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Abstract—This paper considers the power-efficient resource allocation problem in a cloud radio access network (C-

RAN). The C-RAN architecture consists of a set of base-band units (BBUs) which are connected to a set of radio 

remote heads (RRHs) equipped with massive multiple input multiple output (MIMO), via fronthaul links with limited 

capacity. We formulate the power-efficient optimization problem in C-RANs as a joint resource allocation problem in 

order to jointly allocate the RRH and transmit power to each user, and fronthaul link and BBU assign to active RRHs 

while satisfying the minimum required rate of each user.  To solve this non-convex optimization problem we suggest 

iterative algorithm with two-step based on the complementary geometric programming (CGP) and the successive 

convex approximation (SCA). The simulation results indicate that our proposed scheme can significantly reduce the 
total transmission power by switching off the under-utilized RRHs. 

Keywords-  Complementary geometric programming, C-RAN, successive convex approximation, switch off RRHs, 5G. 

 

I. INTRODUCTION 
* 

With the explosive growth of mobile data traffic, 
the fifth-generation (5G) wireless networks encounter 
considerable challenges in enhancing spectrum 
efficiency (SE) and energy efficiency (EE). Cloud 
radio access network (C-RAN) and massive multiple 
input multiple output (MIMO) are two promising 
approaches to tackle these challenges for 5G [1-3]. 

Massive MIMO base stations (BSs) will be able to 
communicate with multiple single-antenna users over 
the same time-frequency slot, therefore, by providing a 
high power gain, decreases the transmit power which 
leads to improve SE and EE [4, 5]. Also, C-RAN as a 

                                                        
* Corresponding Author 

novel RAN architecture separates remote radio head 
(RRH) from base band units (BBUs), which helps to 
provide cost efficient and flexible deployment of 
traditional base stations (BSs).  

Hence, by deploying a large number of RRHs in a 
cell, with less transmission power of each RRH, SE 
and EE will be significantly improved. Additionally, 
equipping each RRH with many antennas (massive 
MIMO), can lead to higher SE and EE to 5G [6- 9]. 
This scales up the complexity gain of traditional 
MIMOs [1], [10] and reduces the interference among 
users of all access points [1].  

Dense deployment of RRHs to reach higher SE 
causes under-utilized RRHs which consequently leads 
to increasing energy consumption [11]. Additionally, 
due to existence of interference among users in 
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different highly overlapped areas of RRHs, user 
assignment to RRHs based on the signal strength is 
insufficient. Therefore, to reduce interference and 
enhance power efficiency, power control becomes 
challenging issue. To address these challenges, we 
formulate the power-efficient optimization problem 
with the novel utility function in order to minimize the 
operation cost. Hence, we consider the summation of 
energy consumption cost of RRHs and total transmit 
power of all users as operation cost in utility function.  

In recent years a large number of studies explored 
the optimization of SE and EE in massive MIMO and 
C-RANs. In [12], by optimally assigning users, 
beamforming parameters are adjusted in order to 
maximizing EE in C-RAN. In this paper, by using 
norm approximation, non-convex formulated 
optimization problem is transformed into the convex 
one. [13] Formulates a power minimization 
beamforming problem in C-RAN. With switching off 
RRHs, the power consumption of RRHs and fronthaul 
links are reduced by applying a group sparse 
beamforming method, regardless capacity limitation of 
fronthaul links. [14] reduces the overall power 
consumption by employing an online stochastic game 
theoretic to learn the cellular traffic patterns and 
switch on-off the RRHs. [15] formulates an EE 
optimization problem, and uses Lagrange dual 
decomposition method to minimize the overall power 
consumption with access point (AP) and power 
allocation to each user in H-CRAN. [11] reduces the 
power consumption in C-RAN by switching off RRHs 
and proposes a heuristic algorithm to solve the RRH-
BBU assignment and allocates RRH to each user, 
regardless capacity limitation of BBUs and fronthaull 
links. [16-18] investigate optimal power and range 
adaptation policies with time-varying traffic to 
minimize the average power consumption of APs. 
Interference reduces by cooperating between different 
Aps which leads to switch off the APs with low data 
traffic and decreases the overall power consumption. 
[7] formulates joint sub-carrier, power, AP and 
activated antennas allocation with the aim of 
minimizing the total power consumption and 
maximizing SE simultaneously in massive MIMO 
enabled heterogeneous networks (HetNets). The 
authors of [19] by employing a stochastic geometry 
method, analyze that using flexible cell association can 
improve the EE of HetNets by offloading data traffic 
to small cell in massive MIMO enabled HetNets. The 
authors of [20] employ both the cooperative and 
noncooperative EE power control game in multi-tier 
MIMO HetNets, where all tiers cooperatively or 
selfishly choose their transmit power to maximize 
their network EE.  

