Downloaded from ijict.itrc.ac.ir on 2025-11-18]

I J I CTR International Journal of Information & {r
Communication Technology Research r‘

ITRC

Volume 9 - Number 1- Winter 2017(9-16)

QoS-aware web service composition using
Gray Wolf Optimizer

Meysam Karimi

Department of computer science
Kashan University
Kashan, Iran
Meysam.Karimi84@gmail.com

Seyed Morteza Babamir

Department of computer science
Kashan University
Kashan, Iran
Babamir@kashanu.ac.ir

Received: November 4, 2016- Accepted: March 5, 2017

Abstract— In a service-oriented application, an integrated model of web services is composed of multiple abstract
tasks. Each abstract task denotes a certain functionality that could be executed by a number of candidate web services
with different qualities. The selection of a web service among candidates for execution of each task that is led to an
optimal composition of selected web services is a NP-hard problem. In this paper, we adapt the Gray Wolf Optimizer
(GWO) algorithm for selection of candidate web services whose composition is optimal. To evaluate the effectiveness
of the proposed method, four quality parameters, response time, reliability, availability, and cost of web services are
considered and the derived results are compared with several Particle Swarm Optimization (PSO) methods. The
proposed method was executed in from 100 to 1000 times and the results showed that a better optimal rate (between
0.2 and 0.4) compared with PSO.

Keywords- Optimal web service composition; Gray Wolf Optimizer algorithm; Particle Swarm Optimization; Service
oriented; Quality of service.

suitable combination for the application. Since optimal
I INTRODUCTION values of quality parameters are not included just in a
In recent years, web services as computational ~ candidate web service and are found in different

models were developed quickly and played significant
roles in e-commerce and web-based services.
Therefore, the use of convenient and fast web service
with atomic functionality has increased. However, for
an application consisting of tasks, a combination of
web services is used to execute the tasks where each
task (called abstract task) is meant for a specific
function. For each task, there are a number of
candidate web services with the same functionality but
with different quality characteristics. An optimal
solution for execution of an application is a set of
selected web services whose combination is the most

candidates, the selection of a candidate web service for
execution of a task of the application is difficult.
Furthermore, there may be conflict between some
quality parameters. Lower cost and faster response
time are always desired; however, they are in conflict
with each other because a web service with faster
(more optimal) response time demands more (less
optimal) cost. Hence, it is clear that the web service
composition is a combinatorial optimization problem.
It is worth noting that the quality parameters play an
important role in identifying the best combination of
services at runtime. Finding the optimal solutions for

International Journal of Information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-44-en.html

BT HIJICTR Volume 9 - Number 1- Winter 2017

[Downloaded from ijict.itrc.ac.ir on 2025-11-18]

@/ v

nternational Journal of Information & Communication Technology Research

web services composition with conflicting quality
parameters is a complex problem that cannot be solved
in a polynomial time (NP-Hard).

Generally speaking, the QoS-aware (Quality of
Service-aware) web services composition is resolved
using intelligent computational methods [1-3].
Methods used the PSO algorithm exhibit better results
compared with genetic-based methods [4]. In this
study, we adapted the Gray Wolf Optimizer (GWO)
algorithm to resolve the QoS-aware web services
composition. The proposed method was compared
with standard PSO (Particle Swarm Optimization)
algorithm [5], IDPSO (Improved Discrete PSO) [6]
and QIPSO (Quantum-Inspired PSO) [7]. The results
showed that the proposed method is more effective.
We’ve already had experience using the adapted GWO
for optimization where the GWO results were
compared with those of other optimization algorithms

[8].

This paper is organized as follows. Section 2
addresses the related literature. The GWO algorithm is
described in Section 3. In Section 4, we explain the
proposed method and in Section 5, present the results.
Finally, Section 6 deals with concludes.

