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Abstract— Influence maximization serves as the main goal of a variety of social network activities such as viral
marketing. The independent cascade model for the influence spread assumes a one-time chance for each activated node
to influence its neighbors. On the other hand, the manually activated seed set nodes can be reselected without violating
the model parameters or assumptions. This view divides the influence maximization process into two cases: the simple
case where the reselection of the nodes is not considered and the reselection case. In this study we will analyze real world
networks in the reselection case. First we will show that the difference between the simple and the reselection cases
constitutes a wide spectrum of networks ranging from the reselection-free to the reselection-friendly ones. Then we will
experimentally show a significant entanglement between this and influence spread dynamics as well as other structural
parameters of the network. Specifically, we show that under a realistic condition, the reselection gain of a network has
a correlation of 0.73 to a newly introduced influence spread dynamic. Furthermore, we propose a measure for detecting
star-like networks and experimentally show a significant correlation between our proposed measure and the reselection
gain in real world networks with different edge weight models.
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Decomposition

to the highest extent possible [6]. The selection of a

.~ INTRODUCTION node as an initial influencer practically means spending

The focus on the influence maximization and @ reasonable amount of budget such as money, time,

influence propagation has grown increasingly in the reputation, etc. in order to activate it. An active node

social network studies [1]-[5]. The fundamental then tries to influence its neighbors and hopefully the
question concerning the influence maximization  cascade of influence would be triggered.

problem is that what group of nodes, when selected as

T S There are different theoretical models for the
the initial influencers, can spread the desired influence

influence spread in a social network, amongst which the

* Corresponding Author

International Journal of Information & Communication Technology Research


mailto:a.vardasbi@ut.ac.ir
mailto:hfaili@ut.ac.ir
mailto:asadpour@ut.ac.ir
http://ijict.itrc.ac.ir/article-1-406-en.html

) icTR

[ Downloaded from ijict.itrc.ac.ir on 2025-11-18 ]

linear threshold (LT) and independent cascade (IC)
models are the most used ones. In the LT model each
node is considered to have a threshold and it is activated
when the number of its active neighbors goes above that
threshold [7], [8]. The IC model, on the other hand,
deals with the influence probabilities of the links [9].
According to the IC model, each directed link (u, v) is
associated with a probability p,, that indicates the
power of u at influencing v. Once u is influenced
(either as an initial node or during the influence spread),
it has a one-time chance to activate v and is successful
to do so with probability p,,,. During the influence
spread process, giving the node u a second chance to
influence its neighbor v will increase the influence
probability from p,, to 1—(1—p,,)? and the
parameters of the IC model will be violated. However,
when a previously influenced node is manually re-
activated the scenario will be different. The difference
between these two cases is more clarified in the
following example.

Consider a social network for which the influence
of individuals on their connections has been estimated
from their activity. More specifically, in this example,
influence has the form of clicking on the link that one
has posted on the network. Furthermore, once a user has
clicked on a posted link, his connections will be notified
as if he has re-posted the link. Suppose that we have a
web page and we desire to increase the number of our
page views via advertising it on the mentioned social
network. Our budget determines the number of initial
users to whom we afford to introduce our page and ask
them to post a link of it on the network. During the
cascade of influence through the network, naturally a
user will not re-post our link twice. Therefore, the
connections of an active user will see his post once. But
assume that we have paid one of our initial users double
and asked him to post our link twice. Since the second
chance has been given to him forcefully, the natural
process of influence spread in the IC model has not been
violated. Furthermore, if the time interval between the
two posts of the same user is selected appropriately, his
influence power will be nearly doubled.

Alon et al. [10] introduced several budget allocation
models for influence maximization in social networks.
In [11] the proposed framework of [10] is extended and
it is proved that the underlying spread function is
submodular over the integer lattice. The main
shortcoming in these models is that they do not consider
the influence propagation. Avigdor-Elgrabli et al. [12]
address this issue by introducing a generalized model
for the budget allocation that captures the influence
propagation in the network as well. Then, they
theoretically study the model in both offline and online
settings and identify a family of monotone submodular
influence functions over the integer lattice.