None of the mentioned works has jointly 
considered resource allocation and C-RAN limitations 
such as maximum load capacity of BBUs to minimize 
the total network transmission power by switching off 
under-utilized RRHs in MIMO aided C-RAN. To 
address this gap, the aim of this paper is to study the 
joint optimization problem with the transmit power 
and AP allocation subject to fronthaul and  RRH 
assignment to BBU and interference mitigation to 
minimize the total network transmission power by 
switching off under-utilized RRHs in MIMO aided C-

RAN system. Hence, regarding the variations of traffic 
load, the RRHs with low data traffic (under-utilized) 
and their corresponding fronthaul links will be 
switched off according to the minimum power 
consumption cost of RRHs. Therefore associated users 
to them are moved to the neighboring RRHs.  

Due to interference among users from various 
RRHs and existence of integer variables such as RRH 
assignment to each user and RRH allocation to BBUs, 
the formulated optimization problem is non-convex 
and NP-hard with high computational complexity [21]. 
We apply the complementary geometric programming 
(CGP) and the successive convex approximation 
(SCA) [22- 26] to develop a two-step iterative 
algorithm with low computational complexity to solve 
the formulated problem. Via different relaxation and 
transformation techniques such as DC-approximation 
and arithmetic-geometric mean approximation 
(AGMA), the sub-problems in each step are converted 
into its geometric programming (GP) problem [27, 
28], which will be solved via optimization software 
packages like CVX [29]. 

We compare performance of the proposed 
approach with traditional approach where each user is 
associated to the RRHs based on largest value of 
received SINR. The simulation results reveal that our 
proposed approach with novel utility function is more 
efficient than the traditional approach, in terms of 
increasing total EE and reducing total network 
transmission power. The simulation results show that 
total transmission power is reduced more than 20% 
compared to that of the traditional algorithm for dense 
region. Also, simulation results illustrate that our 
proposed algorithm can effectively move associated 
users from under-utilized RRHs to neighboring RRHs 
which lead to switch off under-utilized RRHs. 

In the remainder of this paper, Section II presents 
the system model and formulated optimization 
problem to minimize the total network transmission 
power. Section III introduces the two-step iterative 
algorithm. Section IV indicates the simulation results, 
followed by concluding remarks in Section V. 

II. SYSTEM MODEL AND PROBLEM FORMULATION 

Consider a downlink transmission in a C-RAN 
architecture that serves a set of {1,..., }NN  single-

antenna users by a set of  {1 , . . . , }RR  RRHs as 

shown in Fig. 1. In this specific region, each RRH 

r R  is equipped with antennas and 

connected to a set of {1,..., }BB  limited-capacity 

BBUs via a fronthaul link. BBUs are responsible to 
process the baseband signals. We define 

,r n for 

association between user nN and RRH r R  as  

th

,

1,  if RRH  r is associatedto n user,

0,  otherwise

 

.
r n


 


Supp

ose
,r np  be the transmit power and 

,r nh  be channel 

gain from the RRH r R  to the user nN , also the 

number of transmit antennas 
rF  be much more than 

the number of simultaneously served users by a 
RRH r . Under these assumptions, according to  [7, 

3 
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30],
 
the achievable rate (throughput) of each user n at 

RRH r can be expressed as 

    
, ( , )r nR P α  

               , ,

2 2

,

1
log (1 ( )),

r n r nr r

r r n

p hF N

N I

 



                 (1) 

In which 
, ,  r r n

n

N r


  
N

R  represents the 

total number of users allocated to the RRH r  and 

, , ,

,

,r n r n r n

r r r n n

I p h  

      

  
R

denotes the interference 

to user nN in RRH ,r R  and 2 is the noise 

power which is assumed to be equal for all users.  

