[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

IJICTR

International Journal of Information &
Communication Technology Research

Volume 11- Number 1 — Winter 2019 (36 -44)

Fuzzy Sequential Pattern Mining over
Quantitative Streams

Omid Shakeri

Manoochehr Kelarestaghi*

Farshad Eshghi Ahmad Ganjtabesh

Electrical & Computer Engineering Dept.
Kharazmi University, Tehran, Iran
{omid.shakeri, kelarestaghi, farshade, std_agt} @khu.ac.ir

Received: 5 May 2018 - Accepted: 3 November 2018

Abstract --

Sequential pattern mining is an interesting data mining problem with many real-world applications. Though new

applications introduce a new form of data called data stream, no study has been reported on mining sequential patterns from the
quantitative data stream. This paper presents a novel algorithm, for mining quantitative streams. The proposed algorithm can mine
exact set of fuzzy sequential patterns in sliding window and gap constraints entailing the most recent transactions in a data stream.
In addition, the proposed algorithm can also mine non-quantitative or transaction-based sequential patterns over a data stream.
Numerical results show the running time and the memory usage of the proposed algorithm in the case of quantitative and customer-
transaction-based sequence counting are proportional to the size of the sliding window and gap constraints.

Keywords - Data Stream, Fuzzy Sequential Pattern Mining, Gap Constraint, Sliding Window.

L INTRODUCTION

The development of database systems and the availability
of massive data caused data mining to be a necessary process
to extract understandable and usable high-level knowledge.
Sequential pattern mining is among the most important
studies in the data mining field with many real-world
applications such as customer behavior analysis, DNA
sequence analysis, and intrusion detection.

The sequential pattern mining problem was first
introduced by Agrawal, and Srikant: “Given a set of
sequences, where each sequence consists of a list of elements
and each element consists of a set of items, and given a user-
specified min_support threshold, sequential pattern mining is
to find all frequent subsequences, i.e., the subsequences
whose occurrence frequency in the set of sequences is no less
than min_support” [1, 2]. Many algorithms have been
proposed to mine sequential patterns in sequential databases
like Apriori-All [1] and GSP [3], or PrefixSPAN [2].

In recent years, emerging applications have introduced a

* Corresponding Author

International Journal of Information & Communication Technology Research

new form of data called Data Stream. A data stream is an
unbounded sequence in which new elements are generated
consecutively. Any mining method for data streams must
consider two critical constraints. The first constraint is the
memory usage constraint meaning all the stream data cannot
be stored in memory. The second constraint says that each
stream component can be looked at once, without performing
any blocking operation. Because of these constraints,
traditional data mining methods developed for static
databases like PrefixSPAN cannot be applied for mining data
streams [4].

The existent sequential pattern mining algorithms for data
streams like SS-MB and SS-BE [4], PLWAP-Based
Algorithms [5] and the algorithm proposed in [6], use the
batch processing to store the last n transactions in memory.
The batching process performs mining in each batch and
neglects the relationship between transactions in subsequent
batches which prevents mining sequential patterns whose
items are distributed over some subsequent batches. Also,
these algorithms do not consider the quantitative sequential
databases, which necessarily lead to another loss of

http://ijict.itrc.ac.ir/article-1-435-en.html

[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

Volume 11- Number 1 — Winter 2019 (36 -44)

information when they use the binary representation of
numerical data [7, 8]. Moreover, these algorithms do not
account for the user-specified constraints in order to mine
patterns more efficiently; and also some of them are not exact
and they mine approximate sequential patterns as they cannot
mine some sequences [9].

The proposed method in this paper uses a new time-based
moving sliding window and time gap which are defined as
user constraints. These enable the proposed method to mine
the following patterns:

* Complex sequential patterns which cannot be mined by
batch-based algorithms,

* The exact set of constrained sequential patterns over a
data stream.

It is well-worth mentioning that the proposed method
fuzzifies the input data to face the quantitative data stream,
and representing them as fuzzy categorical items, which
enables the proposed method to output fuzzy sequential
patterns in terms of fuzzy items and itemsets.