In this paper, we will experimentally study a
practical budget allocation model and analyze the
different behaviors of real-world networks towards
such a model. We will call the situation where a node is
selected more than once during the influence
maximization process, the reselection of that node. It is
worth noting that the reselection approach is quite
common in the real-world advertising. Usually, based
on the budget of the company as well as the capacity of
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an advertising hub, the hub is paid more than once to
popularize a specific product. Reselecting a hub to
maximize the influence spread demonstrates the fact
that when a node has a large number of important
connections, a one-time attempt does not saturate its
capacity and even if a fraction of its connections has
been influenced at the first try, the hub’s importance is
still more than many other nodes in the network.

We study the dynamics of networks concerning the
reselection of seed set nodes in an influence
maximization process. Since in the reselection model
the seed nodes are not necessarily unique, we use the
term seed multiset instead of seed set. We first evaluate
the behavior of different real-world networks against
the reselection possibility of the seed nodes. It is shown
that different networks respond differently to this new
feature. In some networks, there is hardly a duplicate in
the seed multiset. This means that, in the
aforementioned networks, introducing a new node to
the seed multiset usually has a better performance
compared to reselecting a previous seed node. On the
other hand, in a number of other networks, only a small
percent of the seed multiset nodes are unique. These
networks have a considerably higher influence spread
in presence of the reselection mechanism.

The main question of this study is about the cause
of the above observation in social networks. To tackle
this question, first it is shown that the reselection gain
is correlated to another influence dynamics, the
influence saturation. Roughly speaking, the influence
saturation measures the extent of degradation in the
marginal influence spread during the expansion of the
seed multiset nodes. Then, using the correlation
between the influence saturation and the reselection
gain, an entanglement between these dynamics and the
network structure will be shown. The significance of
this result is most understood for the large networks on
which performing the influence maximization
algorithms is time consuming. In such cases, our results
can be used to identify, in negligible time, whether or
not a given network is reselection-friendly. Upon
identification, suitable influence spread policies can be
adapted accordingly.

Another practical point of this paper is that its
results can be used to detect the origin of reselection-
aware behavior of different networks. This knowledge
is useful for the organization who wants to maximize
the influence spread in the network. For example, it
gives insights on how to manipulate the network, by
adding new nodes or building new links, in order to
change its reselection-aware behavior and increase their
benefit.

The structure of the consequent sections is as
follows. In the following two subsections a brief
overview of the influence maximization research and
the budget allocation models as well as the definitions
and parameters required for the following parts of the
paper are presented. In Section Il we will discuss the
saturation dynamics in the influence maximization and
propose a L-curve based parameter for measuring it. In
order to be able to present our observations in the real-
world networks, we first explain our experimental setup
in Section I1l. In that section we also introduce a new
model for the edge weights which considers the
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transitivity behavior in social networks. After that, in
Section 1V, we first show the different behaviors of
networks to the reselection possibility. Then, we argue
why the reselection gain is supposed to correlate to the
saturation behavior and show such a correlation for a
class of networks. Finally, we will show a correlation
between the percentage of low degree nodes and the
reselection gain. We will conclude the paper and
propose possible future work in Section V.

A. Related Work

The formal definition of influence maximization is
given in [6] as:

Definition 1 (Influence Maximization) Given a
directed graph G as a social network and a diffusion
model for the influence; determine the set of influential
targets of size at most k whose activation will cause the
largest number of activated nodes in G.

Kempe et al. showed that the influence spread
function is a submodular function and hence proposed
a greedy (1 —1/e) -approximation to the above
problem. The high time complexity of the greedy
algorithm commenced a new stream of research on the
scalable influence maximization proposals. In this
paper the CELF++ algorithm of [13] is referred to asthe
simple greedy algorithm. However, CELF++ and other
speed ups such as [14], [15] did not scale acceptably for
the networks of millions of nodes. As the social
networks grow larger and larger, the need to scalable
algorithms with promising performances becomes
more realized. That is why a considerable number of
scalable influence maximization algorithms have been
published in recent years [16]-[21].