To save energy, a RRH and corresponding 
fronthaul links can be switched off, when traffic of 

associated users to them is low. Therefore, 
ry is 

defined for the on-off states of RRH r R  as 

      
1,  if RRH r is in state on,

0,  otherwise,
ry


 


 

thus, connection between RRH r R and BBU 

b B  is defined as  

    
,

1,  if the RRH r is assigned to the BBU b,

0,  Otherwise.
r b


 


 

Furthermore, P , α , Y , and β  are  matrices of all 

, ,, ,r n r n rp y  and 
, ,r b respectively, for all 

,n r N R  and b B . 

With the aim of reducing network energy 
consumption cost, we define a novel network utility 
function as 

, , ,,U( , )= ,r n r n a r r

r R n N r R

p C y F
  

 α P Y               (2)  

which is summation of total transmit power of all 
users and the energy consumption cost of active 

RRHs. The parameter 
aC  is proportional to transmit 

power of each antenna in active RRHs. The 
simultaneous reduction of these two costs is the 
novelty of dynamic resource allocation in this work. 
Consequently, based on (2), the optimization problem 
to minimize the total energy consumption cost can be 
expressed as  

       
, , ,min ( , , ),Uα β Y P α P Y                                          (3) 

         subject to:  

max

,C1: ,   ,r n r

n

p p r


  
N

R  

rsv

, ,C2: ( , ) ,   ,r n r n n

r

R R n


   P α
R

N  

,C3: 1,   ,r n

r R

n


   N  

 

 

Fig. 1. C-RAN architecture with cloud computing BBU 
pool and massive MIMO RRHs. 

 

,C4: 1,   ,r b

b

r


  
B

R  

max

, , ,C5: ( , ) ,  r b r n r n b

r n

R L b 
 

   P α
R N

B  

,C6: 0,   ,r b r

b

y r


   
B

R  

,C7 : ,   ,r n r

n

y r 


   
N

R  

, ,{0,1}, {0,1}, {0,1},  , , .r n r r by r n b      

In (3), C1 indicates that maximum transmit power 

of each RRH r R is restricted by max .rp  C2  

denotes the minimum required rate, i.e., rsv

nR , for 

each user. C3  represents that each user can be only 
associated to at most one RRH at any time. 
C4 denotes each RRH r R  can be associated to at 

most one BBU. The allocated load to each BBU is 
received from its own corresponding associated RRHs. 
Therefore, C5 specifies that the maximum load 

supported by each BBU b B  is restricted by max .bL  

Based on C6,  when RRH r R is in state on its 

corresponding fronthaul link can be enabled. Finally, 
C7 indicates each user nN  can be assigned to 

RRH r when RRH r  is in state on and  is constant 
value. 

Due to the interference term in C2 and some 

integer variables such as 
, , ,, ,r n r b ry  the formulated 

problem (3) is non-convex and NP hard with high 
computational complexity [22].  To overcome this 
issue, we propose the two-step iterative solution 
algorithm with low computational complexity to solve 
the formulated optimization problem by employing 
the SCA and CGP. In the next section, we explain our 

algorithm to solve (3). 
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III. TWO-STEP ITERATIVE ALGORITHM FOR 

JOINT CLOUD PARAMETERS ASSIGNMENT 

AND POWER ALLOCATION 

To obtain an efficient solution for (3), a two-step 
iterative solution algorithm is developed with the aim 
to separate the transmission and cloud parameters. 
Step 1 specifies the cloud parameters for joint RRH, 
fronthaul and BBU allocation, while the Step 2 
achieves the transmission parameter, consisting the 
transmit power. Therefore, in Step 1, with a given 
(fixed) power allocation vector, the optimal ,α β  and 