The remaining of this paper is organized as follows. Section
II introduces the basic concepts and the problem of sequential
pattern mining in static and stream databases. Section III
introduces the constrained sequential pattern mining. Section
IV presents the proposed algorithm. In Section V, some
experiments are conducted to analyze the proposed, and the
conclusion is stated in Section VI.

11. PROBLEM STAEMENT

The problem is to mine the exact set of constrained fuzzy
sequential patterns over a quantitative data stream. Let I = {I;,
b, ..., I,} be the set of all items. An itemset is a nonempty set
of items, like e; = I; I,. A concurrent itemset is the one whose
items happen concurrently, and are denoted by surrounding
parentheses, like e> = (I4 I7). A sequence is an ordered list of
itemsets. A sequence s is denoted < ejeze3 ... e >, where
itemset e; occurs before e;, and e, before e3, and so on|
HYPERLINK \ "Jia06" 10]. Fuzzy itemset is a set of fuzzy
items, and it can be donated as a pair of sets (set of items, set
of fuzzy sets associated to each item’s quantity) or as a list of
fuzzy items, like ([/;, low: 0.6] [I3, med: 1] [I6, high: 0.25]),
which shows three concurrent items with their fuzzified
quantities.

The main challenge in data stream mining is the limited

resources of time and memory. Data mining has been studied

extensively in static datasets, where data mining algorithms
can handle reading the input data several times, like the
algorithms proposed in [1, 2, 3]. When the source of data
items is a data stream, not all data can be loaded into the
memory, and off-line mining algorithms with the static
dataset is no longer technically feasible due to the features of
data streams [11, 12]. The following constraints are forced

due to data stream features model [12]:

* The length of a data stream is potentially infinite, and it
would be impossible to store all elements. Thus, only a
small part is stored and processed.

* As the elements of a data stream are received fast, they
should be processed in real time.

International Journal of Information & Communication Technology Research

IJICTR

The above constraints limit the amount of memory and the
time-per-item that the stream mining algorithm can use.
While the existent algorithms use batch processing to face the
above limitations, this paper uses time-based moving sliding
window and gap constraints to handle the above limitations
as well as limitation of the batch processing for mining
sequential patterns over multiple subsequent batches. Also, to
face the data loss in the quantitative sequential pattern
algorithms over data streams, the proposed method fuzzifies
numerical data, and then it mines sequential patterns over the
fuzzified data.

111. SLIDING WINDOW & GAP CONSTRAINTS

Mining without user- or expert-specified constraints may
generate numerous patterns that are of no interest. Thus, user-
specified constraints are incorporated into the mining
algorithm to reduce the search space and mine the only
patterns that are of interest to the user [10, 13]. In this paper,
moving sliding window and gap constraints are used to face
the limitations of stream mining.

A Sliding Window or duration constraint is defined only
in sequence databases where each transaction has a time-
stamp. It requires that the pattern appears frequently in the
sequence database such that the time-stamp difference
between the first and last transactions in the pattern is shorter
than a given constant [13]. Thus, the transactions in a sliding
window are assumed to be concurrent.

A gap constraint is defined only in sequence databases
where each transaction in every sequence has a timestamp. It
requires that the pattern appears frequently in the sequence
database such that the timestamp difference between every
two adjacent transactions - be longer than a given gap [13,
14].

Sliding window and gap constraints are defined by two
membership functions in term of time difference, as shown in
Figure 1 [15, 16, 17].

M
A Sliding

G
Window e

1
7. .

Time
Nifference

p q
Figure 1: Sliding window & gap constraints

V. THE PROPOSED METHOD

The proposed method consists of three phases as shown
in Figure 2 and the pseudo-code of the proposed method,
Constrained Fuzzy Stream Sequence Miner (CFSSM), is
shown in Figure 3. In the first phase, data streams are
buffered.

http://ijict.itrc.ac.ir/article-1-435-en.html

[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

IJICTR

‘ Data stream buffering

v

e Fuzzifying quantitative data

Deriving fuzzy customer-separated database

Constrained Sequence Mining Algorithm
e Mining Sequential Patterns by Sliding process
algorithm in each fuzzy customer-separated database
e Updating the sequence tree

e Extracting patterns from the sequence tree

Figure 2: Flowchart of the CFSSM method

The second phase fuzzifies the quantitative data in order to
represent them as fuzzy categorical data. This representation
avoids data loss caused by a binary representation of
numerical data. And finally, fuzzy sequential patterns are
mined by CFSSM algorithm in the third phase. These phases
are described in detail in Subsections IV-A to IV-C. The
solution quality of the proposed method is discussed in
Subsection IV-D.