The budget allocation in influence maximization
models the fact that the probability of an influencer to
influence its neighbors depends on the budget allocated
to it. Conveniently, the literature deals with the discrete
budgets in this context [10]. As such, the allocation of
k units of budget to someone means giving her k
chances to influence her neighbors (instead of a one-
time chance). Earlier budget allocation models such as
[10], [11] did not consider the propagation of influence
in the network. These models are consisted of a bipartite
graph connecting the source and the target nodes. Based
on their allocated budgets and according to a given
influence model, the source nodes influence a number
of their target neighbors and no spread of influence
happens.

In [12] the influence propagation is introduced to
previous budget allocation models, yielding a rather
complete model for the influence maximization budget
allocation in social networks. They consider the
influence spread as a two-stage process:

1. Influence of seed nodes based on their allocated
budget on their neighbors,

2. Influence propagation initiated by the
influenced seed neighbors from the previous
stage.

Based on the above assumption, they propose the
budgeted triggering model whose combined influence
function is a monotone submodular function over the
integer lattice.
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Hatano et al. considered the adaptive allocation of
budgets based on the responses from the previous
campaigns [22].

B. Our Contribution

We use a practical version of the model by [12] to
analyze the behavior of real world networks on the
influence spread dynamics when the reselection is
possible. Unlike [12] which deals with the theoretical
bounds and approximation algorithms of the budget
allocation in the influence maximization problem, we
try to study the practical consequences of this
generalization. Our contributions can be listed as
follows:

e  The two currently models for the edge weights,
namely Weighted Cascade and Trivalency, do
not consider the transitivity behavior of the
social networks. We present the transitive
multi-valency model to address this issue.

e We show that in all of the three models, the
networks have a wide range of responses to the
reselection possibility. The reselection-friendly
networks demonstrate their friendly behavior
even for the fading parameters as low as 0.6.

e We detect a high entanglement between the
reselection gain and influence spread dynamics
for a class of network with a specific structure.

e Finally, it is demonstrated that the star-like
networks with a high portion of low degree
nodes have a high probability of being
reselection-friendly.

C. Parameters and Definitions

Considering the possibility of reselection at the
influence maximization seed set nodes is equivalent to
substitute set into its generalized concept multiset. A
multiset is a collection of elements that can have
multiple instances of elements [23]. The number of
instances of an element in a multiset is called the
element’s multiplicity. For example, in the multiset
{a,a, a, b} the elements a and b have multiplicity 3
and 1 respectively. A set is a special case of a multiset
for which all the elements have multiplicity 1. Multisets
are sometimes represented by elements of Z7*, a vector
of non-negative integers where m is the size of the
elements space and each field of the vector represents
the multiplicity of the corresponding element.

Consequently, the reselection possible influence
maximization is defined with the help of the multisets.

Definition 2 (reselection possible influence
maximization) Given a directed graph G as a social
network and a diffusion model for the influence;
determine the seed multiset of influential targets of size
at most k whose activation will cause the largest
number of activated nodes in G. Each node of the seed
multiset with multiplicity m has a m times chance at
influencing its neighbors.

One may argue that the reselection of a seed node
has less influence compared to its selection as the first
time. To address this issue, we define a more general
setting that models the possible fading effect caused by
reselection.
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Definition 3 (reselection possible influence
maximization with fading) Given a directed graph G as
a social network, a diffusion model for the influence
and a fading parameter 0 < « < 1; determine the seed
multiset of influential targets of size at most k whose
activation will cause the largest number of activated
nodes in G. Each node of the seed multiset with
multiplicity m has a m times chance at influencing its
neighbors; but its influence at the »™ chance is faded
by a factor of a®!. The extreme cases where @ = 0 or
a = 1 respectively correspond to the simple influence
maximization case (Definition 1) and the reselection
possible influence maximization without fading
(Definition 2).

Submodular functions play an important role in
influence maximization as well as a great number of
computer  science  optimization problems. A
submodular function is mostly known by the
diminishing return property.

