action from a 
limited set of actions. For a given action-set, there is 
also a probability vector in LA. An action is firstly 
selected according to the probability vector and then 
apply it to the random environment as an input. The 
environment evaluates the received action and responds 
with a reinforcement signal. The probability vector is 
updated according to the reaction from the 
environment. The main purpose in LA is to select the 
best action from the action-sets to minimize the average 
penalty received from the environment. LA is 
commonly used in complex, dynamic, and random 
systems where the accurate and complete information 
on the environment is not available [45]. Fig. 1 shows 
the relationship between random environment and 
learning automata. 

 
Figure 1.   Relationship between learning automata and its random 

environment 
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A random environment can be represented by a 

triple E={α,β,c}, α={α1,α2,…,αr} is a finite set of 

inputs (actions) and β={β1,β2,…,βm} represents the set 
of random outputs. In other words, β is the set of values 
that can be taken by the reinforcement signal, and c = 
{c1, c2 …, cr} is the set of penalty probabilities (these 
probabilities are calculated on the basis of the 
environment reaction), where the element ci is related 
to the action ai. The environment can be divided into 
stationary and non-stationary based on the type of 
penalty probabilities. In the stationary random 
environment, the penalty probabilities are fixed, while 
in a non-stationary environment these probabilities 
change with time. According to the nature of the 

reinforcement signal β, the random environment can be 
classified into three models P-model, Q-model and S-
model. The P-model is referred to an environment in 
which the reinforcement signal can only take two 
binary values one and zero. The Q-model is an 
environment in which a limited number of values in [0, 
1] are taken by the reinforcement signal. In an S-model 
environment, the reinforcement signal is a continuous 
random variable in the interval [a, b]. LA is divided into 
two main groups fixed structure LA and variable 
structure LA. In the fixed structure LA, transition and 
output functions are time-invariant, and the transition 
probability from one state to another and the actions and 
states selection probability are fixed. There are several 
examples of the FSLA, such as the Automaton of 
Tsetline, Krinsky, TsetlineG, and Krylov [46, 47]. The 

variable structure LA is denoted by {α , β, p, T}, where 

α={α1,α2,…,αr} is a finite set of actions, 

β={β1,β2,…,βm} is a set of inputs, p = {p1, p2, ..., pr} is 

the probability vector and p(k+1)=T[α(k),β(k),p(k)] is 
a learning algorithm. The learning algorithm is a 
recursive relationship correcting the action probability 

vector according to the responses. Let αi(k)∈α be an 
action selected by the learning automaton at the instant 
k, and p(k) be the probability vector of the action-set at 

the instant k. Thus, if αi receives a satisfactory response 
from the environment, pi(k) increases and probabilities 
of the others decrease, otherwise, pi(k) decreases and 
the  probabilities of the rest increase. In each case, the 
changes are made so that the sum of pi(k) being kept 
equal to one. At each instant k, if the selected action 

αi(k) receives a reward from the random environment, 
the action probability vector p(k) is updated as follows: 

���� + 1� = 	����� + 
�1 − �����
										� = ��1 − 
������																				∀� ≠ � 				�1� 
and if the selected action is penalized, the 

probability vector is updated by: 

	���� + 1� = � �1 − �������																							� = �
		� �� − 1� + �1 − �������				∀� ≠ � �2� 

where a and b are the reward and penalty parameters 
respectively, the increase or decrease in the probability 
of the actions is determined by the environment 
response, and r is the number of actions in the action-
set. Therefore we may have three cases corresponding 
to the values of a and b. If (a = b), the above relations 
are called linear reward-penalty (LR-P) algorithm. If (a 

>> b), the equations are called linear reward-∈penalty 

(LR−∈P), and if b is zero (b = 0), they are called linear 

reward-inaction (LR−I). If the selected action in the LR-I, 
is penalized by the environment, the action probability 
vector remains unchanged because of the zero value of 
b. 