CFSSM_Method
Inputs: Data_Stream, Mining_Parameters
QOutput: Set_of_Sequential_Patterns

1: While (~EndOfStream && ~UserDemandFlag)

2: Data Stream Buffering

3: Update Customer Fuzzy Database

4: For each Customer

5: Sliding_Process_Algorithm

6: Update_Sequence_Tree_Algorithm

7: End For

8: End While

9: Scan the Sequence Tree in depth

10: Show Sequential Patterns where count > min_count

Figure 3: CFSSM pseudo code

A. Data Stream Buffering

In data streams, the entire data of each customer is not
available, and they are generated continuously. Each
transaction in a quantitative data stream has a customer-ID, a
transaction type, a time-stamp, and a quantity value, as shown
in Table 1.

Table 1: Quantitative data stream sample

Customer-1D Transaction Time-Stamp Quantity

In CFSSM, to face the limitations of data streams, as
mentioned in section 2, a new time-based moving sliding
window is proposed to buffer the most recent transactions of
which their time-stamp value satisfies user-specified sliding
window and gap constraints. Thus, the last part of the stream
(current database) which has been buffered is updated when
a new transaction from the stream is received. It should be
noted that the number of transactions in the current database

Volume 11- Number 1 — Winter 2019 (36 -44)

is related to the frequency by which the data are received, and
it might be variable in time.

For example, suppose the constraint values in Figure 1,
are set to p=2, q=6, and the stream be as given in Table 2.
Also let the most recent transaction, called now, be the one
whose time-stamp is 15. By receiving this data, the moving
sliding window and gap are moved in such a way that “q”, as
shown in Figure 1, is located at now, Time Stamp of the last

Transaction in Stream.

At this time, Figure 4 shows the correspondence between
the time-stamps and the parameters of the sliding window and
the gap constraints. Thus, some transactions are removed
from the current database whose time-stamps are less than 9.
These transactions are shown in grey in Table 2, and the
buffered ones are shown in black in Table 2.

Table 2: Quantitative data stream sample

Customer-ID Transaction Time-Stamp Quantity
1 A 1 5
2 D 4 8
3 B 8 2
1 A 11 3
1 B 14 1
2 A 14 5
1 C 15 1
2 C 15 3
K Sliding Window Gap
. Time
o . q " Difference
A A A
v ' A N Time;Sftamp
2 e nf)?/v transactions

Figure 4: Correspondence between the time-stamps and the
parameters of the sliding window and the gap constraints

B. Fuzzifying Quantitative Data and Deriving Fuzzy
Customer-Separated Database

In order to avoid data loss caused by the binary
representation of numerical data, the quantitative data
buffered in current database is fuzzified, hereinafter called
fuzzy database, and is expressed by the linguistic terms as
shown in Figure 5.

It’s possible to use one of the following fuzzy cardinality

count types to fuzzify the quantities [18]:

* The fuzzy membership value u(x),

e The fuzzy membership value if it’s bigger than a specified
threshold (thr),

e The crisp count if the fuzzy membership value is bigger
than a specified threshold (zhr).

This paper uses the first and the third cardinality count
types in the examples given in the next subsections.

In order to mine sequential patterns from customer

International Journal of Information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-435-en.html

[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

Volume 11- Number 1 — Winter 2019 (36 -44)

behaviors, the current fuzzy database should be divided into
fuzzy customer-separated databases. It should be noted that
some transactions may satisfy two fuzzy membership
functions and will be expressed by two linguistic terms, like
the first two rows in Table 3, which shows the fuzzy
customer-separated databases of the example given in Table
2, for w=2, x=6, y=9, z=13 in Figure 5, using p(x) for fuzzy
cardinality count. The pseudo-code of this phase, called
fuzzifying quantitative data and deriving fuzzy customer-
separated database, is shown in Figure 6.