Y vectors are derived. Then, based on the values 
obtained from Step 1, transmit power is allocated to 
each user in Step 2. The whole process is expressed as 
follows  

Step 2Step 1

Initialization

(0), (0), (0) (0) ...  α β Y P
 

                 * * * *

Step 2Step 1

Iteration$t$

( ), ( ), (  ), ( )t t t t α β Y P  

                                         * * * *

Step 2
Step 1

Optimal solution

, , ,α β Y P
 

where 0t  is the iteration index. Also, 
* * *( ), ( ), ( )t t tα β Y  and *( )tP are optimal values 

obtained at iteration .t  The iterative procedure is 
stopped when convergence criteria are met, e.g., 

  

  

where , , ,  Note that, the sub-
problems of Steps 1 and 2 are still non-convex and 
encounter high computational complexity. To solve 
them, we first relax the integer variables then, by 
applying various transformation and DC-
approximation in propositions 1, 2, and 3 we try to 
transform the non-convex sub-problems in Steps 1 and 
2 into the equivalent lower-bound standard form of 
GP.  To get more about CGP, refer to Section III.A in 
[22]. 

 

Step 1: Cloud Parameters Allocation Algorithm 

In each iteration ,t  this step drives optimal values 

of ,α β  and Y with fixed values of ( ).tP  Hence, (3) is 

simplified into 

, ,min ( , ( ), )U t
α β Y

α P Y                                        (4) 

   subject to:  C2 C7,  

Where in (4), optimization variables are ,α β  and ,Y  
therefore, (4) has less computationally complex than 
(3). 

Since we assumed that the number of transmit 

antennas 
rF  be much more than the number of 

simultaneously served users by a  RRH r R  as   

from this assumption we can write 

1

1 1

( ) 1
.

( ) ( )

r r r

r r

F N t F

N t N t

 
 Hence, with considering 

fixed value of ( )tP and high SINR scenario, we can 

rewrite (1) as 

,

1

, 2

~

( , ) log ( ( )),   ,
( )

nr

r

n
r

r

F
t

N
R r

t
  P α R              (5) 

In which 

' '

' '

, ,

, 2

, ,

( )
( )

( )

r n r n

r n

r n r n
r r n n

p t h
t

p t h



 




 is 

signal-to-interference-plus noise ratio (SINR) of user 

nN  at RRH .r R Therefore, at the iteration 

1t ,  (4) is converted into 

      
, ,min ( , ( ), ),U tα β Y α P Y                                       (6) 

       subject to:  C3,C4,C6,C7,  

rsv

,

~

,C2.1: ( ( ), ) ,   ,nrr n

r

n t RR n


   P α
R

N  

max

,

~

,,C5.1: ( ( ), )  ,  r b r n b

r n

r n L bR t 
 

   P α
R N

B   

(6)  is non-convex with high complexity due to the 

integer optimization variables, e.g., , , ,α β Y  and the 

non-convex constraints. C2.1, C5.1 and C6 are not in 
a GP standard form due to the logarithm term in the 

rate formula of C2.1 and C5.1, and negative terms in 
C6. To solve these issues, we first relax the integer 

variables as 
, ,[0,1], [0,1]r n r b    and 

[0,1],ry   then, we transform C2.1 and C5.1 into 

the GP formulation based on proposition 1 and convert 
C6 via proposition 2. 

Proposition 1: Assuming as the index of 
iterations in Step 1, we rewrite 

2 , 1 2 , 1 2 1

1

log ( ( )) log ( ( )) log ( ( ))
( )

r
r n r r n r

r

F
t F t N t

N t
   and 

replace it in (5). Now, by using DC-approximation we 

can achieve linear approximation of 
2 1log ( ( ))rN t  as  

2 1 2 1log ( ( )) lo  g ( ( 1))r rN t N t                    (7) 

    
2 1 1 1log ( ( 1))( ( ) ( 1)),r r rN t N t N t     

where
, .r r n

n

N 


 
N

 Further simplifying (7), we 

have 

2 1 1log ( ( )) log( ( 1))r rN t N t                              (8) 

            , 1 , 1

, 1 , 1

( ) ( 1)
,

( 1) ( 1)

r n r n

n nr n r n

n n N

t t

t t

 

