

Simulating Benchmark Datasets for Worm

Propagation Studies

Sara Asgari

Department of Computer Engineering

Amirkabir University of Technology

Tehran, Iran

s.asgari@aut.ac.ir

Babak Sadeghiyan*

Department of Computer Engineering

Amirkabir University of Technology

Tehran, Iran

basadegh@aut.ac.ir

Received: 30 September 2019 - Accepted: 20 December 2019

Abstract—Identifying the roots of a worm and reconstructing its spread path are among essential concerns in digital

forensics. This knowledge assist the prosecutor in understanding how the attack happened in the network and how

security protections were breached. Evaluating methods proposed for this purpose is problematic due to the lack of

suitable datasets containing both worm traffic and normal traffic. In this paper, we investigate various approaches of

generating such datasets and propose a technique to generate suitable datasets for these evaluations. ReaSE is a tool

for creating realistic simulation environments, which considers three aspects, i.e., topology generation, normal traffic

generation, and attack traffic generation. We modify ReaSE to make it suitable for generating these datasets. We also

generate various datasets for Code Red I, Code Red II, SQL Slammer and modified version of them in different

scenarios and make them accessible to the public.

Keywords-simulation; dataset generation; spread path reconstruction; source detection; worm; Code-Red; SQL Slammer

I. INTRODUCTION

Locating the sources of a worm and reconstructing
its spread path are among essential concerns in digital
forensics. This information would help the forensic
investigator guess which nodes were responsible for
entering infection into the network and how security
protections were breached. This knowledge is helpful
in identifying network security weaknesses and better
planning to mitigate future attacks. Despite the fact that
the research community has realized this necessity,
relatively few methods have been proposed for this
purpose to date since evaluating these methods is
problematic. Both worm traffic and normal traffic are
needed to evaluate these methods. Currently,
researchers inject worm traffic into separately-

* Corresponding Author

generated normal traffic; for example, in [1] and [2],
this approach is used. In this approach, the network race
condition (in real networks, worm traffic and normal
traffic race each other to achieve bandwidth) is not
considered since these two types of traffic are not
generated in the same network and concurrently.

Furthermore, obtaining normal traffic is a big
challenge since network administrators often avoid
exposing their network traffic due to privacy issues.
Moreover, available datasets are usually anonymized
due to privacy issues, e.g., Kent[3][4], MAWI[5],
UGR-16[6], SANTA[7], UNIBS[8], PUF[9],
LBNL[10]. Currently, there are no suitable datasets for
evaluating worm source and spread path identification
methods, i.e., the datasets that include both worm traffic
and normal traffic generated concurrently and in the

Volume 12- Number 1 – Winter 2020 (20 -31)

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

18
]

 1 / 12

http://ijict.itrc.ac.ir/article-1-451-en.html

same network. If such datasets existed, the network race
condition would be considered. In addition, the main
concern of researchers for evaluating worm source and
spread path identification methods, which is collecting
normal traffic, would be addressed.

 Our purpose is to suggest a technique for
generating suitable datasets for worm propagation
studies, as well as to generate a number of these
datasets. To do this, we examine different approaches
of generating datasets for worm propagation studies.
We study 21 datasets and various traffic generators to
obtain normal traffic. We also investigate various
technologies of creating worm experimental
environments. The result of our investigations is that
ReaSE[11] is an appropriate tool for generating the
datasets described above. However, some changes need
to be made to it. So we modify ReaSE and also generate
multiple datasets for SQL Slammer[12], Code-Red I,
Code-Red II[13], and modified versions of them in
various scenarios.

 The rest of this paper is structured as follows:
Section II introduces the related works of generating
datasets. Section III discusses possible dataset
generation approaches for evaluating worm source and
spread path identification methods. Section IV
describes our proposed technique. This section provides
a short description of ReaSE and its features, as well as
the changes we made to ReaSE. Section V details our
generated datasets. Finally, Section VI concludes the
paper and gives an outlook to future work.

II. RELATED WORKS

 So far, many different efforts have been made to

generate suitable datasets for evaluations, e.g., IDS

evaluations.

 One of the most popular datasets for intrusion

detection is DARPA dataset[14][15][16], which was

generated in 1998/1999 and includes different kinds of

attacks, e.g., port scan, buffer overflow, and DoS. In

[17], [18] and [19], DARPA dataset is criticized. These

criticisms show that DARPA dataset does not illustrate

the realistic behavior of network traffic. KDD Cup[20]

is based on the DARPA dataset and contains various

kinds of attacks, e.g., DoS. The analysis performed in

[21] shows that there are important issues with KDD

Cup that lead to very poor evaluations. One of the most

important drawbacks of KDD Cup is the large number

of duplicates[21]. NSL-KDD[22] improved KDD Cup

and removed redundancies. These datasets have been

generated many years ago and are outdated.