M

A Low Medium High

XX ;

» Quantity
WX y z

Figure 5: Fuzzy membership functions for quantitative items

Update_Fuzzy_Customer_separated_Database_Algorithm
Inputs: Buffered_Data_Stream, is_Qunatitative,
Cardinality_Type

Qutput: Fuzzy_Customer_Separated_Databases

1: For each transaction in Buffered Data Stream
2: If new_customer_ID

3 create new_customer_database

4: Fuzzify the quantities

5 Generate new fuzzy transactions

6

7

Else
Fuzzify the quantities
8: Generate new fuzzy transactions
9: End For
Figure 6: Updating fuzzy customer-separated database pseudo
code

Table 3: Quantitative data stream sample

Customer-1D Transaction Time-Stamp M guantity

A-low 11 0.75

1 A-med 11 0.25
B-low 14 1
C-low 15 1
A-low 14 0.25

2 A-med 14 0.75
C-low 15 0.75
C-med 15 0.25

C. Constrained Sequence Mining Algorithm

In this phase, sequential patterns are mined by the Sliding
Process algorithm from fuzzy customer-separated databases.
The pseudo-code of the Sliding Process algorithm is shown
in Figure 7.

In the Sliding Process algorithm, the sequence to be
mined is initialized as a null sequence. For each fuzzy
customer-separated database, the start of the sliding window
constraint, shown in Figure 1, slides to the Time-stamp of the
first transaction and all the transactions whose timestamps are
in this sliding window are assumed to be the first itemset
(lines 1-7 in Figure 7). After finding the first itemset of a
sequence, the start of the moving sliding window slides to the

International Journal of Information & Communication Technology Research

IJICTR

time-stamp of the next transaction whose time-stamp wasn’t
in the moving sliding window constraint in the previous
iteration, and all the transactions whose timestamps are in this
sliding window are assumed to be the next itemset (lines 8-
12 in Figure 7), this loop (lines 8-12 in Figure 7) is repeated
until all transactions satisfy one of the moving sliding
windows, i.e., the end of the first pass.

At the end of the first pass, one sequence is mined from the
fuzzy customer-separated database. In order to mine more
sequences from the fuzzy customer-separated database, pass
2 starts in which the start of the moving sliding window slides
to the timestamp of the next transaction that has not yet been
the start of any previous moving sliding windows, and
another new sequence is mined. This procedure repeats until
all sequences are mined from the fuzzy customer-separated
database.

The Sliding Process algorithm passes for the customer 1’s
database in Table 3 are shown in Table 4. The starting
transaction in each pass is shown in bold; and the transactions
whose time-stamp don’t satisfy the moving sliding window,
are shown in gray. The count of each sequence can be
computed by the user-specified fuzzy T-norm between fuzzy
membership functions of itemsets (¢ quaniry) in €ach sequence.

Sliding_Process_Algorithm
Inputs: Customer_Fuzzy_Database, Mining_Parameters
Output: set_of(Sequence, Count)

1: For each transaction t whose time-stamp had not been at the
start of any previous moving sliding windows

2: sequence = < >

3: itemset = {}

4: Slide the start of the moving sliding window to transaction
t’s time-stamp

5: itemset = set of transactions whose timestamps are in the

sliding window
itemset_count = T-norm (transactions g quantiry)
add itemset to sequence
8: For each transaction t2 whose timestamp wasn’t in the
previous sliding window

5o 60"

9: Slide the start of the moving sliding window to
transaction t2’s time-stamp

10: itemset = set of transactions whose timestamps are in

the sliding window

11: itemset_count = T-norm (transactions { quanrity)

12: add itemset to sequence

13: End For

14: sequence_count = T-norm(itemsets of sequence)

15: Add (sequence, sequence_count) to the output set

16: End For

Figure 7: Sliding process pseudo code

Table 4: Sliding process on customer 1's database

Pass Transaction Time-Stamp M quantity

A-low 11 0.75
A-med 11 0.25

1
B-low 14 1
C-low 15 1

2
C-low 15 1

http://ijict.itrc.ac.ir/article-1-435-en.html

D uictR

[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

After the Sliding Process algorithm, Update Sequence
Tree Algorithm is called to insert the sequences into the
sequence tree that contains the sequences and the count of
each item (Figure 8).

