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Abstract— Human activity recognition is essential for providing services in the Internet of Things. Thanks to their
ubiquity, sensing capability, and processing power, modern smartphones have become attractive devices for activity
recognition. However, their limited battery capacity places a hurdle to exploit such sensing and processing power. While
power is consumed in both the sensing and computation layers of the recognition process, power optimization in the
latter layer has not been studied extensively enough. This paper strives towards energy-efficient activity recognition by
focusing on the cost of feature extraction. To this end, the energy cost of extracting various features is examined and
test-cost sensitive prediction models are employed to recognize activities from features. Experimental results reveal a
considerable opportunity to conserve energy by awareness of the cost of feature extraction. With only a small sacrifice
in prediction accuracy, the energy cost of computations can be reduced by a factor of three.

Keywords- Internet of Things (1o0T); Human Activity Recognition (HAR); Power-Aware Computing; Pervasive Computing;
Test-Cost Sensitive Learning; Ambient Intelligence (Am1)

not limited to, areas of healthcare, care for the elderly
I. - INTRODUCTION and children, assisted living, sports, and the military.

Ambient intelligence  (Aml) is an essential It is possible to recognize human activities by
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prerequisite to improving the quality of human life.
Aml refers to environments which can sense context,
recognize actions, and intelligently adapt to situations
and cater to needs [1]. One fundamental building block
of an Aml system is the capability of recognizing
human activities. For example, when someone has been
walking in a park listening to soft music, the player will
switch to upbeat music just after this person starts
jogging.

Applications of human activity recognition (HAR)
go far beyond this basic example and include, but are
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processing the installed video camera feeds of an
environment [2, 3]. However, this is an obtrusive and
compute-intensive approach and generally disliked by
those inhabiting or frequenting the environment.
Another approach involves mounting several sensors
on the body of the subjects [4]. This only alters the type
of obtrusiveness, from mounting cameras to wearing
sensors. Currently for HAR, there is a viable alternative
to wearable sensors and video cameras: smartphones.
The following properties of today's smartphones make
them suitable devices for activity recognition:
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e Ubiquitous: Almost everyone owns at least one
smartphone.

e Unobtrusive: People are accustomed to
carrying a smartphone.

e Sentient: Smartphones are equipped with
various kinds of sensors such as
accelerometers, gyroscopes, proximity sensors,
etc.

e Capable: Smartphones have powerful
computational resources and can perform local
computations.

e Connected: Whenever required, smartphones
can offload heavier computational tasks to the
cloud.

The generic problem of smartphone-based activity
recognition is depicted by Fig. 1. The raw inputs to
HAR are the discrete stream of signals collected from
phone sensors. Among the various types of sensors
found on a typical smartphone, different subsets of
sensors have been employed in literature. The current
study utilizes tri-axial accelerometer sensor data. Each
sample of this sensor is a tuple of three acceleration
values in three-dimensional space. The sensor data is
usually sampled at a specific fixed period of time.
However, to help with power efficiency, sometimes
sensor reading rates are lowered when this does not
adversely affect recognition accuracy. At the heart of an
HAR solution is a model which predicts activities from
sensor data. This model is usually data-driven and
learnt from labeled training data collected by volunteers
over a period of several days or months. The model
usually does not consume raw sensor data directly, but
rather some informant features extracted from it. For
this purpose, the data is segmented into some windows
of a specific length, and some features are extracted for
each window. These defined features can be of a time-
domain (such as mean value and standard deviation),
frequency-domain (such as the dominant frequencyy), or
of any other type.
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Fig. 1: The problem of human activity recognition.
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A major challenge for smartphone-based activity
recognition is power efficiency. HAR is a classification
machine learning task which has been extensively
studied by researchers in terms of prediction accuracy.
However, the power consumption optimization of HAR
deserves more attention, especially when it comes to
smartphones. The limited battery capacity of these
devices restricts the energy budget of resource-hungry
HAR operations. Power-unawareness can cause
excessive heating and rapidly discharge the device’s
battery, thus leading to poor user experience and low
applicability of unoptimized activity recognition
approaches.

The majority of previous research in the field of
power-efficient HAR has focused on power
optimization at the sensing layer. Considering the rapid
advancement of low-power sensing technology and the
tendency of activity recognition algorithms to become
more complex and CPU-intensive, it is also vital to
strive for power optimization in the computational layer
of HAR tasks. The present study is an effort to optimize
the power consumption of the computational part of
HAR tasks by employing lazy test-cost-sensitive
decision trees, which avoid the calculation of costly
features as much as possible.