Definition 4 (Submodular function) A set function
f:2V > R is submodular if for every A € B € V and
e € V\B it holds that

fAuie}) - f(A) = f(BU{e}) — f(B) o))

When the reselection of nodes is possible and we
are dealing with the multiset rather than set, the set
function can be extended to a function over the integer
lattice; i.e. non-negative integer vectors over the
Euclidean space. A submodular function over the
integer lattice is characterized as follows:

Definition 5 (Submodular function over integer
lattice) A function f:Z7T — R is submodular if for
every x,y € ZT* it holds that

fO+fO)=fxvy)+fxAy) 2

Where x vy and x Ay represent the coordinate-
wise maxima and minima, respectively.

Through the rest of this paper, the influence spread
function of a set S and a multiset M on a network G is
shown by o,(S) and of*(M) , respectively. The
superscript m on the latter function denotes the multiset
domain of the function. To compute the spread of M,
each node of the multiset is given as many chances as
its multiplicity within M.

Finally, we define the reselection gain (RG) to be
the ratio of the influence spread in the reselection case
to the simple case. Formally, for a given graph G and
seed size k, the reselection gain is defined to be:

m
max oc' (M)

maxog )

RGg (k) = ®)

Il.  INFLUENCE SATURATION

Suppose that for each k the maximum influence
spread on graph G caused by activating k nodes of G is
shown by (k). The submodularity of the spread
function implies that (k) is a concave function of k.
As such, for every graph G there is a saturation
threshold k7. after which the positive slope of the 7, (k)
function will be insignificant; i.e. the graph saturates by
the influential seed set nodes of size k..
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Observations on the behavior of the 7 (k) function
for real world networks G reveals an interesting
saturation dynamics. For a number of networks the
saturation threshold is 1. In other words, the influence
spread of the most influential node is such that the
marginal gain of the next seed set nodes becomes
negligible. We call this behavior as the sharp
saturation. Figure 1 shows two sets of networks with
different saturation behaviors. The y-axis of these plots
is the 74 (k) normalized by the node size of graph |G|
for simplicity of comparison.

We define the influence saturation (1S) parameter to
entail the saturation dynamics of different networks.
The problem of finding a saturation measure for a
concave function has a resemblance to the L-curves and
using them to solve ill-posed problems through
regularization [24]. One method for locating the elbow
in a L-curve is to find the point with maximum distance
from the line obtained by connecting the two ending

a) smooth curve
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Figure 1. The plot of 74(k)/|G| versus k. The network in (a) have
a smooth curve; while the networks in (b) have a sharp saturation

points of the curve. Using this method, we define
another metric to measure the sharpness of saturation in
a graph:
LCIS(G)
_ |kmax : T(kmin) — kin - T(kmax)l (4)
\/krznax + Tz(kmax)
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The L-curve Influence Saturation defined in (4) is
simply the distance of the 7 function at point k,,,;,, from
the line connecting the origin to the last point of 7 at
Kmax- A high LCIS parameter is a sign of a network
with sharp saturation behavior. As will be shown in our
experiments, the two parameters proposed in this
section are highly correlated.

The LCIS and RG parameters are expected to be
high in a star like network. By the star like network we
mean a network whose nodes can be decomposed into
two components:

e Core nodes: a small set of nodes which are
connected to a considerable fraction of
network. These nodes are highly influential.

e Loosely connected nodes: a large number of
nodes which are weekly connected to each
other but strongly connected to the core nodes.

In a star like network, selecting one of the core
nodes will spread the influence to a large section of the
network and causes a sharp saturation. On the other
hand, reselecting the core nodes instead of non-core
nodes is likely to increase the influence spread which
means a high reselection gain.

In our experiments we will test the hypothesis that
“are all the networks with a high RG, star like?”

I1l. EXPERIMENTAL SETUP

We use the Pearson correlation to show the
entanglement between different parameters on different
networks. In order to provide a confidence level for the
reported correlations, we perform the permutation test
on the data [25]. We construct the correlation on the
randomized data 10° times and report the confidence
level with a precision of three significant figures.

In the proceeding sections the statistics of the
experimented networks as well as the models used as
the edge weights are explained.