Il. RELATED WORKS

A number of studies have been carried out for the
QoS-aware web service composition problem. Most
solutions are based on the PSO algorithm and exhibit
better coverage compared with the genetic
optimization algorithm. However, there is still room
for optimization of the QoS-aware web service
composition [6]. PSO is a population-based
evolutionary algorithm in which each particle has a
position and velocity and the population of particles
saves its best local and global position. Each particle
improves its position based on the value of: (1) its
position, (2) the best local position (pbest) and (3) the
best global position (gbest). Each particle has a D-
dimensional vector in which ‘D’ represents dimension
of the space that the particle wants to search.

Kang et al [5] used PSO to solve the problem of
QoS-aware web service composition composed of the
following stages. They noted that the results in terms
of coverage and execution speed are superior to the
genetic algorithm.

I) Reduction of the multi-objective optimization
problem to a single-objective one,

I) Initialization of the particles and adjust the
parameters of the algorithm,

for each particle{

I11) Computation of the fitness value of the particle
position as a candidate for the composition,

IV) Comparison of the fitness value of current position
of the particle with pbest of the particle and
replacement of the pbest by the fitness value if the
value is more,

V) Comparison of the pbest value of the particle with
the gbest and replacement of the gbest by the pbest
if the pbest value is more,

V1) Calculation of velocity and position of the particle
using the PSO formulas,

}

Zhao et al. [6] used IDPSO to address discrete
QoS-aware web service composition. They modified
the PSO position and velocity formulas to resolve the
QoS-aware web services composition and showed that
the quality of the service based on the composition
obtained by IDPSO is higher than PSO. We compared
our results with IDPOS.

QIPSO [9] was created by the integration of
quantum display of problem space and PSO trying to
improve the ability of the PSO algorithm. Jatush and
Gangazaran [7] first reduced the QoS-aware web
service composition problem to the single-objective
optimization and then resolved it through QIPSO.
QIPSO contains three basic parts: (1) quantum
measurement, (2) quantum interference, and (3)
quantum flight.

Quantum measurement is a function to extract
binary particles from quantum particles. Consequently,
the quantum particles can be transformed to binary
vectors in the problem space. Quantum interference is
a function increasing the composition optimization
and decreasing the probability of suboptimal
composition. The main purpose of the quantum
interference is that the state of each qubit tends
towards the optimum composition (solution). A qubit
in quantum computing or quantum bit is a basic unit
like a bit in the classical computing. Quantum flight is
a function allowing a quantum moves from its current
position to its next one to enhance the capacity of the
search space. A new solution uses standard phrases
forming the next position of the particle in the PSO
algorithm. It was shown that QIPSO is more effective
than PSO and IDPSO.

IIl. GRAY WOLF OPTIMIZER

Gray Wolf Optimizer (GWO) [10] is a population-
based meta-heuristic algorithm that simulates
leadership structure and hunting mechanism of gray
wolves in nature. Gray wolves prefer to live in a
grouping of five to twelve in form of a hierarchical
society consisting of four levels: Alpha, Beta, Delta,
and Omega.

The Alpha wolves (male or female) are leaders and
responsible for deciding on time of hunting, sleeping,
waking, and so on. The rest of the wolves in the group
are forced to obey the order of Alphas. Alphas prevail
over other levels and all their orders must be followed
by members of the group.

The Beta wolves (male or female) are subalterns of
Alphas and help Alphas in decision-making. They are
the best alternatives to the Alphas at the time of death
or aging.

The Delta wolves obey Alphas and Betas, but are
superior to the Omegas. Omegas are considered as
devotees and obey all wolves of their higher levels.
They are the last ones allowed to eat.