Therest of the present paper is organized as follows.
Section Il reviews related work while Section Il
presents research motivations and the proposed
approach. Section IV provides details on the
experimental setup and discusses the experimental
results. Finally, Section V concludes the paper and
presents the future work.

Il.  RELATED WORK

Along with their power of sensing, computations,
and communications, the ubiquity of smartphones has
made them the ideal platform for HAR. In [5], the tri-
axial accelerometer of a smartphone is used to predict
user activities. Machine learning over some features
extracted from 10s segments of sensor data was
employed to recognize activities such as standing,
walking, jogging, and ascending and descending stairs.
Ravi et al [6] utilized deep learning over data from both
accelerometer and gyroscope sensors for HAR.

While prediction accuracy is the main concern of
the works mentioned above and of many others, the
limited battery capacity of smartphones has motivated
some researchers to take into account the power
consumption of prediction operations. HAR tasks
consist of different layers of work and power
optimization efforts in this area can be best organized
and understood by using this layered perspective. Fig. 2
expands previous Fig. 1 by illustrating these different
layers. As a place where electrical energy is consumed,
within each layer lies an opportunity to conserve
energy. The whole task can be decomposed into two
layers: sensing and computations. The latter itself
consists of two sub-layers: feature extraction and
classification. The duty of the sensing layer is to
activate and read sensor values and then provide them
as a stream of raw data to the layer of feature extraction
and preprocessing.
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Fig. 2: Layering of a human activity recognition task.

A. Sensing Layer

Some researchers have worked on optimizing
power consumption at the lowest layer by disabling as
many sensors as possible. For smartphone-based
activity recognition, [7] proposes an algorithm that
attempts to ignore (and turn off) some sensors when
data from other sensors provide sufficient informant for
prediction. The same concept is used in [4, 8] for
activity recognition via multiple wearable sensors.
Some researchers have studied the tradeoff induced by
the temporal resolution of sampled sensor data. Higher
sensor sampling rates can improve prediction accuracy
but can also adversely affect power consumption. In
addition to adjusting the sampling rate, the duty cycling
(sleep scheduling) of sensors can raise power
efficiency. Employing both techniques, Yurur et al [9]
report 20% to 50% improvement in sensor power
consumption at the cost of a 15% accuracy decrease. In
[10], a comprehensive study is conducted on the sensor
sampling rate's effect on the accuracy of activity
recognition and the results show that the tradeoff is, in
fact, dependent on the type of activities. In other words,
some types of activities, such as ascending stairs,
require a high temporal resolution of sensor data to be
accurately predicted, while some others, such as sitting
and standing, do not. The same holds true for the set of
features extracted from raw sensor data, which show
that some activities only require time-domain features
to be accurately predicted while for some other
activities, more compute-intensive frequency-domain
features are also needed. The minimum per-activity
sampling rate and feature set requirements have been
experimentally quantified and the results incorporated
into their A3R algorithm. This starts by the maximum
requirements, and, as soon as an activity is predicted, it
switches to the optimum requirements and remains that
way until a threshold of degradation in recognition
confidence is observed. The A3R algorithm obviously
works at both the sensing and feature extraction layers
and achieves a 20% - 25% energy saving.
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B. Computation Layer

Computational tasks consume power and the
computation layer of Fig. 2 is another place to
implement power optimization efforts. The trend of
smartphone applications to become smarter, more
complex, and thus more power-hungry, along with the
ongoing enhancements in low-power sensor hardware
is shifting the importance of power optimization from
the sensing layer to the computation layer. Some
researchers have tackled the problem at this layer by
employing types or versions of algorithms which are
less compute-intensive. Anguita et al [11] demonstrated
that using a fixed point instead of a floating point
implementation of SVM algorithm can significantly
decrease the power consumption of activity recognition
tasks at the price of a subtle increase in the recognition
error. Ravi et al [6] proposed a framework for activity
recognition based on deep learning, which avoids costly
computations and is power-efficient.

C. Feature Extraction Sub-layer

The feature extraction sub-layer extracts
informative data from raw sensor readings. These
features are the inputs into the classification algorithm.
A comprehensive overview of the possible extracted
featuresis given in [12]. This layer can also be the target
of energy optimization. Yan et al [10] showed that
sometimes ignoring costly frequency-domain features
does not significantly decrease the recognition accuracy
of some activities such as sitting and standing. In [13],
a similar study is conducted for the same purpose.
Energy optimization in the feature extraction sub-layer
deserves more attention because it involves a
significant amount of calculations and is often more
compute-intensive than the classification sub-layer.