Update_Sequence_Tree_Algorithm
Input: Set_of(sequences, count)

1: For each Sequence
2: currrntNode = Root
3: For each itemset of the sequence
If itemset is in currrntNode’s children
update the count of the child
currrntNode = child
Else
Generate new node with itemset properties
: currrntNode = new node
10: End For
11: End ForFigure 8: Update sequence tree pseudo code

St o ool) ol B

According to the definition of stream mining, sequential
patterns should be available whenever the user demands.
Thus, when that happens, the algorithm scans the Sequence
Tree in depth to output the sequential patterns.

For example, if the stream was only the bold part of the
stream given in Table 2, and user demands the patterns with
minimum as T-norm and min_count=0, after processing the
current database of customer 1, the tree would be like Figure
9. By scanning the Sequence Tree in depth, the Sequential
Patterns shown in Table 5 would be generated; and after
Sliding Process on the current database of customer 2, the tree
would be updated to Figure 10.

Table 5: Sequential patterns

Sequence Count
< A-low, B-low > 0.75
< A-low, C-low > 0.75
< A-low(B-low, C-low) > 0.75
< C-low > 1.25

/ -

(A-Med: 0.75
C-Med: 0.25

/

(A-Low: 0.25
C-Low: 0.75

(A'Med:°'75 Alow:0.25 1 |\ 075 | A-Med: 0.25 | C-Low: 1.75

C-Low: 0.75) C-Med: 0.25)|

Volume 11- Number 1 — Winter 2019 (36 -44)

In the proposed method, two sequence counting types can
be used:
» Customer-Transaction-based Sequence counting
* Transaction-based Sequence counting

The above example shows a customer-Transaction-based
sequence counting method, wherein the stream is divided into
customer’s databases and the sequence found in each
customer’s database would be updated in the sequence tree.
However, in the transaction-based sequence counting, the
whole stream would be assumed to be generated by one
customer, thus the stream wouldn’t be divided into customer
databases.

Also, the user can specify whether the algorithm mine
quantitative sequences or not. In the non-quantitative case,
the module Fuzzifying quantitative data of the proposed
method (Figure 2) is discarded, and the module Deriving
fuzzy customer-separated database is discarded in the case of
transaction-based sequence counting.

&

Figure 9: The sequence tree after sliding process on the current
database of customer 1

D. Solution Quality
As mentioned in subsection IV-C, the proposed method in

C-Med: 0.25

Figure 10: The sequence tree after sliding process on the current database of customer 2

International Journal of Information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-435-en.html

[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

Volume 11- Number 1 — Winter 2019 (36 -44)

this paper uses a new time-based moving sliding window
and time gap which are defined as user constraints. These
enable the proposed method to mine the following patterns:
* Complex sequential patterns which cannot be mined by
batch-based algorithms,
* The exact set of constrained sequential patterns over a
data stream, which cannot be mined by existent
algorithms which work on binary representation of data.

Also, the outputs of the proposed method, which mines
the exact set of constrained sequential patterns over a data
streams, and the Constrained PrefixSPAN on the same static
database, would be the same, in terms of equality constraints.

Table 6: non-quantitative data stream

Transaction Time-Stamp
A 1
D 4
B 5
A 11
B 14
A 14
C 15
C 15

Here is a simple transaction-based and non-quantitative
example to show the differences between the proposed
method and batch-based algorithms. For the stream given in
Table 2, suppose the constraint parameters in Figure 1 be p=2,
g=5, and the crisp count, as mentioned in section IV-B, be
used. For batch_size=4 in batch-based algorithms, two
different batches will exist in Table 2 as shown in Table 6. As
said before, the relations between transactions in these two
batches are discarded in the batch-based algorithms, e.g. the
relation between the fourth and fifth transaction is discarded,
and the sequence <AB> won’t be mined for min_count=2.

In this paper, the new time-based moving sliding window
and time gap are proposed. For the given example, these
constraints are shown in Figure 11, for different time-stamps
in the stream. Thus, the proposed method can mine the
sequence <AB> with a count equal to two in this stream,
while in batch-based algorithms, the count of the sequence
<AB> will be one.