GWO simulates hunting of gray wolves where the
hunting process is divided into three phases: (1) to
chase and surround a prey, (2) harass the prey, and (3)

http://ijict.itrc.ac.ir/article-1-44-en.html

[Downloaded from ijict.itrc.ac.ir on 2025-11-18]

attack the prey. For mathematical modeling of the
problem, the best solution is considered as Alpha (o).
Similarly, the second and third best solutions are
considered as Beta (B) and Delta (8). Remaining
candidate solutions are considered as Omega (o).
Hunting (optimization) in GWO is guided by Alphas,
Betas, and Deltas while Omegas follow them. Egs. 1
and 2 are used to surround a prey [10]:

D = C.Xo(t) — X (1) | 6]

X (t+1) = Xo(t) — A.D @

As stated above, wolves should surround the prey
first. To this end, the distance of each wolf from the
prey is calculated according to Eq. 1 and the next
position of the wolf is calculated according to Eq. 2

where ‘t’ represents the current run and vectors A and

6 are coefficient vectors for distance and prey

respectively. ; and ; are the prey position vector
p

and position of the gray wolf, respectively. Vectors A
and C are calculated according to Eqgs. 3 and 4 [10]:

A=2if1-3 @)
C=2r2 @)

Elements of the vector & linearly decrease from 2
to zero during the execution of algorithm. Vectors
r; and r, contain random values in interval [0, 1].

The wolves chase the prey based on positions of
Alphas, Betas, and Deltas. Wolves get away from each
other for searching (called divergence) but get close to
each other to attack (called convergence). To model

the divergence, values of the A vector are greater than
1 or less than -1. It forces the search agent to diverge
and perhaps find a better prey. This practice focuses
on exploration and allows GWO to perform a
complete search. Another part of GWO, which

facilitates exploration, is the C vector whose values are
random values in [0,1] denoting weight of prey in Eq.
1. It causes the behavior that is more random during
hunting leading to find a proper prey; this avoids the

local optimization. Note that the C vector decreases

non-linearly. Moreover, the C vector can be
interpreted as natural obstacles in the path of the
wolves in hunting and preventing them from rapidly
reaching the prey. The wolves are able to recognize
and surround a prey position. The hunting of prey
usually is guided by Alphas and Betas and Deltas
participate in hunting in some cases. However, for the
optimization problem, there is no information about
the exact position of the prey. To model the behavior
of hunting, Egs. 5-7 are used [10].

5, =[6.X, -X|8, =€.%, |6, -6.X, %

'(6(1)')Z2 =)Z/f _AZ'(ﬁ[i)| Xz =)Zb _'&3(6()) (6)

>

X, =X

1 a

Volume 9 - Number 1- Winter 2017 1JIC TR I

_ X, + X, + X
X(t+1) =2t 22 % Rs 32+ 3 0

Since there is not the precise estimate of the actual
location of the prey, the distance of each wolf from the
best positions of Alpha, Beta, and Delta is calculated
using Eg. 5. The next position of Alpha, Beta, and
Delta is calculated using Eg. 6. Using Eq. 7, next wolf
position is calculated regarding the average position of
Alpha, Beta, and Delta.

IV. PROPOSED METHOD

In this section, an accurate description of the
problem is defined and then quality parameters of the
QoS-aware web service composition are described.
Afterwards, three steps are taken to solve the
optimization problem using GWO.

A. Problem Description

An abstract description of a workflow is defined as
a composition of abstract services indicated by A =
(Ag, A2, .., Ay) where A; is an abstract service. Suppose
for each abstract service, there are some candidate
concrete services that are able to perform the abstract
service with different qualities. Concrete candidate
services for abstract service A; is shown as
Ci={Ci,Ci,....Cim} where Cj is the j" concrete
candidate service for abstract service A..

If quality attributes are response time, cost,
availability, reliability, quality of the concrete service
S is defined as:

QoS(S)=(Time(S),Cost(S),Availability(S),
Reliability(S))

The goal is to obtain an optimal composition of
concrete candidate services for services of a workflow
so that the composed web services have the best QoS.
Therefore for each abstract service, say A, the goal is
to find solution S=C;. For a workflow consisting of
abstract services A, Az, .., An, an optimal composition
consisting of candidate services Cljl, C2j2 ank
should be obtained with respect to minimizing
response time and cost and maximizing reliability and

availability. Notation Cij_ indicates the selected
concrete service for abstract service A; is ji where j;

denotes the j™ concrete service of the services are
candidate for A;.