  

 




 
 
 N N

N

 

where via replacing (8) into C2, we have  

, 1 2 , 2 1( )[log ( ( ) log ( ( 1))r n r r n r

r

t F t N t 


  
R
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, 1 , 1 rsv

, 1 , 1

( ) ( 1)
] ,   ,

( 1) ( 1)

r n r n

n

n nr n r n

n n

t t
R n

t t

 

  

 


   

 
 
 N N

N N

N
 

now, by applying AGMA, we reach to GP form of 
C2.1 as  

~
rsv

, 1 2 1C2.1:[ ( )[log ( ( 1))n r n r

r

R t N t


  
R

 

1( )

, 1 , 1 2 ,

, 1 1

( ) ( ) log ( ( ))
]]

( ) ( )

r t

r n r n r r n

r

n r n r

n

t t F t

t t


  

 









 
 
 




R

N

N

 

1( )

, 1

, 1

, 1

1

( 1)
( )

( 1)

1,
( )

r t

r n

r n

n N r n

n N
m

r

t
t

t

t
















 
 


 

 
 
  
 




 R

 

Where 

1( )r t                                                                       (9) 

r, 1 2 ,

, 1

, 1 2 ,

, 1

( 1) log ( ( ))
,

( 1)
( 1) log ( ( ))

( 1)

n r n

r n

r n r r n

r n N r n

n

r

N

t F t

t
t F t

t

 


 

 





 
 

 
  
 

 
R

 

and 

1( )r t                                                                      (10) 

, 1

, 1

, 1

, 1

, 1 2 ,

, 1

( 1)
( 1)

( 1)

.

( 1)
( 1) log ( ( ))

( 1)

r n

r n

n N r n

n N

r n

r n r r n

r n N r n

n N

t
t

t

t
t F t

t







 







 








 
 

 
  
 




 
R

 

Similar to C2.1, DC-approximation is used to C5.1 
and we can rewrite it as  

, 1 , 1 2 , 2 1( ) ( )[log ( ( ) log ( ( 1))r n r n r r n r

r n

t t F t N t  
 

 
R N

 

, 1 , 1 max

, 1 , 1

( ) ( 1)
] , .

( 1) ( 1)

r n r n

b

n nr b r n

n n

t t
L b

t t

 

  

 


    

 
 
 N N

N N

B

 

Now, by using AGMA, we have GP form of C5.1 as  

~

C5.1:  

, 1 , 1 2 ,( ) ( )[log ( ( )r n r n r r n

r n

t t F t  
 


R N

 

1( )
max

, 1

, 1 1

( 1)
]

( 1) ( )

t

r n b

n r n

n

t L

t t




 







  
 

  

N

N

 

1( )

, 1 , 1 2 1

1

( ) ( ) log ( ( 1))

( )

t

r n r b r

r

n

t t N t

t


 









 
 
 

 R

N

 

1( )

, 1

, 1 , 1

, 1

1

( )
( ) ( )

( 1)

1,
( )

t
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                                                                            (14) 

Proposition 2: Due to existence of negative terms 
in C6, it does not satisfy the conditions of posynomials 
in GP formulations. Therefore, by adding 1 to both the 
left and right hand sides of C6, we have 

,C6: 1 1.r b r

b

y


  
B

Now, by applying AGMA 

technique, we achieve the monomial approximation 
for C6 as [23] 

1

~
( )

,

1

1
C6 : ( 1) ( )

( )

t

r b

b t








 
B

 

               1( )1

1

( )
( ) 1,  

( )

tr
r

y t
r

t







     R R  

where 

1

1

1
( ) ,

1 ( 1)r

t
y t

 
 

                                           (15) 

and 

1
1

1

( 1)
( ) .

1 ( 1)

r

r

y t
t

y t





 
                                           (16) 

Consequently, at the iteration
1t ,  the GP 

approximation of (6) is 

, ,min ( , ( ), ),U tα β Y α P Y                                    (17) 

~ ~ ~

subject to: C2.1,C3,C4,C5.1,C6,C7.  