A. Variable Action Set Learning Automata 

A variable action-set learning automaton (VLA) is 
an automaton in which the number of the available 
actions change with the time. A VLA contains a finite 

set of n actions as α={α1,α2,…,αn}. A={A1,A2,…,Am} 

indicates the set of action subsets and A(k)⊆α shows a 
subset of all the actions that can be selected by the 
learning automaton at the instant k. The particular 
action subsets are randomly selected by an external 

agency according to the probability distribution of Ψ(k) 

={Ψ1(k),Ψ2(k),…,Ψm(k)} which is defined over 
possible subsets of the actions: 

Ψ���� = ����[���� = ��|�� ∈ �		, 1 ≤ � ≤ 2! − 1] 
	�#���� = ����	[$��� = $�|����, $� ∈ ����] is the 

probability of choosing αi if the action subsets A(k) has 

already been selected and αi belongs to A(k) (αi∈A(k)). 
The value of the scaled probability �̂���� is calculated 
by 

�̂���� = �����&��� 											�3� 
where &��� = ∑ �����)*∈+�,�  is the sum of actions 

probabilities in A(k) and ����� = ����[$��� = $�]. 
The method of choosing an action and updating the 

probability of actions in a variable-action-set learning 
automaton can be described as follows. First, we 
assume that A(k) is the subset of the selected action at 
the instant k. Before selecting an action from A(k), the 
probability of all actions in the selected subset are 
calculated by using Eq. (3). Then the automaton 
chooses one of the actions in A(k) randomly according 
to the scaled action probability vector �̂���� . 
Depending on the received response from the 
environment, the learning automaton updates its scaled 
action probability vector. Of course, it should be noted 
that only the probabilities of the actions in the selected 
subset will be updated. Finally, the probability vector of 
the actions of the selected subset is re-scaled by  

 ���� + 1� = �̂��� + 1� ∗ &���		for	all		$�∈A�k�				�4� 
See [48] for more details. 

IV. PROPOSED ALGORITHM 

In this section, a learning automata-based 
algorithm, called LABTS, is proposed for the task 
scheduling problem on virtual machines in the cloud 
environment. In this approach, the scheduling is 
supposed to be online, i.e. the tasks are scheduled 
individually corresponding to the arrival time which is 
thus a non-preemptive scheduling method i.e. the 
processing of a task on a virtual machine is not stopped 
until its execution be completed. To understand the 
proposed algorithm better, we describe the parameters, 
the mathematical model, and problem definition in the 
sequel. TABLE I shows the most used notation and 
parameters.
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TABLE I.  NOTATIONS AND PARAMETERS 

Notations Definitions Ui	 ith user Tpriority�Th,Tm,Tl�	 Priority of task (high, middle, low) ta	 Arrival time of each task to the cloud system VMj	 jth virtual machine r	 The number of available VMs �A!BCD 	 The number of processing elements in jth VM �AC�EFD 	 The number of MIPS for elements in jth  VM GHIJD 	 The communication bandwidth in jth  VM Lj�k�	 The queue length of jth VM at the instant k AsT	 Learning automaton to predict the priorities of the input task $FM	 Action-set of  AsT PsT	 Action probability vector of automaton ast ClusterH	 Cluster of VMs for high priority tasks ClusterM Cluster of VMs for middle priority tasks ClusterL Cluster of VMs for low priority tasks S� The capacity of jth VM C	 The capacity of all VMs in cloud STUBFVWXY	 Specified capacity for existing VMs in clusterH STUBFVWXZ	 Specified capacity for existing VMs in clusterM STUBFVWX[	 Specified capacity for existing VMs in clusterL 

AsV	 Learning automaton to assign the task to appropriate VM $F\	 Action-set of AsV ]F\  Action probability vector of AsV 

A′cH, A′cM , A′cL Subsets of $F\ ]′	���� Probability of the action αi in the subset A′ at the instant k 

P′cH, P′cM , P′cL Action probability vectors for subsets A′cH, A′cM and A′cL 

Laverage(k) Average queue length of VMs in the corresponding cluster at the instant k 

 