Depending upon the execution of concrete services
in serial or in parallel, response time, cost, reliability,
and availability are calculated according to Tablel
[11].

B. QoS-aware web service composition using GWO

To optimize QoS-aware web service composition
using GWO, we should first determine: (1) the
representation of wolfs, (2) the initial population of
wolfs, (3) the fitness function to evaluate wolfs and (4)
the mechanism of updating wolfs’ positions at the end
of each algorithm iteration.

International Journal of Information & Communication Technology Research ’\/\/\,@

http://ijict.itrc.ac.ir/article-1-44-en.html

B FHIJICTR Volume 9 - Number 1- Winter 2017

[Downloaded from ijict.itrc.ac.ir on 2025-11-18]

Table 1. Calculation of quality parameters in execution of
serial or parallel services [11]

Quality parameter Serial Parallel
Response Time 2(T) Max(Ts)
Cost 2(Cy) 2Ci
Availability T1(A) (A
Reliability I(Ri) Min(Rs)

C-1 Wolf representation

One of the most important steps in the GWO design
is the representation of a solution (wolf). In a QoS-
aware web service composition, a proper solution is
shown by a vector with D dimensions (called D-
dimensional vector) in which D is the number of
abstract tasks of the workflow. Each element of the
vector has a value (see Egs. 5 to 7) indicating index of
the concrete service selected from the candidate
services.

Consider a workflow consisting of (n=5) abstract
services, for instance, where n solutions (indicated by

vectors Xi to Xn in Fig. 1) were proposed. Each
solution, indicated by%, shows a composition of 5

candidate services. Vector X1, for instance, indicates

that concrete services 3, 1, 4, 11, and 6 are selected for
abstract services 1 to 5.

- -
X ={3,1,4,11,6}, X, ={110,68,63,400,100} . .

X, ={40,36,92,57,102} Fig. 1

C-2 initializing population

After representing solutions, a population of
solutions should be initialized. Initially, n wolves
(solutions) are randomly chosen for each abstract task
from candidate services in a dataset. Each wolf
consists of d values (for instance 5 values for the
example stated above).

C-3 Fitness Function

A fitness function should be determined to measure
wolf’s accuracy. For QoS-aware web services
composition, wolf’s accuracy is measured by its
services” quality values and considering the
importance (weight) of each service quality. To
compute quality of web services, we use the relations
stated in Table 1. Table 2 shows typical weights for
quality services.

Awvailability and reliability are positive qualities
while cost and response time are negative ones. While
higher values are more desirable for positives, fewer

values are sought for negatives. Because qualities
values have different scales, they should be
normalized. Egs. 8 and 9 show normalization of
positive and negative qualities, respectively [6].

Table 2. Typical weight (importance) for each quality

Parameter |Cost |Availability |Responsetime |Reliability

Weight |01 [0.2 0.4 03

Q"™ - Q; i
Qimlax _ Qimlin Q" —QM™ =0 (8)
1 otherwise
Qi — imin max min
— = T Q; 0
Qimax — Qimln Q' Q' * (9)
1 otherwise

According to Eqg. 8, higher (more desirable) value
for the positive quality Q; leads to less value for the
fraction; similarly, based on Eg. 9, less (more
desirable) value for negative the quality Q; does to less
value for the fraction. Therefore, our optimization
problem is a minimization problem.

Given that the Max. and Min. values of reliability
and cost are according to Table 3 and reliability and
cost values of a service are according to Table 4,
normalized values are shown in Table 5.

As stated above, our optimization is a minimization
problem; therefore, according to Egs. 10 and 12,
Servicel is more reliable than Service 2 but Service2
is less costly than Servicel.