A. Networks

The experiments of this paper are conducted on the
real world networks obtained from [26]. The node and
edge sizes of the networks range from 4k to 317k and
28k to 2M respectively. All the networks in this paper
are directed. In the cases where the original network
was undirected, we have considered two directed edges
for each undirected edge, making the edge size of the
network twice its original. The networks are described
below:

e Facebook: The Facebook dataset consists of
friend lists from Facebook. The data is
collected from survey participants [27]. In our
experiments we only used the graph of
friendship.

e Wiki-Vote: The network contains all the
Wikipedia adminship voting data until January
2008. The nodes represent Wikipedia users and
a directed edge from node i to node j indicates
that user i has voted for the adminship of user
j [28], [29].

e Email-Enron: This dataset contains the email
communications of Enron. The nodes represent
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the Enron email addresses and an undirected
link between i and j indicates that either of
them has sent an email to the other [30], [31].

e Epinions: This graph is a who-trusts-whom
online social network of a general consumer
review site Epinions.com [32].

e Slashdot: Slashdot is a technology-related
news website known for its specific user
community. The network contains friend/foe
links between the users of Slashdot [31].

e DBLP: The DBLP computer science
bibliography provides a comprehensive list of
research papers in computer science. This
graph is a co-authorship network where two
authors are connected if they publish at least
one paper together [33].

e CA-GrQc, CA-HepTh, CA-HepPh, CA-
Astro, CA-CondMat: These graphs are the
collaboration network from the e-print arXiv
and covers scientific collaborations between
authors papers submitted to General Relativity
and Quantum Cosmology category, High
Energy Physics Theory, High Energy Physics
Phenomenology, Astro Physics and Condense
Matter categories, respectively [34].

e Cit-HepPh: The citation graph from the e-print
arXiv that covers all the citations of High
Energy Physics Phenomenology papers. A
directed link from paper i to j indicates that
paper i cites paper j [35], [36].

The network statistics are shown in Table 1.

For the seed (multi)set size, for a network with n
nodes we perform the intended influence maximization

algorithm with seed (multi)set sizes up to @.

Table 1.  Network statistics

Network #nodes #edges
Facebook 4,039 176,468
Wiki-Vote 7,115 103,689
Email-Enron 36,692 367,662
Epinions 75,879 508,837
Slashdot 77,360 905,468
DBLP 317,080 2,099,732
CA-GrQc 5,242 28,980
CA-HepTh 9,877 51,971
CA-HepPh 12,008 237,010
CA-AstroPh 18,772 396,160
CA-CondMat 23,133 186,936
Cit-HepPh 34,546 421,578

B. Edge Weight Models

As is common in the influence maximization
research on the IC model, for the edge weights we use
the following two models:
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o Weighted Cascade (WC) model: In the WC
model, the influence probability of each edge is
assigned to P,, = 1/d,, where d,, is the in-
degree of v [6].

e Trivalency (TR) model: This model assigns a
randomly selected probability from {0.1, 0.01,
0.001} to each directed link [15].

The above models for the edge weights do not
consider the transitivity behavior observed in real world
social networks. In what follows we propose a new
Transitive Multi-valency model that does so.

C. Transitive Multi-valency Model

Triadic closure [37] and clustering coefficient [38]
in the social network theory are two strongly related
concepts that demonstrate the transitive behavior in
social networks. In the context of influence spread, the
transitivity of nodes influence on their neighbors can be
stated as follows:

Influence Transitivity: The influence of a node u
on aneighbor v is dependent to the portion of v directly
influencing nodes who are themselves directly
influenced by u.

In other words, let the set of v directly influencing
nodes (also known as its in-neighbors) is shown by N;;
and the set of nodes directly influenced by u (also
known as its out-neighbors) is shown by N, . The
influence transitivity states that

IN, n N
ew=1F (lN—v_|>: 5)

where e,,, is the weight of the edge connecting u to
V.

In this study we use our new edge weight model
based on the influence transitivity which sets the edge
weights as follows

IN; AN\
e e ©

where R,,,, is a random multi-valency attenuator
chosen uniformly at random from the set
{372,373,37%,375}. This attenuator together with the
1.5 exponent are included to avoid the influence
saturation due to the large edge weights. In our
experiment results, this model is represented by TMv.