The proposed algorithm uses the learning automata 
to schedule tasks on virtual machines through Fixed 
Action-set Learning Automaton and Variable Action-
set Learning Automaton. The first learning automaton 
is used to predict the priority of input tasks and 
determines the probability of the tasks as high, middle 
and low. By knowing the probability of input tasks and 
given priorities, the virtual machines are clustered into 
three clusters, each of which are assigned to one of the 
tasks’ priorities. Using the Variable Action-set 
Learning Automaton, tasks are assigned to virtual 
machines in each cluster. The virtual machines are re-
clustered according to the priority probability of tasks 
and after entering a certain number of tasks. In this 
model, the users (U1, U2, U3 …  Un) send their tasks to 
the cloud system for execution and it is always expected 
VMs to be assigned as required. The priority of each 
task, Tpriority can be categorized into three classes high 
(Th), middle (Tm) and low (Tl) accordingly [29]. The 
arrival time of each task to the cloud system is shown 
by ta. VM= {VM1, VM2…, VMr} is a set of virtual 
machines assigned to tasks that are sent to the cloud 
system over time. Each virtual machine has several 
features, namely, the number of processing elements, 
the number of millions instructions per second (MIPS) 
for these elements, and the communication bandwidth 
in each virtual machine which are denoted by penum, 
pemips and VMbw, respectively. Additionally, each 
virtual machine has a waiting queue that assigned tasks 
remained in queue until be executed by it. Thus, L(k) is 

the length of the queue, the number of tasks, in each 
virtual machine at the instant k. Therefore the LABST 
algorithm can be divided into three main phases shown 
in Fig. 2. 

A. Phase 1: predicting the priority of input tasks 

In a cloud system, the user's requested tasks arrive 
at different times and are scheduled according to the 
scheduling algorithm which is online. Thus, once any 
task enters the system, the scheduling is executed by 
assigning it to an appropriate virtual machine. Tasks 
generally are with arrival times and different priorities. 
In this algorithm, three priorities as high, middle and 
low are considered for the tasks. The volume of input 
tasks with different priorities can vary over time. That 
is, in a special time interval, high-priority tasks are 
more requested by users, and the tasks with a middle or 
low priority will enter the system in the other intervals. 
Therefore, a predictive and learning method can be 
useful for predicting the priority of tasks. Thus a 
learning automaton named AsT is used in this phase that 
is able to predict the priorities of the input task. AsT is a 
Fixed Action-set Learning Automaton with three 
actions defined as 	$FM = {High,Middle, Low} . The 

selection of a priority from the action-set αsT is 
predicting the task priority entered into the cloud 
system according to the action probability vector of 
automaton AsT, shown as PsT={PsT

h ,PsT
m,PsT

l}. 
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Figure 2.  Schematic representation of the three phases 

 

It is obvious that each priority is selected on the 
basis of their probability. All priorities in the action-set 
initially are with the same probability. Since AsT is a 
fixed action-set with three values, then the probability 

of selecting each action is equal to	cd		. 
In this phase, when a new task enters the cloud 

(represented by Tnew), the automaton AsT selects one 
of the actions from the action-set randomly based on the 
action probability vector. If the task priority entered 
into the cloud is equal to the selected priority from the 
action-set, then it indicates that the selected action is 
correctly predicted and its probability increases by Eq. 
(1). However, if the priority of the input task is not the 
same the selected, then the probability of the action 
selected from the action-set of automaton AsT is reduced 
by Eq. (2). Therefore, this phase is executed upon the 
arrival of each task and the priority prediction improves 
over time. Because by giving reward to the correct 
predictions and considering penalty for inaccurate 
predictions, the action probability vector of the 
automaton AsT is updated and these values are changed 
corresponding to the environment responses. The 
pseudo code of phase 1 (predicting the priority of input 
tasks) is shown in TABLE II. 

TABLE II.  THE PSEUDO CODE OF PHASE 1 IN LABST 

ALGORITHM 

Phase 1: predicting the priority of input tasks 

,TnewsTInput: P 

sTOutput: P  

       rnd=random(0,1)      1  

       if (rnd<=]FMe )  then 2  

             Select_Action← High 3  

      else   if (]FMe < rnd<=]FMe +]FMC) then  4  

             Select_Action← Middle  5  

      else  6  

           Select_Action← Low         7  

      end if  8 

      if  ( Select_Action ==Tnewpriority ) 9  

)1( with Eq. sTUpdate P                 10  

       else  11  

(2) Eq.with  sTUpdate P                 12  

      end if    13  

 