Fitness value of each dimension (indicating a
concrete service) in a candidate solution (wolf) is
calculated according to Eq. 14. For instance, fithess
value of concrete Service 3 consisting of values of
100% for response time, 2.2% for availability, 90% for
cost, and 89% for reliability are calculated as follows
(for weights, see Table 2).

Table 6 shows Fitness values of services in vector

x1=1{31,411,6} (see Fig. 1) as a solution for 5
abstract services of a workflow.

Eg. 15 shows the fitness value of solution ;1 :

similarly, the fitness values of X2toXnare calculated
and the solution with the smallest value is selected as
Alfa wolf and the smallest values greater than Alfa are
selected as Beta and Delta wolves, respectively.

Table 3. Min. and Max. values of reliability and cost

Reliability(%) Maximum 100
Minimum 20

Maximum 80

Cost($) Minimum 20

@/\/\/\mtemational Journal of Information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-44-en.html

Downloaded from ijict.itrc.ac.ir on 2025-11-18]

Table 4. An example of quality values of 2 services

Service 1 Reliability 80
Cost 60

) Reliability 70
Service 2 Cost 20

Table 5. Normalizing quality values

Concrete

1abihli 0 0,
service Reliability(%) Cost(%)
M;@;Q% : M:@:om
Service 1 100-20 80 80-20 60
(10) (11)

80-20 60

100—70:@:037 N Mzﬁzo.%
Service 2 100-20 80

(12) (13)

d
fitness(cs)= 2 weight (quality (i)) *quality(i) (14)
i=1
=(0.4*1)+(0.022*0.2)+(0.9*0.1)+(0.89*0.3)=76%
Table 6. Fitness values of the services in vector x;

. Response [Availability| Cost |Reliability| Fitness
Service#|
time (%) (%) (%) (%) value%
3 100 2.2 90 89 76
1 85 1 33 100 67.5
4 83 23 6 89 65.18
11 73 3.7 12 78 54.54
6 46 10 39 89 89

D
FitnessValue=(> F(i))/D
itnessValue (El @) (15)

=(76+67.5+65.18+54.54+89)/5=70.44

C-4 Update wolf position
In GWO, wolves need to update their position at the

end of each algorithm iteration according to Alpha,
Beta, and Delta (which are the wolves with the best
fitness values in the population), to get closer to the
prey. The classic GWO is not appropriate for solving
discrete problem and since the web service
composition has a discrete space (each dimension of
web services composition is a representation of one
dimension of a concrete service and cannot accept
continuous values), we should justify the basic GWO
to a discrete problem. Kennedy and Eberhart [4] used
a sigmoid method to convert continues problems into
discrete ones. Mirjalili et al. [12] described different
ways of transforming continuous problems to discrete
ones. Leading solutions were considered in this study
and the results showed that the hyperbolic tangent
function is more suitable for our problem. Therefore,
after using GWO equations (Egs. 5-7) and calculation

Volume 9 - Number 1. Winter 2017 IJICTR ILEIN

of the approximate position of wolves in continuous
space, update formulas for wolf position are applied.

The next position of a wolf (calculated using Eg. 7)
is used as argument of the hyperbolic tangent function
in Eq. 16 and the output of the function is compared
with a random number between zero and one. If it is
lower than the random value, it means that we do not
need to change the concrete service; otherwise, we
must replace the concrete service with a new one.

For example, suppose Alpha, Beta, and Delta are
defined as follows:

X.={50012139,41,7) , X,=1{7,29,219,76,900} |,
X = {20281101,739,606,84}

To update solution (wolf) X =1{31411,6}, distance
of each dimension of the concrete service from the
corresponding dimensions of Alpha, Beta, and Delta is
calculated and then a new approximate position is

calculated according to Alpha, Beta, and Delta
separately.

e _ [T iF(Tanh((X (¢ +1),] > U (0) (16)
“ o, otherwise

Moreover, the mean of these positions is used in the
transition function. Afterwards, output of this function
determines whether this service should be replaced or
not. The following example shows the calculations
stated above.