IV. EXPERIMENTS

The experiments performed in this study are
discussed in this section. First, the impact of reselection
possibility on different networks and different edge
weight models is analyzed. Then, the correlation
between RG and influence saturation measures is
studied. Finally, a significant entanglement between
RG and network structural parameters is identified.

A. Reselection Impact

In this section, before studying the relation between
the previously defined parameters, we show the impact
of the reselection with varying fading values on
different networks. Based on their influence spread
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behavior in response to the reselection possibility, we
categorize the network into the three following cases:

e Reselection-friendly networks: When the
reselection gain in a network without any
fading (a=1) is more than 1.5 we call it a
reselection friendly network. In these networks
the possibility of the reselecting the nodes
increases the influence spread more than 50%
compared to the simple case. A simple example
of a reselection friendly network is a star graph
consisting of a core node and a number of
pairwise disjoint nodes connected only to the
core node. Obviously, reselecting the core node
multiple of times has an outstanding gain
compared to the simple case where the core
node can only be selected once.

e Reselection-aware networks: In the absent of
fading (a=1) when the reselection gain of a
network lies between 1.05 and 1.5, the network
is called to be reselection aware. The impact of
reselection on these networks is not as
impressive as the previous case; but it is
noticeable.

e Reselection-free networks: These networks
have a reselection gain less than 1.05. In the
reselection free networks the multiset obtained
by solving the reselection possible influence
maximization hardly differs from the solution
of the simple influence maximization case. A
good example of such networks is a clique with
uniform influence probabilities. In a fully
connected network all the nodes share the same
set of neighbors and reselection of a node has
almost the same influence as selecting a new
node.

Figure 2 plots the changes of the reselection gain in
terms of the fading parameter a when the influence
probabilities are derived from the WC model. As can be
seen in this figure, Facebook and Wiki-Vote networks
are reselection friendly networks (Figure 2-a), CA-
AstroPh, CA-CondMat, CA-HepPh and Email-Enron
networks are reselection aware (Figure 2-b) and Cit-
HepTh, CA-GrQc and CA-HepTh networks are
reselection free (Figure 2-c). It is interesting to note that
the reselection gain in the reselection friendly networks,
even with a fading value as low as a=0.6 is still non-
negligible.

When the TMv model (section I11.C) is used, no
tested network is reselection free. The rise of the
reselection gain as a result of increasing a in the TMv
model is demonstrated in Figure 3. Similar to the WC
model, the reselection friendly networks show
meaningful RG values even at « = 0.6.

Surprisingly, no one of the tested networks in the
TR model are reselection friendly. Figure 4 illustrates
the change of reselection gain in terms of fading value
«a for the TR model. A comparison between Figure 2,
Figure 3 and Figure 4 shows that the behavior of the
networks is totally dependent to the influence
probability model.
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B. Influence Spread Dynamics

In this section, the relation between the reselection
gain and the influence spread dynamics in the networks
is experimentally studied. To do so, we have
constructed the correlation between the influence
saturation (LCIS) (Section Il) and the reselection gain
(RG) on the real-world networks.

When the LCIS parameter is high in a network, it
means that the influence spread of the first seed node is
considerably higher than the marginal influence spread
of the next seed nodes. The structural interpretation of
this dynamics is that the network contains a dense core
with two important properties: (1) the density of the core
is such that an influential node within the core can
influence a great portion of the core; and (Il) the
strength of the connections from the in-core nodes to
the out-core nodes is such that the activated core nodes
can influence a great number of outer nodes.

On the other hand, a high RG ratio suggests the
presence of strong hubs in the network. In the context
of influence maximization, a hub usually has two
properties: (1) it has a significant number of strong
connections; and (I1) its connections, when activated,
can in turn influence a considerable number of nodes.