IIl.  THE PROPOSED APPROACH

A. Motivation

Feature extraction is a significant part of the
computation layer. Power optimization at this sub-layer
of HAR is the focus of the present study. Energy
consumption is one of the feature extraction costs and
it is desirable to avoid calculating as much as possible
costly features during classifications. The idea is to
conserve feature extraction energy by exploiting the
fact that various types of features are not equal in terms
of the power they consume and the contribution they
make to the prediction outcome. Table 1 presents the
features used by [5] for activity recognition on
cellphones. The table contains a total of 43 features
categorized into 6 different groups. The average
amount of energy consumed to compute each feature
type is depicted in Table 2. The energy measurement
approach will be described later in Section V.

As shown in the table, the energy demand for
feature calculations varies significantly among the
groups, from 3.25 pJ (microjoules) for DIST up to
193.6 uJ for RSS.
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Table 1: Features for activity recognition from
accelerometer data.

Group Description Count
AVG Average acceleration 1 per axis
SD Standard deviation 1 per axis
AD Average of  absolute | 1 per axis
difference  from mean
value

DIST Distribution ~ over 10 | 10 per axis
equal-sized bins
RSS Average of the root of sum | 1
of squares of the three axis
values

TBP Average time between | 1 per axis
waveform peaks

Table 2: Energy consumption cost of extracting
features in different groups.

Group | Energy (uJ)
AVG | 274

SD 28.3

AD 28.2

DIST | 3.25

RSS 193.6

TBP 36.7

B. Energy-Efficient Activity Feature Extraction

Activity recognition is a classification problem, and
machine learning classification algorithms may be
rendered sensitive to several types of costs, such as
misclassification costs and test costs [15]. Test-cost
sensitive techniques focus on reducing the cost of
testing attributes which act as inputs to the classifier.
This term is derived from a medical diagnosis context
in which some clinical tests are required, but it is
desirable to skip some of the more costly ones (in terms
of expense, time, complications, etc.) when the
accuracy of the results is not affected by doing so. The
present study proposes that the same concept can be
applied to fine-grained feature extraction in the field of
activity recognition so as to reduce the energy cost of
the classification task.

Despite the fact that test-cost sensitive learning can
be very effective in many practical areas, little research
has been conducted on this topic. Test-cost awareness
in machine learning can be achieved in different ways.
Some researchers have employed feature reduction
methods for this purpose [16]. This term refers to one
of the tasks in the data preprocessing phase of machine
learning whose aim is to eliminate some less important
features from input dataset, which can then result in
lower feature extraction costs. Another approach is to
exploit the ability of some learning algorithms to handle
missing attribute values [17]. The current work adopts
an approach which takes advantage of the fact that some
machine learning techniques such as decision trees,
inspect input variables in an order and so may come up
with a result before having tested all of them. This
method slightly modifies the inductive bias of the
learning algorithm making it more likely to place the
less costly features near the root of the tree.
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C. Test-Cost sensitive Decision Trees for Activity
Recognition

A decision tree is a tree structure that classifies
instances based on some testing of attribute values.
Starting from the root, each node of the tree performs a
test on a specific attribute, with the branch to the next
level depending on the test result. The instance
descends down the tree until a leaf node is reached,
where the classification of the instance is determined.
For the case of human activity recognition, the nodes of
the tree perform tests on extracted features (the features
listed in Table I, for example) and the leaves are labeled
with recognized activities, such as walking, sitting, etc.
Fig. 3 provides a segment of a sample decision tree.

There are several methods for constructing decision
trees from sample instances of data. C4.5 [18] is a well-
known greedy algorithm for decision tree induction. It
starts from the root node and selects the attribute that
best separates the node’s training instances of data.
Then, the data is split among the child nodes and the
same process repeats for attribute selection at the next
level. The process continues until data is separated
enough where a decision leaf node is placed. The
impurity of the classes in the data subset can be
quantified using the entropy measure. The definition of
this measure is provided by Equation 1, where S is the
set of data, p; is the proportion of S belonging to class i
out of c total classes.

E(S) = —Xi.1p;ilog, p; 1)

The C4.5 algorithm selects test attributes based on
their effectiveness in entropy reduction. The measure
used for this purpose is called “information gain” and is
defined in Equation 2. This equation formulates the
information gained after splitting the set S of instances
according to the possible values of attribute A. V is a
function of A which returns the set of possible values of
A while Sy is the subset of A belonging to specific class
value v.
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Fig. 3: A sample decision tree segment for activity
recognition.
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Fig. 4: The proposed HAR energy optimization framework.