Da_1=/Cl.Xa — X |=0.58x0.92—0.83=29.10
DAl_=C2.XB— X |=>0.58x0.88—0.83=231.45
DS1_ = C3.X5 — X |=>0.58x0.95—0.83=27.34
X1_1=| Xa - AL (Da)|=0.92 - (-1.82) *2.10=144.95

X2_1= XB - A2.(DB)|=>0.88 — (~0.89) *31.45=116.22
X3_1=| X5 — A3.(D3) |=0.95— (0.78) * 27.34=73.77

X1t +1) = X1+ X32+ X3
N 144.95 +1lg.22 +73.77 11164

1 if (‘Tanh()? t+1)| > U0.D)
0 otherwise
Tanh(111.64)=1,U(0,1)=0.41,1>0.41 =TransformValue=1

TransformValue = {

Because the value of the transition function is 1,
this concrete service is replaced by one of randomly
selected candidate services of this abstract service. The
presented calculations were done for the first
dimension of a candidate solution (wolf). Similarly,

International Journal of Information & Communication Technology ResearcN\/\@

http://ijict.itrc.ac.ir/article-1-44-en.html

I V' WIJICTR Volume 9 - Number 1- Winter 2017

[Downloaded from ijict.itrc.ac.ir on 2025-11-18]

this process should be done for all dimensions of a
wolf. Pseudo code of proposed method is presented in
Fig. 2.

InitializePopulation();

currentIteration=0;

While(currentIteration < maxIteration){
GetQualityParameters(population);
UpdatePopulation(population, Alpha, Beta, Delta)
currentIteration++;

¥

InitializePopulation(){
Foreach dimension in Dimension

SelectRandomService(Repository);
}
}

UpdatePopulation(population, Alpha, Beta, Delta){
Foreach wolf in population

{
Da=

Cl.Xa —)Z‘
5,8:‘62.)2[)’— >Z‘
65:\63.)25-)2‘
)le)z’a—)&l.(f)a).
X2=XB— A2.(DB) .
X3= X5 — A3.(DJ) .
X1+ X2+ X3,
—

If (Tanh(X (t + 1)) > U (0.1))

GetNewConcreteServiceFromRepository();

X(t+1)=

Fig. 2. Pseudo code of the proposed method

V. EVALUATION OF THE PROPOSED METHOD

We implemented the QoS-aware web service
composition using GWO in C# programming language
and tested using PC with Intel® Core (TM) i5, 2.6
GHz and RAM of 8 GB. The optimal rate of the
proposed method was compared with PSO [5], IDPSO
[6] and QIPSO [7] using the QWS dataset [13]
containing 2507 real web services. The optimality rate
was calculated using Eq. 17 [14].

OptimalSolution
OptimalityRate=—— 17)
InitialSolution

The “Initial Solution” is the best solution at the end
of the first iteration of the algorithm and the “Optimal
solution” is the best solution after convergence of the
algorithm. Table 7, for instance, shows initial and
optimal solutions of algorithms A and B. According to
Eqg. 17, the optimal rate of algorithms A and B are 0.33
and 0.5, respectively. Since the minimum value of the
optimal rate is desired, algorithm A outperforms
algorithm B. To compare our proposed method with
other methods, the optimal rate is used (Fig. 3). As
Fig. 3 shows, the optimal rates of QIPSO and IDPSO

are better than PSO and QIPSO outperforms IDPSO
when the number of iterations increases. However, the
optimal rate of the proposed method shows it
outperforms other methods.

A suitable algorithm is the one that produces
effective results independently from the number of the
algorithm iterations; GWO enjoys such feature. In this
study, we run the proposed algorithm 40 times with an
arbitrary number of iterations in each execution. Table
8 shows convergence of the algorithm for 10 services.