B. Phase 2: virtual machines grouping  

After predicting the priority of input tasks, the 
grouping phase is started to group virtual machines 
corresponding to the action probability vector obtained 
from the previous step. In this phase, virtual machines 
are classified into three clusters, the first of which is for 
high priority tasks (clusterH), the second one for middle 
priority tasks (clusterM) and the third cluster for low 
priority tasks (clusterL). In the first phase, the action 
probability vector of AsT is changed based on the 
priority of the input tasks and the amount of rewards or 
penalties. Additionally, the arrival of only one task does 
not lead to significant changes in the action probability 
vector. Therefore the grouping phase is not repeated at 
the entry of each task and re-grouping is performed 
when a certain number of tasks enter. For example, after 
entering 10 tasks, the re-grouping is performed based 
on the new value of the action probability vector PsT, 
which can be determined by the cloud system. In this 
phase, virtual machines are grouped based on the action 
probability vector PsT. To perform grouping According 
to the characteristics of each virtual machine, the 
capacity of each machine [29] is first calculated by  

S� = �A!BC� f �AC�EF� + GHIJ� 										�5� 
Therefore, the capacity of all virtual machines in the 

cloud can be defined as: 

S =hS�X
�ic

																																											�6� 
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After calculating the capacity of each virtual 
machine and the capacity of all virtual machines by Eq. 
(5) and Eq.(6) respectively, the capacity of each cluster 
is calculated according to the action probability vector 
PsT, which is defined as follows: 

																		STUBFVWXY = S f ]FMe  

																	STUBFVWXZ = S f ]FMC 

STUBFVWX[ = S f ]FMU                       (7) 

]FMe + ]FMC + ]FMU = 1 , then 		S = STUBFVWXY +STUBFVWXZ + STUBFVWX[ . After calculating the capacity of 
each cluster, virtual machines should be placed in the 
clusters accordingly. The clusterH is used for assigning 
high priority tasks with the highest priority. Thus the 
first virtual machines fall into cluster clusterH 
accordingly which is the same as	STUBFVWXY	. Thus the 
virtual machines are arranged in descending order 
according to their capacity. Virtual machines with the 
highest capacity are placed in the clusterH with a total 
capacitySTUBFVWXY	 . Then, these virtual machines are 
removed from the list of existing virtual machines, and 
those with the highest capacity and total capacity equal 
to STUBFVWXZ	 are selected among the remaining virtual 
machines to be placed in the clusterM. Finally, the 
remaining machines in the list are placed in clusterL. 
The aim in this phase, is to allocate machines with 
higher capability and lower queue length to the high 
priority tasks as well as reducing the waiting time for 
tasks with a middle and low priority. The pseudo code 
of phase 2 (virtual machines grouping) is shown in 
TABLE III. 

TABLE III.   THE PSEUDO CODE OF PHASE 2 IN LABST 

ALGORITHM 

C. Phase 3: task scheduling on virtual machines in 

each cluster 

After grouping virtual machines in the clusterH, 
clusterM, and clusterL, each task enters the cloud 
system and is sent to its corresponding cluster according 
to its priority. The learning automaton AsV is used to 
assign the task to the appropriate virtual machine in 
each cluster. This automaton has finite actions r, but the 

number of actions may change at any time since the 
virtual machines in each cluster form the action-set of 
given automaton that is changed after grouping. Thus, 
the learning automation AsV is a Variable Action-set 
Learning Automaton. 

First, all virtual machines in the VM list form the 
action-set of AsV, which is denoted by $F\ ={$F\� |∀GH� ∈ GH}. In other words, each of the existing 
actions in the action-set of the automaton AsV represents 
one of the virtual machines in the VM list. The VM list 
has r virtual machines with the same initial selection 
probability. Thus, the action probability vector of AsV is 

defined as ]F\ = k]F\� l∀GH� ∈ GHm , where at the 

beginning of the cloud operation, the probability of 

each virtual machine is equal to 
cX  . After grouping 

phase, virtual machines in each cluster form a subset 
from the action-set of AsV. Therefore, the subsets of the 

automaton AsV are A′cH, A′cM and A′cL, being the set of 
virtual machines for clusterH, clusterM, and clusterL, 

respectively, denoted by  �′TY = {$TY� |∀GH� ∈nopqrA�s} , �′TZ = {$TZ� |∀GH� ∈ nopqrA�H}  and �′T[ = {$T[, l∀GH, ∈ nopqrA�t} . Each of A′cH, A′cM 

and A′cL is a subset of $F\, with no elements in common 
because they are placed in different clusters in grouping 
phase, i.e.  �′TY ∩ �′TZ ∩ �′T[ = ∅. After determining 

the three subsets A′cH, A′cM and A′cL, the action 
probability vector in each subset is calculated by Eq.(3) 
as follows: 

]′	���� = ]����∑ ]�)*w+′	�,� 															�8� 
Where P′i (k) is the probability of the action αi in 

the subset A′ at the instant k and Pi(k) is the action 

probability ( ]���� = ����[$��� = $�] ) and ∑ ]�)*w+′	�,�  is the sum of the probabilities of all actions 

in the subset A′. 