For continuous attributes (which is the case for the
HAR problem), C4.5 uses maximum entropy-based
discretization to split the range of each attribute into
two pieces. In this case, function V will return these two
ranges and Sy is the subset of A belonging to range v.

The gain measure defined in Equation 2 introduces
an inductive bias into the tree learning algorithm, which
places more informative attributes nearer to the root of
the tree. In order to introduce cost awareness to the
learning algorithm, some researchers propose
alternative measures, such as the cost sensitive gain
(CSG) in Equation 3 as suggested by Tan et al [19] in
which C(A) is the cost of testing attribute A.

G(S,A)? 3)

c(4)

Nunez et al [20] proposed a weighted CSG measure
(Equation 4) which allows adjusting the relative
importance of costs by selecting the value of a w weight
constant.

CSG(S, A) =

2G(S,4)_q

(4)

D. The Proposed Framework

An overall view of the proposed framework is
depicted by Fig. 4. This can be divided into two main
parts: Modeling time and runtime. At modeling time, a
labeled HAR dataset is employed for energy profiling,
training the model, and testing it. The profiling step
measures the energy consumption of extracting various
features and so produces a Feature Extraction Cost
(FEC) vector. This vector is later used by the test-cost
sensitive modeling algorithm to train the model using a
fraction of the dataset. The trained model is validated in
terms of both energy and prediction accuracy. The
energy-error product is a viable measure for model
validation. A model which passes the validation step
can be utilized at runtime for recognizing human
activities from sensor data.

IV. EXPERIMENTS

In order to evaluate the proposed approach’s
effectiveness in feature extraction cost awareness, a set
of experiments are set up. This section presents the
details of the experiments and discusses the results.

A. Experimental Setup

1) Dataset

In order to assure the validity of the evaluations, a
real-world dataset is used for the experiments. This
dataset, provided by WISDM lab [5], contains
cellphone tri-axial accelerometer data collected by 29
volunteer subjects. Each data record contains several
fields, namely three acceleration values, a timestamp, a
user ID, and an activity class label. Activity class labels
feature one of 6 possible values: walking, jogging,
ascending stairs, descending stairs, sitting, and
standing.

2) Feature Extraction
The raw dataset contains more than 1 million sensor
reading records sampled at a rate of 20Hz. The 43
features of Table | have to be extracted from the raw
sensor signals. For extracting these features, a
transformation tool [14] is developed and published by
WISDM lab members. This tool segments sensor
signals into 10-seconds segments of 200 samples and
calculates a feature value tuple per segment. The Java
source code of this transformation tool is also released.
The present work instruments this Java source with an
energy characterization code for discovering the energy

cost of feature extraction.

3) Energy Characterization

The proposed computational energy optimization
approach requires the precise characterization of feature
extraction energy costs (The FEC vector in Fig. 4). For
the experiments, the present work utilizes an ASUS
Zenfone 2 smartphone with an Intel Atom main
processor, which runs on an Android 6 operating
system. The RAPL (Running Average Power Limit)
interface [21] is employed to access the processor
energy counters via the Android kernel sysfs interface
[22]. In order to minimize any side effects, other
processing tasks are disabled while profiling the feature
extraction code. Energy usage is measured and
averaged over the whole WISDM dataset, with the
results having been presented earlier in Table 2.

International Journal of Information & Communication Technology Research
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Fig. 5: Recognition error and Energy per Opration
for different learning algorithms.

4) Energy-aware Activity Recognition

After the energy consumption behavior of the
features is characterized, a test-cost sensitive decision
tree algorithm employs the cost vector to build the
model. For this purpose, the present study extends the
open-source Weka [23] data mining software and adds
the test-cost sensitive decision tree learning capability.
The C4.5 algorithm (known as J48 in Weka) is
extended to accept the feature extraction cost vector and
to consider costs while constructing the tree. The cross-
validation part of the software is also extended to
calculate and report the energy cost of the classification
operations. Furthermore, to be able to run Weka on the
Android platform, it was necessary to remove the
graphical parts of the software which are not supported
on the Dalvik Java virtual machine. The energy cost of
each recognition operation is defined as the sum of the
costs of the tests performed until a decision node is
visited, with the exception that each node only imposes
a cost when it is first visited. The cost of the next visits
to the same node is considered as zero since the test cost
is already paid. All experiments conducted throughout
the current work are performed by 10-fold cross
validation.