M
(a) T
» Time-Stamp
0 1 2 3 4 5
A D B Transactions
M

» Time-Stamp

9 10 11 12 13 14 15
A B C

(b)T
A C

Figure 11: Stream buffering in different time-stamps with
corresponding transactions (a) now = 5, (b) now = 15

Transactions

The main advantages of the proposed algorithm are:

International Journal of Information & Communication Technology Research

vicTR (R

* Mines the exact set of fuzzy sequential patterns over
quantitative or non-quantitative data stream,

* The ability to mine non-constrained or constrained
sequential patterns over data streams,

* The ability to mine both transaction-sensitive streams and
customer-transaction-sensitive data streams.

V. EXPERIMENTAL RESULTS

In this section, the performance of the proposed method,
CFSSM, is investigated by some experimental studies. All
experiments were conducted on a 2.53GHz Intel Core 2 Duo
PC with 4GB main Memory, running Microsoft Windows 7
operating system. All algorithms were implemented in C#.
The results are shown for two data streams, T10I14D 100K and
T40I10D100K, which are generated from the synthetic data
generator described by Agrawal et al in [19]. The parameters
of these datasets are T: the average size of transactions, I: the
average size of the maximal potentially frequent itemsets, and
D: the number of transactions (in 1000). To use these datasets
in this algorithm, a customer-ID, in range of 1-100 is
randomly assigned to each transaction (itemset), and also a
quantity value, in range of 1-10 is randomly assigned to each
item. It is well-worth mentioning that there is no numerical
sequential data stream available in standard datasets. Several
experiments were conducted for different characteristics of
transactions and types of data. The results are labeled as
follows: Q, nQ, CT and T which indicate to Quantitative data,
non-Quantitative data, Customer-Transaction-based
Sequence Counting, and Transaction-based sequence
counting, respectively. Figure 12 and Figure 13 show the
results on T10I4D100K and Figure 14 and Figure 15 show
the results on T40I10D100K. In the following figures, the
mining type “Q, CT” is the main routine of the CFSSM
algorithm, which is described by example in previous
sections.

Figure 12 and Figure 14 show the results under different
gap sizes, where the sliding window size is 10, for different
mining parameters. As the gap grows the running time and
memory usage will increase because more transactions are
stored in the memory to scan. The running time and memory
usage are smaller in the case of mining non-Quantitative
sequential patterns rather than mining Quantitative ones,
because of less computational burden and also smaller data
structures created during the process. The memory usage is
smaller in the case of mining Customer-Transaction-based
sequential patterns rather than Transaction-based sequence
counting ones, because of more sliding processes in a bigger
customer database with more transactions.

Figure 13 and Figure 15 show the results under different
sliding window sizes, where the gap size is 150, in the case
of Q, CT. The running time increases when the sliding
window size is growing up, as more transactions are stored in
memory, thus there will be more iterations in the Sliding
Process algorithm, in Figure 7. This means the more available
memory, the longer and the more complex sequential patterns
CFSSM can mine.

http://ijict.itrc.ac.ir/article-1-435-en.html

IJICTR

[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

Volume 11- Number 1 — Winter 2019 (36 -44)

_._QI T —=— an CT QI T — an T Q, CT an cT QI T ——an T
80 21
18 S
60 15 —
g . o 12 —
] 40 = 9 S I/ —
a 6 —
O T T T T T T T T T 1 O T T T T T T T 1
Yoo Yo Y Fe e Fe Y. A A . Ve P SR SO S 2T SO, DU BN
Gap Size Gap Size
(a) (b)
Figure 12: Results on T1014D100K Dataset:
(a) runtime for different gap sizes for different mining parameters, where sliding window size = 10,
(b) memory usage for different gap sizes for different mining parameters, where sliding window size = 10
21 10
/ 8 —
15 //
(%)
-g 12 / 4] 6
2 s :
6
2
3

Sliding Window Size

Y ¥ & 7 \D A L

Sliding Window Size

(a)

(b)