VI. CONCLUSION AND FUTURE WORKS

In this study, the effective use of GWO for QoS-
aware web service composition was investigated. To
found an optimal composition of solutions in a discrete
space, we modified the basic GWO.

To evaluate the effectiveness of the proposed
method, we thought of quality parameters: response
time, reliability, availability, and cost for each web
service. By comparing results of the proposed method
with several variations of PSO, it was shown the
proposed method outperforms the various PSO-based
methods.

We showed that the GWO was a suitable
algorithm to produce effective results independently
from the number of the algorithm iterations. In this
study to produce effective results and not using non-
optimal results, we run the proposed algorithm 40
times with an arbitrary number of iterations in each
run.

The disadvantage of the proposed method,
however, is that if a web service has the best fitness
value it will be selected as the suggested solution;
while there may be several similar solutions with
lower fitness values but with more user-friendly
candidates. In this case, these solutions would stay
away from users. Therefore, as future work, we plan
to solve QoS-aware web-service composition problem
using the Pareto front concept without transforming it
to the single-objective optimization problem. This
would produce good non-dominated results and user
would be free to decide between several suggested
solutions.

As a future work, we may use Analytical
Hierarchical Process (AHP) when we reach to a set of
optimal solutions instead of single one. AHP is used
when we should choose a solution from a set of
alternatives. A solution is chosen from alternatives by
considering some criteria influencing on the solutions.

Table 7. Initial and optimal solutions of 2 algorithms

. . Optimal Init. S./

Alg. | Initial Solution Solution opt. S.
A 0.6 0.2 0.2/0.6=33
B 0.4 0.2 0.2/0.4=0.5

@/\/\,‘lntemational Journal of Information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-44-en.html

|IDownI0aded fromijict.itrc.ac.ir on 2025-11-18]

Volume 9 - Number 1- Winter 2017 |J|CTRﬂ

1

8

© 0.9

z Pa
= 0.8 =<

£ / W

g 0.7

0.6 ;‘ —
0.5 / —GWO ==QIPSO
0.4 7/

IDPSO ==¢=PSO

0.3 -
0.2
0.1
O T T T T 1
0 200 400 600 800 1000 1200
Iterations

Fig. 3- The optimality rate of PSO, IDPSO, GWO, and QIPSO

Table 8. Convergence of the proposed algorithm
OG: #Optimal Generations, RI: #Run Iterations

[1]

[2]

(31

[4]

[5]

oG RI oG RI
11 32 100 6 401 600
2| 131 200 7 325 700
3| 242 300 8 597 800
41 211 400 9 702 900
5| 273 500 10 654 1000

REFERENCES

A. Strunk, “QoS-Aware Service Composition: A Survey,”
The 8% IEE European Conference on Web Services, pp. 67—
74, 2010.

M. Amiri and H. Serajzadeh, “Effective Web Service
Composition Using Particle Swarm Optimization Algorithm,”
The 6th IEE Symposium on Telecommunications, pp. 1190—
1194, 2012.

S. Ludwig, “Applying Particle Swarm Optimization to
Quality-of-Service-Driven Web Service Composition,” The
26th IEEE International Conference on Advanced
Information Networking and Applications, pp. 613-620,
2012.

Q. Bai, “Analysis of Particle Swarm Optimization
Algorithm,” Computer and Information Science, Canadian
Center of Science and Education, vol. 3, no. 1, pp. 180-184,
2010.

G. Kang, J. Liu, M. Tang and Y. Xu, “An Effective Dynamic
Web Service Selection Strategy with Global Optimal QoS
Based on Particle Swarm Optimization Algorithm,” The 26™
IEEE International Symposium Workshops on Parallel and
Distributed Processing, pp. 2280-2285, 2012.

[6]

[7]

(8]

[°]

[10]

[11]

[12]

[13]

[14]

X. Zhao et al., “An Improved Discrete Immune Optimization
Algorithm Based on PSO for QoS-driven Web Service
Composition,” Applied Soft Computing, Elsevier, vol. 12, no.
8, pp. 2208-2216, 2012.