B. Results

The present study employs two different measures
for evaluating the HAR models, namely energy per
operation (EPO) as a measure of energy consumption
and recognition error as a measure of prediction
accuracy. EPO refers to the average amount of energy
consumed (in pJ) for each activity recognition
operation. Recognition error is the percentage of
incorrect predictions. Fig. 5 shows the EPO value for
the cost-insensitive C4.5 algorithm and cost-sensitive
Tan and Nunez algorithms. The Nunez algorithm
experiment is performed for three different w constant
values. As depicted in Fig. 5, the usage of a proper cost-
sensitive model can significantly decrease energy
consumption at the low cost of prediction error.
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As previously mentioned, the role of constant w in
the Nunez algorithm is to make a tradeoff possible
between energy consumption and recognition accuracy.
To study the effect of this constant on error and EPO,
the HAR maodel is built and evaluated for w values in
the range of [0,30] with an increment step of 0.1. Fig.
6a demonstrates how EPO and error are affected by the
gradual increase in the value of w. In order to better
highlight the outcome of the tradeoff, Fig. 6b reports the
same tradeoff variables using similar scales, in terms of
the percentage change from each point to the starting
point (cost-insensitive model).

As seen in Fig. 6, the outcome of the tradeoff
between energy consumption and recognition error is
promising. However, a question remains regarding the
proper value of weight w. One method of choosing this
value is to set a maximum threshold value for the
modeling error and choose a w that leads to minimum
energy consumption without exceeding the desired
error threshold. Another approach is to utilize a mixed
performance measure that is composed of both energy
consumption and error measures. Fig. 7 provides the
performance of the model for such a measure: energy-
error product (EEP). According to this graph, a proper
selection for w can be around 15 after which no
significant decrease in EEP is observed.

200 250 300
1 1
10 85 90

EPC (Microjoules)
160
L

75
Error (Percent)

100
1

50
1

(a) Error and EPO vs w.

400 500
1 1

300
300

Improvement {Percent)

(b) Error and EPO percentage change vs w.

Fig. 6: The effect of Nunez w constant value on
recognition error and Energy per Operation
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Table 3: Comparison of the results.

Energy Consumption (uJ
Model Feature = Ac_ti_\?ity . )Total Aa(:(;)r)a cy EEP
Extraction | Classification

LR [5] 652.9 21.8 674.7 85.2 9986

MLP [5] 652.9 148.6 801.5 89.7 8256

Ensemble [24] 652.9 187.8 840.7 94.0 5044

C4.5[5] 276.6 17.4 294.0 92.4 2234

Proposed (Nunez, w=6) 112.0 16.1 128.1 92.8 922

Proposed (Nunez, w=11) 78.6 15.7 94.3 91.8 773

Proposed (Tan) 70.5 14.4 84.9 92.1 671

Proposed (Nunez, w=15) 55.2 15.3 70.5 91.6 592
g via cost-sensitive decision tree learning. Experiments
& show that at this layer of HAR tasks lies great
s opportunity to save energy. Future work involves a
& comprehensive study of energy bottlenecks in applied
. learning algorithms on smartphones. Energy bottleneck
& 5 refers to points of computation where much of energy
“ is consumed for little or no gain in prediction accuracy.
g - Identifying these points can be an important step
towards developing a smartphone-friendly machine-
g learning engine for HAR and other applications in 10T.

5 : o 15 2 M % ACKNOWLEDGMENT

Fig. 7: The effect of Nunez w constant value on
Energy-Error Product (EEP).

In order to evaluate the merits of the proposed
approach, it is compared with some other models:
Linear Regression (LR), Multilayer Perceptron (MLP)
and Decision Tree (C4.5), which are all used in [5], and
an Ensemble of these three models which is used in
[24]. The experimental environment is the same as the
one used for previous experiments where the dataset
provided by the WISDM lab [5] is used as the input
dataset and Weka data mining software [23] is utilized
for evaluating the compared models. All accuracy
values are reported using 10-fold cross validation on the
models and the energy consumption values are
measured using the RAPL interface [21] of the
smartphone under test.

Table 3 provides the results of the comparisons
where energy consumption of the two computation
layers of Fig. 2 are reported separately. The fact that
feature extraction energy cost is significantly higher
than the classification cost, approves the main
motivation of the paper which is energy optimization at
feature extraction layer. The table uses some different
configurations of the proposed approach. Although
some of the compared models provide a marginally
better recognition accuracy, the proposed method
consistently outperforms the other models in terms of
energy consumption and energy-error product (EEP).

V. CONCLUSIONS

While smartphones are convenient and attractive
devices for human activity recognition, the challenge
posed by their limited battery capacity should not be
neglected. The current paper investigates the energy
optimization of HAR operations at the computation
layer or more specifically, at the feature extraction layer

This research was in part supported by a grant from
University of Bojnord (NO. 96.367.8264).
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