Figure 13: Results on T1014D100K Dataset in case of Q, CT:
(a) runtime for different sliding window sizes, where gap size = 150,
(b) memory usage for different sliding window sizes, where gap size = 150

——Q,CT —=—nQ, CT QT —nQ,T Q,CT —=—nQ,CT QT —nQ,T
1200 140
1000 120
w800 100 //
g 00 2 g
o /
200 ZA% 0
o J e — 0 e
Yo Yoo Yoo Foo O o Ve A v YV ' Y D 3 7 Ve A v Y
Gap Size Gap Size
(a) (b)

Figure 14: Results on T40110D100K Dataset:

(a) runtime for different gap sizes for different mining parameters, where sliding window size = 10,
(b) memory usage for different gap sizes for different mining parameters, where sliding window size = 10

International Journal of Information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-435-en.html

[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

Volume 11- Number 1 — Winter 2019 (36 -44)

250

200 //
S 150
[=
° /
(8]
2 100 /

50

\K Yo A \ O 7 Y. A LI I
Sliding Window Size

MB

30

25

20
15

10

K Y. Y ¥ A 7 \ A a.

Sliding Winsow Size

(a)

(b)

Figure 15: Results on T40110D100K Dataset in case of Q, CT:
(a) runtime for different sliding window sizes, where gap size = 150,
(b) memory usage for different sliding window sizes, where gap size = 150

VL CONCLUSION

In this paper, a new method, CFSSM, including new time-
based moving sliding window and gap constraints, was
proposed to mine quantitative streams which can mine the
exact set of constrained fuzzy sequential patterns. It also can
mine non-Quantitative or Transaction-based sequential
patterns over a data stream. The proposed method uses the
fuzzy set concept to mine fuzzy sequential patterns from
numerical data stream. Experimental studies showed that the
running time and the memory usage of the proposed
algorithm in the case of quantitative and customer-
transaction-based sequence counting are nearly proportional
to the size of the fuzzy sliding window and gap constraints.

ACKNOWLEDGEMENT

This research was partially supported by Research
Institute for Information and Communication Technology of
Iran.

REFERENCES

1. R. Agrawal, R. Srikant, “Mining Sequential Patterns,” Data
Engineering, Proceedings of the Eleventh International Conference
on, pp. 3-14. March 1995.

2. J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U.
Dayal, M. C. Hsu, “Mining Sequential Patterns by Pattern-Growth:
The PrefixSpan Approach,” IEEE Transactions on Knowledge and
Data Engineering, Vol. 16, pp. 1424-1440, May 2004.

3. R. Agrawal, R. Srikant, “Mining sequential patterns: generalizations
and performance improvements” in Sth International Conference on
Extending Database Technology, Springer, March 1996, pp. 3-17.

4. L. F. Mendes, B. Ding, J. Han, “Stream Sequential Pattern Mining
with Precise Error Bounds,” Data Mining, ICDM '08, Eighth IEEE
International Conference on, pp. 941-946, 2008.

5. C. L. Ezeife, M. Mostafa, “A PLWAP-Based Algorithm for Mining
Frequent Sequential Stream Patterns,” Technology and Intelligent
Computing (ITIC), Vol. 2, pp. 89-116, 2007.

6. Q. Huang, W. Ouyang, “Sequential Patterns Mining Scaling with Data
Stream Based on LSP-tree” Sixth International Conference on Fuzzy

International Journal of Information & Communication Technology Research

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Systems and Knowledge Discovery, Vol. 5, August 2009, pp. 614-
618.

T. P. Hong, C. S. Kuo, S. C. Chi, “Mining fuzzy sequential patterns
from quantitative data”, in Systems, Man, and Cybernetics. IEEE
SMC '99 Conference Proceedings, IEEE International Conference on,
Vol. 3, 1999, pp. 962-966.

T.P.Hong, K. Y. Lin, S. L. Wang, “Mining Fuzzy Sequential Patterns
from Multiple-Item Transactions” IFSA World Congress and 20th
NAFIPS International Conference, Vol. 3, 2001, pp. 1317-1321.

J. Cheng, Y. Ke, W. Ng, “A Survey on Algorithms for Mining
Frequent Itemsets over Data Streams”, Springer Knowledge and
Information Systems, Vol. 16, pp. 1-27, 2008.