Iteratively, the optimization problem (17) can be 
solved via on-line available soft wares such as CVX 
[29]. Step 1 will be stopped if the convergence criteria  
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and  are met and the optimal 

values of * *( ), ( )t tα β and *( )tY are achieved. 

 

Step 2: Power Allocation Algorithm 

For fixed values of * *( ), ( )t tα β and *( )tY achieved 

from Step 1, the optimization problem for power 
allocation in Step 2 is 

2min ( ( )),U tP P                                                  (18) 

subject to:  C1,  

~
rsv

,, 2C2.2 : ( ( )) ,   ,r nr n n

r

R t R n


   P
R

N  

max
,, , 2

~

C5.2 : ( ( ) ,)   r nr b r n b

r n

L bR t 
 

   P
R N

B

where the index of iterations in Step 2 is 2.t  In (18), 

the only optimization variable is P . Hence, (18) has 
less computational complexity compared to that (3).  
(18) is non-convex due to the non-linear logarithm 
terms in C2.2 and C5.2.   To overcome computational 

complexity, at iteration 
2.t  we first apply DC 

approximation of  
~

, , ( )k s nR P  and then by applying 

AGMA, we will transform (18) into GP 
approximation as shown in the Proposition 3. 

Proposition 3: We can rewrite C2.2 for user 
n N  as 

, 2 ,

rsv

, , 2 2

, 2

( )
( )

( ) ( ) log ( ) ,
( )

r
r n r n

r
r n r n n

r r n

F
p t h

N t
t t R

I t
 



 
 
  

 
 
 


R

w

hich can be mathematically represented as 

, 2 ,

rsv

2 , , 2

, 2

( )
( )

log ( ) ( )( ) ,
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r
r n r n

r
r r n r n n

r n

F
p t h

N t
t t R

I t
 


 


 R

 

therefore, we reach to  

rsv
2

~
, 2

,

, 2 ,

( )
C2.2 : ( ) 2 .

( )
( )

nr n R

r r n
r

r n r n

r

I t
t

F
p t h

N t


 

 

 
 
  
 
 
 

 R

 In 

In order to decrement of computational complexity, 
we introduce the predefined threshold for tolerate 

interference as th

,r nI  and it used in C5.2 instead of 
th

,r nI  which leads to the less limitation of network rate 

[31- 33]. By this assumption C5.2 is converted into 
GP standard form as  

, 2 ,~

, , 2

,

( )
( )

C5.2 : ( ) ( )( )

r
r n r n

r
r r b r n th

r nn

F
p t h

N t
t t

I
 







 R

N

 

                
max

2 ,  .bL
b  B  

Consequently, at the iteration 
2 ,t  the GP 

approximation of (15) is  

      
2min ( ( )),U t

p
p                                                   (19) 

         
~ ~

subject to:  C1,C2.2, C 5.2.  

Iteratively, (19) is solved until the convergence criteria 

, are met. Since the 
proposed algorithm is a kind of the block SCA 
method, its convergence is guaranteed [22, 34, 35].  

 

IV. SIMULATION RESULTS 

To study the performance of our approach, we 
consider that users are randomly located within the 

area served by 5R   RRHs and 2B   BBUs. The 

channel power loss between user  nN  located at a 

distance 
r, 0nd   from RRH r R , is modeled as 

, 4

,

1
.

1 ( )
r n

r n

h
d




 The values of maximum BBU 

load and the number of antennas mounted on the RRH 
r R  are randomly chosen in the range of 

max [2,24]bL    and  [100,200],rF   respectively. 

Furthermore, we set C 0.25,a   

 and  m a x 40rp    Watt  

( )r R  for all of the computations. 

In order to evaluate the efficiency of our proposed 
algorithm, we compare it with the traditional algorithm 
of wireless network. Hence, we choose the max SINR 
approach as traditional algorithm for user association. 
In traditional wireless networks, each user is assigned 
to the RRH based on the largest average received 
SINR [8], [36] as described by 

Associated user n to RRH r   

argmax { },   , ,r rSINR r n   R N  

meaning that, based on reference signal received 
power (RSRP) broadcasted by RRHs [37], each user  
nN  calculates received SINR from all RRHs and 
connects to the RRH with the largest received SINR. 