Even though the above situations for the cause of a
high LCIS and a high RG does not necessarily translate
to each other, they have a positive correlation in real
world networks with the WC model. On the contrary,
when the TR or TMv models are considered, no
meaningful correlation is observed between the LCIS
and RG.
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0.5
0.4
0.3
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0.1

Influence Spread (%)
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seed set size
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Figure 5 shows the influence spread in the simple
and reselection cases in a number of our tested networks
in the WC model. It also contains the linear
approximation of the t(k) function. As can be seen in
this figure, networks such as Facebook and Email-
Enron with a sharp saturation have a high RG ratio,
while CA-GrQc and CA-HepTh with a smooth
saturation have a RG ratio near the unity.

Table 2 shows LCIS and RG parameters of the
networks. Using the values presented in Table 2, the RG
ratio has a significant correlation of about 0.74 to the
LCIS parameter.

Table 2.
model

The LCIS and RG parameters of the networks with WC

0.14
£ 0.12
0.1
0.08
0.06
0.04
0.02

%

~

Influence Spread

0.1

0.05

Influence Spread (%)

—&— reselection

Facebook 3.6 1.99
CA-GrQc 0.61 1.08
Wiki-Vote 1.76 1.58
CA-HepTh 0.59 1.08
CA-HepPh 151 1.16
CA-AstroPh 1.75 1.2
CA-CondMat 1.76 1.17
Cit-HepPh 2.29 1.12
Email-Enron 2.56 1.30
Epinions 2.84 1.18
Slashdot 3.35 1.67
DBLP 0.38 1.04
b) CA-GrQc
0 5 10 15 20 25

seed set size

d) CA-HepTh

0 5 10 15 20 25
seed set size

simple

Figure 5. Influence spread in the simple case versus the reselection case (WC model)
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This relatively high correlation value demonstrates
that usually the reselection-friendly networks are the
ones with sharp saturation, while the reselection-free
networks usually have a smooth saturation.

As stated earlier in this section, unlike the WC
model, the TR and TMv models do not exhibit a
meaningful correlation between the LCIS and RG
parameters. Several network parameters such as the
degree distribution, maximum weighted degree,
stepped w-core index distribution [39] and maximum
stepped w-core index have been examined to identify
the source of this difference. The construction of the
WC model for the edge weights (i.e. the sum of input
weights to all of the nodes equals to the unity) leads to
a maximum stepped w-core index very close to one in
almost all the tested networks. This observation led us
to the following hypothesis.

Hypothesis: The LCIS and RG parameters are
significantly correlated in the networks whose w-core
index is close to one.

vicTR (B

In order to test the above hypothesis we collected
the networks with w-core index within the interval of
1 4 0.15 as the gold set. The statistics of the gold set is
shown in Table 3. The correlation between LCIS and
RG in the gold set is 0.73 with a confidence of 1. This
partially verifies our hypothesis on the tested networks.
It remains to show that the networks outside the criteria
of the gold set (i.e. w-core outside the 1+ 0.15
interval) damage the correlation between LCIS and RG.
For each of the networks outside the gold set, we have
constructed the correlation between LCIS and RG on
the union of the gold set and that specific network. The
results are expressed in Table 4. This table contains the
statistics of networks outside the gold set. Furthermore,
for each network the correlation is constructed on the
union of that network and the gold set and the result is
included in the table. The last column of Table 4
contains the difference of the correlation after and
before (i.e. 0.73) the insertion. As is shown in this table,
the insertion of all networks but the Facebook with
TMv model significantly damage the correlation on the

[ Downloaded from ijict.itrc.ac.ir on 2025-11-18 ]

gold set. This verifies our hypothesis on the tested

networks.

Table 3. Tested networks with maximum w-core index within 1 + 0.15 (gold set)

Network Model w-core LCIS RG

Facebook 0.858 3.60 1.99

CA-GrQe 0.995 0.61 1.08

CA-HepTh 0.988 0.59 1.09

CA-HepPh 0.998 151 116

CA-AstroPh 1 1.76 1.20

CA-CondMat wc 0.99 177 117

Cit-HepPh 0.998 229 112

Email-Enron 0.998 256 1.30

Epinions 0.99 285 118

Slashdot 0.914 3.35 167

DBLP 0.982 0.38 1.04

CA-GrQc 1122 3.14 122

CA-HepTh ™Y 0.863 225 117

Table 4. Impact of inserting networks to the gold set on the correlation between LCIS and RG