C. Jatoth and G.R. Gangadharan, “QoS-aware Web Service
Composition Using Quantum Inspired Particle Swarm
Optimization,” Intelligent Decision Technologies, Springer,
pp. 255-265, 2015.

A.Khalil and S.M. Babamir, “A Pareto-based Optimizer for
Workflow Scheduling in Cloud Computing Environment”,
International Journal Information and Communication
Technology Research, vol. 8, no. 1, pp. 51-59, 2016.

A. Layesb, “A Quantum Inspired Particle Swarm Algorithm
for Solving the Maximum Satisfiability Problem,”
International Journal of Combinatorial Optimization Problems
and Informatics, vol. 1, no. 1, pp.13-23, 2010.

S.A. Mirjalili, S.M. Mirjalili and A. Lewis, “Grey Wolf
Optimizer,” Advances in Engineering Software, Elsevier, vol.
69, no. 1, pp. 46-61, 2014.

Y. Yao and H.Chen, “QoS-aware Service Composition Using
NSGA-II,” The 2™ International Conference on Interaction
Science: Information Technology, Culture and Human, ACM,
2009.

S.A. Mirjalili, A. Lewis, “S-Shaped Versus V-Shaped
Transfer Functions for Binary Particle Swarm Optimization,”
Swarm and Evolutionary Computation, Elsevier, vol. 9, no.1,
pp. 1-14, 2013.

E. Al-Masri and Q.H. Mahmoud, "Discovering the Best Web
Service," The 16" International Conference on World Wide
Web, pp. 1257-1258, 2007.

B. Boussalia and A. Chaoui, “Optimizing QoS-based Web
Services Composition by Using Quantum Inspired Cuckoo
Search Algorithm. In Proceedings of the Mobile Web
Information Systems, vol. 8640, pp. 41-55. Springer, 2014.

International Journal of Information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-44-en.html

-ﬂIJICTR Volume 9 - Number 1- Winter 2017

Meysam Karimi received the B.E.
degree in software engineering from the
Tabarestan University, Chalus, Iran, in
2007, and M.Sc. degree in Software
Engineering from University of Kashan,
Kashan, Iran in 2016, respectively. In
2008, he joined the Lovin Information

Technology Company; a software house
digital repository under .Net technology, as a

full-time Developer, and soon was promoted to the project manager
in 2009. Since that time, he has been with the Lovin, where he was
a technical manager, Scrum Master and part-time developer. In
2010, he joined Ministry of Education as a teacher and he has been
teaching computer courses for students eagering to join an
associate's degree. Also, he has held lecturing position at Azad
University of Islamshahr, Tehran, Iran. He was the recipient of the
best teacher of the Conservatory of Mostafa Khomeini in 2014,
2016, and 2017. His current research interests include software
engineering, service oriented, cloud computing, distributed
systems, evolutionary algorithms, and big data.

Seyed Morteza Babamir received BS
degree in Software Engineering from
Ferdowsi University of Meshhad and
MSc and PhD degrees in Software
Engineering from Tarbiat Modares
University in 2002 and 2007 respectively.
He was a researcher at Iran Aircraft
Industries, in Tehran, Iran, from 1987 to
1993, head of Computer Center in
University of Kashan, Kashan, Iran, from
1997 to 1999 and haed of Computer Engineering Department at
University of Kashan from 2002 to 2005. Since 2007, he has been
an associate professor of Department of Computer Engineering at
University of Kashan, Kashan, Iran. He authored one book in
Software Testing, 4 book chapters, 20 journal papers and more than
50 international and national conference papers
(http://ce.kashanu.ac.ir/babamir/ Publication.htm). He is managing
director of Soft Computing Journal published by supporting
University of Kashan, Kashan, Iran.

[Downloaded from ijict.itrc.ac.ir on 2025-11-18]

International Journal of Information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-44-en.html
http://www.tcpdf.org