SINR for user nN  at RRH r R is calculated as 

, ,

2

,

,
r n r n

r n

p h

I 
in which 

, , ,

,

r n r n r n

r r r n n

I p h  

      

  
R

 is 

the interference to user nN at RRH .r R  
Therefore, user association to RRHs is fixed and 
predetermined. In traditional algorithm, we consider 
all of the RRHs are in state on and they cannot be 

switched off  (i.e., 1,ry r  R ). Consequently, 

the resource allocation problem (3) can be formulated 
as 
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Fig. 2. Total transmission power versus N with 
1 2 3 4 5 140F F F F F     and rsv 0.3( / ).nR bps Hz  

 

,min ( ),Uβ P P                                                      (20) 

subject to:  C1 C5.  

In (20) the only optimization variables are β  and .P  

Therefore, similar to (3), we decompose (20) into two 
sub problems and apply CGP to solve it. Thus, with a 
given (fixed) user allocation vector (i.e., )α , fronthaul 

links and RRHs are assigned to BBUs and power is 
allocated to each user. Also, in the traditional 
algorithm, the antennas of each RRH are equally 
divided between the users that connected to it.  

The aim of purposed approach is to minimize the 
total power consumption cost by switching off the 
under-utilized RRHs.  The RRHs with low data traffic 
are switched off and users assigned to them are moved 
to the neighboring RRHs. Therefore, the number of 
active RRHs and power consumption cost of network 
will be minimized. Compared to that, in traditional 
scenario, users are assigned to the RRHs regardless of 
minimizing the overall network power, hence, none of 
the RRHs will be switched off and user association is 
predefined.  

In Fig. 2, the total transmission power versus the 
number of users is illustrated for both our proposed 
approach and the traditional scenario. From Fig. 2, it is 
clear that the total transmission power increases with 

increasing N  for both cases. However, the total 
transmission power in our proposed algorithm is less 
than that of traditional scenario. This is because, in 
order to minimize the power consumption cost of 
network, RRH association manages the interference 
between RRHs which leads to switch off under-
utilized RRHs while the RRH assignment to each user 
is predefined in traditional scenario. For instance, in 
our proposed algorithm, when data traffic is low, e.g., 

20,N   Fig. 2 illustrates that with only one active 

RRH (e.g., 
1 2 3 4 5=1, y =y =y =y 0)y the minimum 

required rate of users will be satisfied while all five 
RRHs are in state on for traditional algorithm. 

Reducing the number of active RRHs can lead to 
power saving of the RRHs.  Also, Fig. 2 shows that 
with increasing traffic demand, we need the more 

number of active RRHs to satisfy the 
rsv

nR of users. 

For instance, in proposed algorithm, when 

70N  four RRHs are activated and the total 

transmission power is close to the traditional 
algorithm.  

Besides, Fig. 2 indicates that with increasing ,N  

the total transmission power is linearly increased via 

proposed approach. Note that, for [40,50],N  this 

transmission power with increasing N does not have 

considerable increment while by switching on a new 
RRH, there will be a sudden increase in the total 
transmission power. For instance, when 50,N   

three RRHs are in state on, but when 60,N  in 

addition to the previous active RRHs, RRH 4 should 

be switched on  4 1 .y   

In Fig.3, the effect of minimum required rate of 
each user, e.g.,  on the total transmission power is 
demonstrated. Fig.3 indicates that with increasing 

  to meet C2, the total transmission power is 

increased. This is because, with increasing 
rsv

nR  and 

traffic demand, the feasibility regions of resource 
allocation hold which leads to switch on the more 
number of RRHs and increase power consumption 
cost of RRHs. Fig.4 indicates the total throughput 
versus the total number of users for both algorithms. 
Based on multiuser diversity gain [38], Fig.4 
demonstrates that the total throughput is increased 
with increasing the number of users for both 
algorithms. Fig.4 shows when data traffic is low 