Network Model w-core LCIS RG ﬁggﬁ:ﬁgon after Isrer;pact on the gold
Facebook 2.869 9.04 2.20 0.86 +0.413
Wiki-Vote 0.03 1.49 256 0.31 042
CA-HepPh 6.476 2047 | 128 0.17 056
CA-AstroPh ™y 1318 517 143 0.67 0.06
CA-CondMat 0511 0.65 1.40 0.63 010
Cit-HepPh 0.06 0.42 141 0.60 013
Email-Enron 0.213 0.80 3.10 0.05 -0.68
Epinions 0.314 2.67 2.20 0.63 010
Facebook 4.17 1816 | 131 0.22 051
CA-GrQc 1.227 6.29 1.28 051 022
Wiki-Vote TR 0.564 1740 | 142 033 0.40
CA-HepTh 0.797 0.97 1.29 0.69 0.04
CA-HepPh 7.312 2232 | 116 0.03 070
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In this section we have experimentally observed that
the reselection gain is correlated to the influence
saturation on the networks with w-core index close to
unity. In the following section a degree distribution
related parameter is introduced and shown to have a
high entanglement with the reselection gain.

C. Network Structure

Earlier in Section Il it was discussed that the star-
like networks are candidates of reselection friendly
networks. A star-like network can be characterized by
two properties:

e A small number of highly connected core

nodes;

e A great number of weakly connected border
nodes;

After a thorough investigation of network

parameters concerning the first property, no meaningful
relation between the tested parameters and the
reselection gain were found. But for the second
property, a simple weighted degree test has been
identified to have a significant correlation with the
reselection gain.

We simply set a threshold for the weighted out-
degree of the nodes and compute the percentage of the
nodes with a weighted out-degree less than the
threshold value. In what follows this quantity is shown
by §. One may argue about the selection of the
threshold value. Figure 6 shows that the correlation
between RG and § is hardly sensitive to the threshold
value and all the threshold values in the range from
3.0E-04 to 3.0E-03 can be chosen safely. For all of the
correlations reported in Figure 6, the confidence level
is greater than 0.994.

This experiment is performed over all of the 27
networks listed in Table 3 and Table 4 and shows that
for a wide range of thresholds, the portion of the nodes
with a weighted degree below the threshold value has a
correlation greater than 0.63 with a confidence level
above 0.994.

0.72
0.69
0.66
0.63

0.6

0.57

Correlation with RG

0.54

0.51

0 0.001 0.002

degree threshold

0.003

Figure 6. Sensitivity of the correlation between RG and § to the
degree threshold value

V. CONCLUSION

In this paper we have seen that considering the
possibility of node reselection in the influence
maximization, or equivalently targeting multiset of

Volume 10- Number 4 — Autumn 2018

seeds instead of set of seeds can have diverse impacts
on the influence spread in a number of networks. Based
on the reselection gain of the influence spread, we have
divided the networks into three groups, namely the
reselection-free, reselection-aware and reselection-
friendly networks. Our experiments have shown that
the reselection gain can vary from 1 to 3.1 in different
real-world networks.

We have correlated the reselection gain of networks
to another influence maximization dynamics, called the
influence saturation. We have shown experimentally
that there is a 0.73 correlation between the reselection
gain and the influence saturation in our tested networks
in the WC model. More generally, we have
experimentally verified the hypothesis that the
networks with a w-core index close to unity have a high
correlation between their reselection gain and influence
saturation.

In order to make the propagating models more
consistent with reality, we have introduced the
transitive multi-valency (TMv) model which also
considers the transitivity structures in the network.
Consequently, our experiments were performed on the
networks with three models for the edge weight: WC,
TR and TMv.

Finally, in a search for detecting the star-like
networks, we have shown a correlation of at least 0.63
between the reselection gain and the percentage of low
degree nodes on a set of 27 networks with WC, TR and
TMv models. We think that there are still room for
analyzing the reselection gain dynamics in different
networks. Finding a stronger entanglement between this
dynamics and the network structure enables us to
distinguish the reselection-friendly networks and
choose our advertising strategies accordingly.
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