P′cH, P′cM and P′cL are the updated action probability 

vectors calculated by Eq. (8) for subsets A′cH, A′cM and 

A′cL respectively which are defined as ]′TY =k]′	TY� l∀$� ∈ �′TYm , ]′TZ = k]′	TZ� l∀$� ∈ �′TZm , and ]′T[ = {]′	T[, l∀$, ∈ �′T[} . When a new task enters 

into each cluster according to its priority, all virtual 
machines in the corresponding cluster are a candidate 
to be assigned to the task. Thus, one of the actions in a 
given subset (which represents a virtual machine in the 
cluster) is selected based on the updated probability 
vector. If the queue length of the selected virtual 
machine is smaller or equal to the Laverage in the given 
cluster at current instant, the probability of the selected 
action and other actions in the subset is calculated by 
Eq. (1), which means receiving a reward related to the 
selected action and it assigned to the task, otherwise, the 
action probability vector is updated using Eq. (2), which 
means a penalty for the selected action and this phase 
continues. Laverage(k) shows the average queue length of 
VMs in the corresponding cluster at the instant k, which 
is computed as: 

tyzWXy{W��� = ∑ t����|+′	|	�ic|�′	| 					,			∀$�|�′										�9� 

Phase 2: virtual machines grouping 

Input: PsT 

Output: VMs grouping  

for  j=1   to r do            // each VM 1  						S� = �A!BC� f �AC�EF� + GHIJ� 2  

      C=C+Cj 3  

end for 4  STUBFVWXY = S f ]FMe  5  STUBFVWXZ = S f ]FMC  6  STUBFVWX[ = S f ]FMU  7  

Sort VMs by descending Cj 8  

    clusterH←VMd| ∑Cd≈STUBFVWXY    9  

    Delete VMs that assigned to clusterH 10  

    clusterM←VMd| ∑Cd≈ STUBFVWXZ      // 

remained VMs 

11  

    Delete VMs that assigned to clusterM 12  

      clusterL←VMs remained 13  
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where A′ is one of the three subsets A′cH, A′cM and 

A′cL and A′ denotes the number of actions in the 
given subset. Li(k) is the queue length of each virtual 

machine in the action subset A′. After assigning the 
predefined number of input tasks to virtual machines, 
the grouping phase is required to be performed again 
because of changes in the action probabilities in the 
action probability vector of the automation AsT and 
changes in the arrival rate of tasks with different 
priorities. In this case, the action probability vectors 
must be calculated using Eq. (4) and the action vector 
of each action subset is updated once again after 
performing the grouping and determining the action 
subsets of each cluster. The pseudo code of phase 3 in 
LABST algorithm is shown in TABLE IV. 

TABLE IV.   THE PSEUDO CODE OF PHASE 3 IN LABST 

ALGORITHM 

 

In the third phase of the proposed algorithm, the 
new task is sent to clusterH, clusterM and clusterL 
according to its priority High, Middle, and Low, 
respectively. In the first line of the pseudo-code, the 

value of the action vector of A′ is updated by Eq. (8) 
which takes place only after the grouping phase upon 
the determination of the action subsets. If there is no re-
grouping, then there is no need to perform the first line 
because the subset of actions assigned to the cluster 
remains unchanged. 

V. EXPERIMENT RESULTS 

There are several issues such as network flow, 
virtual machine load balancing, scalability, 
management, etc. in a cloud system, so that they have 
been generally investigated in different extents. 
Additionally, the cloud systems provide software and 
hardware services on different scales by using resource 
providers. Therefore it's not possible to use the real 
cloud system to perform experiments by various criteria 
in the cloud system. Thus, it is essential to have a good 
simulator for testing and obtaining the results. One of 
these simulators is the cloudsim designed by the 
University of Melbourne, Australia in 2009 which is 
based on Java [49]. Cloudsim is a generalized simulator 

allowing to model, simulate and test on cloud 
computing infrastructure and application services [50, 
51]. There are four-layer architectures Simjava, 
gridsim, cloudsim and usercode first two of which are 
combined in a new architecture. 