J. Han, M. Kamber, Data Mining: Concepts and Tecniques, 2nd
edition, Morgan Cufmann - Diane Cerra, 2006.

C. C. Aggrawal, Data Stream: Models and Algorithms, Purdue
University, West Lafayette, Springer, 2007.

A. Bifet, Adaptive Stream Mining: Pattern Learning And Mining
From Evolving Data Streams, Amsterdam, Netherlands: I0S Press
BV, 2010.

J. Pei, J. Han, W. Wang, “Mining sequential patterns with constraints
in large databases” ACM 11th International Conference on
Information and Knowledge Management, 2002, pp. 18-25.

S. Bringay, A. Laurent, B. Orsetti, P. Salle, M. Teisseire, “Handling
Fuzzy Gaps in Sequential Patterns: Application to Health” Fuzzy
Systems, FUZZ-IEEE. IEEE International Conference on, 2009, pp.
1338-1345.

C. I. Chang, H.E. Chueh, N. P. Lin, “Sequential Patterns Mining with
Fuzzy Time-Intervals” IEEE Sixth International Conference on Fuzzy
Systems and Knowledge Discovery, Vol. 3, 2009, pp. 165-169.

C. Xu, Y. Chen, R. Bie, “Sequential Pattern Mining in Data Streams
Using the Weighted Sliding Window Model”, 15th International
Conference on Parallel and Distributed System, 2009, pp. 886-890.
F. Zabihi, M. M. Pedram, M. Ramezan, A. Memariani, “Fuzzy
Sequential Pattern Mining with Sliding Window Constraint” 2nd
International Conference on Education Technology and Computer
(ICETC), Vol. 5, 2010, pp. 396-400.

C. Fiot, A. Laurent, M. Teisseire, “From Crispness to Fuzziness:
Three Algorithms for Soft Sequential Pattern Mining,” IEEE
Transactions on Fuzzy Systems, Vol. 15, pp. 1263-1277, December
2007.

R. Agrawal, R. Srikant, “Fast algorithms for mining association
rules,” 20th Intl. Conf. on Very Large Databases (VLDB’94), pp. 487-
499. 1994.

http://ijict.itrc.ac.ir/article-1-435-en.html

[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

) uictr

AUTHORS’ INFORMATION

Omid Shakeri received his Master Degree
in Artificial Intelligence from Kharazmi
University, Tehran, Iran in 2011. Since then
he has been working as a web full stack
developer at “IFITPRO” company, Tehran,

Iran.

Manoochehr Kelarestaghi received his
Ph.D. degree in System Control Engineering
at Université de technologie de Compiegne
(UTC), Compiegne, France in 1999, M.S. and
B.S. degrees in Electronics Engineering from
Tehran University and Sharif University,
Tehran, Iran, in 1992 and 1988, respectively.
He is currently an Assistant Professor in Electrical and
Computer Engineering Department, Kharazmi University,
Tehran, Iran. His current research interests are NLP, Pattern
Recognition, Signal Processing and Optimization.

Farshad Eshghi has done a Post-Doc and
received his Ph.D. in Electrical Engineering-
Telecommunications from University of
British Columbia, Vancouver, BC, Canada,
and Concordia University, Montreal, QC,
Canada in 2004 and 2006 respectively. From
2008 to 2011, he has served as a lecturer in
the Dept. of Computer Science, Faculty of Mathematics and
Computer Sciences, Amir kabir University of Technology.
Since 2011, he has been with the Dept. of Electrical and
Computer Engineering, Faculty of Engineering, Kharazmi
University, Tehran, Iran as an Assistant Professor. His main
research interests include different topics in Ad Hoc WLANS,
WSNs, and Intelligent Management Systems with
applications in BMS, Transportation, and Health.

Ahmad Ganjtabesh is a graduate student
studying towards his Master degree in
Computer Science at Kharazmi University,
Tehran, Iran. His research interests include
Recommender Systems, Machine Learning,
and Fuzzy Modeling.

Volume 11- Number 1 — Winter 2019 (36 -44)

International Journal of Information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-435-en.html
http://www.tcpdf.org