(N=20) in our proposed algorithm, the total 

throughput is less than that of traditional algorithm. 
This is because in our proposed algorithm
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Fig. 3. Total transmission power versus rsv

nR  with 
1 2 3 4 5 140F F F F F      and 30.N   

 

Fig. 4. Total throughput versus N with 
1 2 3 4 5 140F F F F F      and rsv 0.3( / ).nR bps Hz  

only one RRH is in state on but in traditional 
algorithm all of the RRHs are in state on. For this 
reason, the feasibility region of resource allocation in 
traditional algorithm is larger than that of our proposed 
algorithm, therefore, users are closer to the RRHs and 
they can get larger SINR with less interference and 
transmit power compare to that of our proposed 
algorithm. Besides, Fig. 4 shows that with increasing 

traffic demand (after N=40), the total throughput in 

our proposed algorithm, will be higher than the 
traditional scenario. It is mainly because, with 
increasing data traffic the more number of RRHs are 
switched on via our proposed algorithm, but their 
number is still lower than traditional scenario. Hence, 
our proposed algorithm with the less number of active 
RRHs can considerably control interference between 
RRHs and it can provide better coverage of users for 
the dense network. 

Therefore, the total achieved throughput will be 
better than traditional algorithm. Note that, in high 
data traffic, providing higher throughput is more 
significant than decreasing power consumption cost, 
therefore by switching on the more number of RRHs 
in a cell, spectrum efficiency and the total throughput 
of the network will be improved although overall 
network power will be increased.  

Based on our last knowledge, the majority of 
pervious works, e.g., [15], [39], EE has been defined 
as the ratio of the achievable sum rate and the sum 
power consumption as 

                       

total

,
n

n

R

EE
P




N                            (21)    

which 
n

n

R



N

 and 
totalP are total throughput and total 

transmit power, respectively. Hence, we consider
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Fig. 5. Energy efficiency versus N with
1 2 3 4 5 140F F F F F      

 totalP as the total energy consumption cost of network 

which is defined in utility function (2). Therefore, 
based on (21) and  (2), we can define EE as the ratio of 
the total achieved throughput  to the total energy 
consumption cost of network in units of bps/Hz/Watt, 
which is given by  

, ,

, ,

( , )

( , , ) .
p

r n r n

r R n N

r n r n a r r

r R n N

R

EE
C y F




 

 








P α

α P Y              (22) 

In Fig. 5, we show the EE versus the total number 
of users for our proposed approach and traditional 
scenario. Fig. 5 demonstrates that EE increases by 
increasing the number of users in traditional algorithm. 
Also, the simulation results illustrate that via proposed 
approach with increasing the number of users, EE 
increases, but as soon as a new RRH is switched on, 
EE will be reduced. This is because with increasing 
traffic demand, the more number of RRHs should be 

switched on to satisfy 
rsv

nR of users, which leads to the 

more power consumption cost and decrement of EE.  
For instance, Fig. 5 indicates that immediately after 

20, 30N N   and N=50,  RRHs 2, 3, and 4 are 

switched on, respectively. Therefore, the total 
transmission power is linearly increased and EE will 
be decreased. Moreover, from the simulation results it 
can be seen that in both algorithms, with increasing the 

value of rsv ,nR  the EE decreases because the 

feasibility region of resource allocation in (3) is 
decreased which leads to less total achieved 
throughput. However, due to interference management 
and RRH association to each user via proposed 
approach, the chance to allocate feasible transmit 
power between users will be increased which can 
provide better EE compared to that of traditional 
Algorithm. 

V. CONCLUSION 

In this paper, we study power efficient 
optimization problem in massive MIMO aided C-

RANs, where the RRHs can be switched off to save 
energy. We formulate this problem as a joint RRH and 
power allocation to each user, and fronthaul link and 
RRH-BBU assignment optimization problem while 
the minimum required rate of each user should be 
obtained. To minimize the total network power 
consumption, we develop an efficient two-step 
iterative algorithm to dynamically allocate resources. 
The simulation results illustrate that our proposed 
scheme is more efficient compared to the traditional 
algorithm, in terms of minimizing overall network 
transmission power which leads to improve EE.  
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