In this section, we analyze the efficiency of our 
proposed algorithm through simulation results 
performed by the cloudsim simulator in cloudsim-3.0.3 
on a system with Intel corei5 processor, ram 6G and the 
windows 8.1 enterprise. Due to the importance of 
scalability, we consider the cloud system in three 
different sizes with different number of virtual 
machines. The small scale cloud system consists of 10 
virtual machines, the medium scale cloud system 
consists of 25 virtual machines and a large-scale one 
has 50 VMs. In order to compare the LABTS algorithm 
with other algorithms, the number of tasks sent to each 
cloud systems by the user are 200, 600 and 1000. 

 To validate the simulation, the instance types 
provided by Amazon Ec2, such as t2 and M5, are used. 
The simulation is performed on 10 data centers and the 
number of hosts for data centers varies from 1 to 4. 
These hosts are with different characteristics and the 
number of virtual machines per host is 3 and the 
number of PEs varies from 1 to 4. Virtual machines 
have a different processing power in the cloud 
environment, and MIPS (million instructions per 
second) ranges through [500-2000]. Priority of tasks 
are generated by a uniform distribution. The user’s task 

arrival distribution is Poisson with λ=1 indicating that 
the average number of tasks arrive to the cloud by user 
at each second is 1. To perform the test, tasks with 
different lengths are generated in the interval [10,000 - 
25,000] by using a uniform distribution according 
to[52] . Tasks are independent of each other and the 
execution time of each task is not dependent on the 
previous or the next task. The simulation details are 
shown in TABLE V. 

TABLE V.  PARAMETERS SETTING IN CLOUDSIM[52] 

 

To illustrate the effectiveness of the LABST 
scheduling algorithm, the values of makespan and the 
degree of imbalance obtained in simulation are 
compared with the results of some algorithms such as 
FCFS (First Come First Serve), Min-Min and HBB-LB 
[29]. 

Phase 3: task scheduling on virtual machines in each 

cluster 

Input: Tnew , cluster  

Output: assign VM to Tnew 

Update P′ with Eq. (8)      

         //only after grouping phase 

1  

Select an action(VM) based on probability 

vector  

2  

if (VM(L(k))<=Laverage(k)) 3 

Assign selected VM to Tnew and update length 

of VM (L(k)) 

4  

    Update P′ with Eq. (1) 5  

else  6  

    Update P′ with Eq. (2) 7  

Go to 2 8 

end if 9  

Entity 

Type 
Parameters Value 

task 

(cloudlet) 

Length  [10000-25000] 

number of tasks 200-600-1000 

Arrival rate Poisson(λ=1) 

Task memory 64-1024 

Virtual 

machine 

(VM) 

number of VMs 10-25-50 

MIPS [500-2000] 

VM memory 128-1024 

Processing element 1-4 

Bandwidth 500-1000 

Cloudlet scheduler Space shared 

Data 

center 

Number of 

datacenter 

10 

Number of host 1-4 
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A. Makespan 

Makespan is one of the important qualitative 
parameters in the cloud scheduling that shows the total 
length of the schedule (when all tasks have finished 
processing). In other words, makespan is the maximum 
value among the completion time of all tasks sent to the 
cloud. It is a basic parameter for evaluating scheduling 
algorithms that can be calculated according to Eq. (10). H
�Aq�
~ = H
��∈VyF,F{��~�qℎ_r��A���}									�10� 

Where the finish_time denotes the end time of task 
i. Minimizing this parameter indicates that tasks are 
executed in the shortest possible time with no long 
waiting time. 

In order to calculate makespan, some scheduling 
algorithms, namely, FCFS, MIN-MIN, HBB-LB and 
LABTS are simulated through three scales: small scale 
with 10 VMs, medium scale with 25 VMs and large one 
with 50 VMs, with 200, 600 and 1000 tasks. In 
performing simulations, due to the use of random 
numbers for some parameters, each experiment is 
repeated 30 times and the final results are the average 
of 30 simulation runs. Fig. 3 illustrates the results of 
simulation for 200, 600, and 1000 tasks on small, 
medium, and large scale cloud systems. In the small 
scale, the number of virtual machines is low as 
compared to the user’s tasks with a Poisson arrival rate 

of λ=1. Thus its makespan is greater than other ones 
obtained at medium and large scales while the proposed 
algorithm has less makespan compared to the other 
scheduling methods. Because the algorithm uses the 
learning method to predict the type of tasks entering the 
cloud and assigning virtual machines to the tasks. By 
increasing the number of input tasks, the AsT learning 
algorithm will update the action probability vector, and 
thus more accurate predictions are made over time, 

which also effects on the virtual machines grouping. 
Also, by updating the action probability vector of AsV, 
virtual machines with lower queue lengths are with 
larger probabilities more likely to be assigned to the 
tasks. 

By comparing the methods FCFS, MIN-MIN, 
HBB-LB and the proposed algorithm LABTS in three 
scales small, medium, and large with 200, 600 and 1000 
tasks shows that the makespan of the proposed method 
is significantly lower than other methods. In the 
LABTS method, it is expected that the makespan be 
lower than other methods because in LABTS, virtual 
machines are classified into clusters according to their 
capacity and capability, and tasks are sent to these 
clusters according to their priority type. On the other 
hand, grouping is performed in terms of predictions 
obtained by the learning automata. In the proposed 
approach, the migration of tasks is not required since by 
re-grouping and updating the probability vector of 
Learning Automaton AsV, tasks are assigned to the right 
virtual machines according to their priorities. 

B. Degree of imbalance (DI) 

Another important parameter in load balancing of 
virtual machines is the degree of imbalance (DI) [53], 
which is calculated in simulations to compare the 
LABTS with FCFS, MIN-MIN, and HBB-LB methods. 
DI, which shows the distribution of load balancing on 
virtual machines, is calculated by [29] �� = �Cy� − �C�!�yz{ 																					�11� 

where Tmax and Tmin are the maximum and 
minimum values of Ti among all virtual machines 
respectively and Tavg is the mean value of Ti in VMs. 

 

 

 

Figure 3.  Evaluating the makespan parameter resulting from the execution of 200, 600, and 1000 tasks in a cloud environment w ith small, 

medium and large scales 
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Figure 4.  Evaluating the DI parameter resulting from the execution of 200, 600, and 1000 tasks in a cloud environment with small, medium 

and large scales 

The value of Ti for each virtual machine is obtained 
by dividing the total length of assigned load to the 
machine by the machine's processing capacity, which 
indicates the required time of the virtual machine to 
perform its tasks. The value of DI parameter obtained 
from simulations in three cloud scales with 200, 600 
and 1000 tasks is shown in Fig. 4. Using the learning 
automata, the proposed LABTS algorithm compared to 
FCFS, MIN-MIN, and HBB-LB methods provides 
more load balancing and is more efficient. Because 
there is no task migration between virtual machines in 
LABTS and the selection of appropriate virtual 
machines to be assigned to tasks is performed just by 
updating the action probability vector. Therefore, the 
more the number of tasks, the greater the learning. This 
increases the probability of accurate selection that helps 
to have a balanced distribution of tasks on virtual 
machines. 

VI. CONCLUSION 

In this paper, a learning automata-based task 
scheduling algorithm (LABTS) is presented for cloud 
environment. This algorithm not only performs the task 
scheduling on virtual machines, but also takes into 
account the priority of tasks in scheduling. Using 
predictive methods generally requires large memory 
location to store previous states along with taking more 
time to search between saved states, while a learning 
automaton predicts future states without storing 
previous states and just needs the probability vector be 
updated. In this paper, two learning automata are used 
for task scheduling on virtual machines. In the first 
phase, the first learning automaton is used to predict the 
priority of the tasks sent to the cloud, which has a fixed 

action-set and the action probability vector is updated 
by receiving each task. In the second phase, the 
proposed algorithm divides virtual machines into three 
clusters in terms of the action probability vector. In the 
third phase, another learning automaton is used to 
assign each task to the appropriate virtual machine with 
variable action-set. To illustrate the efficiency of the 
LABTS algorithm, the simulations are performed in 
three scales small, medium, and large in cloudsim 
simulator. According to the numerical results obtained 
from the simulations, the proposed LABTS algorithm 
compared to FCFS, MIN-MIN, and HBB-LB 
algorithms performs significantly better in terms of 
makespan and DI. 
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