 Kyoto 2006+[23] dataset was collected from

diverse types of honeypots in 2011. Although it

includes various attacks, e.g., port scans, DoS,

shellcode, and malware, it contains a small amount of

normal traffic. ISCX[24] dataset contains both normal

traffic and some kinds of attack traffic, e.g., DoS,

DDoS, and SSH brute force. It was generated in 2012

by capturing traffic in an emulated network

environment. In order to generate this dataset, two

profiles were considered. α-profile defines a

description of an attack scenario, and β-profile

characterizes normal user behavior. ISCX dataset does

not include HTTPS traffic. However, nowadays, nearly

70% of network traffic is HTTPS[25]. Moreover, the

testbed of generating ISCX dataset contains very few

nodes. TUIDS[26][27] dataset was generated within an

emulated environment in 2012 and contains normal

traffic and some primary attacks, e.g., Dos, DDoS, and

port scanning. TUIDS includes three parts: a TUIDS

intrusion dataset, a TUIDS coordinated scan dataset,

and a TUIDS DDoS dataset. SANTA dataset[7] is a

flow-based dataset captured within an ISP

environment in 2014 and contains real network traffic.

IRSC[28] was generated in 2015 by capturing normal

and attack traffic from the internet and also running

manual attacks. SANTA and IRSC are not accessible

to the public for privacy reasons. Kent dataset[3][4]

was generated in 2016 by capturing the traffic of the

Los Alamos National Laboratory network within 58

days. This dataset is heavily anonymized, e.g., IP, time,

and port, due to privacy issues. CICIDS dataset[25]

was generated within an emulated environment in

2017. For generating a wide range of attack types, six

attack profiles were created, i.e., heartbleed, DDoS,

DoS, botnet, brute force, web, and infiltration.

Moreover, the abstract behavior of human interactions

was profiled by the B-profile system and used to

generate normal traffic. The testbed of generating the

CICIDS dataset is very small. PUF[9] is a DNS dataset

captured within a campus network in 2018, and is

available in the flow-based format. Due to privacy

issues, IP addresses are removed from this dataset.

 None of the mentioned datasets are suitable for

evaluating worm source and spread path identification

methods. To the best of our knowledge, there is no

suitable dataset containing both worm traffic and

normal traffic for evaluating these methods. Due to the

lack of such datasets, researchers usually inject the

worm spread traffic to separately-generated normal

traffic. In this approach, worm spread traffic is usually

generated using simulation. Then this traffic is

combined with normal traffic obtained from real

networks or available datasets. For example, in [29],

the worm spread traffic simulated with GTNetS[30]

was combined with normal traffic of the ISCX

dataset[24]. Also, In [1], traffic of a real network was

recorded and used as normal traffic.

 In this paper, we propose a technique to generate

suitable datasets for worm propagation studies and also

generate a number of these datasets, which enable

researchers to evaluate their proposed methods without

facing any challenge, e.g., [31].

III. DATASET GENERATION APPROACHES

To evaluate methods proposed for detecting the
source of a worm and reconstructing its spread path, we
require datasets that include both worm traffic and
normal traffic. There are two approaches for creating
such datasets:

1) injecting separately -generated worm traffic into

normal traffic

2) Generating both worm traffic and normal traffic

concurrently .

21 Volume 12- Number 1 – Winter 2020 (20 -31)

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

18
]

 2 / 12

http://ijict.itrc.ac.ir/article-1-451-en.html

Furthermore, our studies show that there are three

methods for obtaining worm traffic and normal traffic:

using available datasets, collecting traffic of real

networks, traffic generation in the experimental

environment. We investigate these methods in this

section.

B. Using Available Datasets

 To obtain normal traffic for evaluating worm source

and spread path identification methods, we investigate

21 datasets. The results of our investigations show that

available datasets have some issues to be used for these

evaluations. We categorize these issues as below:

• Some of the datasets were created many years

ago, e.g., DARPA, KDD CUP, NSL-KDD,

and PU-IDS, date back to 1998/1999.

Networks and their traffic have been changed

a lot since then, e.g., new protocols have been

introduced, and some protocols have been

outdated. Therefore, these datasets are

deprecated and should not be used for today’s

evaluations.

• The format of available datasets can be

categorized as below[32]:

- Flow-based: In the flow-based format, all

packets with a number of same properties

within a time window are aggregated into

a single flow. Flow-based data only

contain metadata about network

connections.

- Packet-based: Packet-based data are

usually captured in pcap format.

- Other: Some datasets have no standard

format.

To evaluate worm source and spread path

identification methods, traffic should be

available in packet-based format because in

flow-based or other formats, some essential

data for evaluations are not provided. Note

that packet-based data can be converted to

flow-based or other formats, but not vice

versa.

• Because of privacy reasons, some datasets are

not accessible to the public.

• In some datasets, attack traffic and normal

traffic are combined. These datasets do not

provide normal traffic separately.

• Some necessary information, e.g., link delay,

bandwidth, and network topology, to inject

worm traffic into normal traffic is not

available in some datasets, such as LBNL.

• Some of the datasets do not contain a number

of new network protocols. For example, there

are no HTTPS traces in many of the available

datasets. However, nowadays, nearly 70% of

network traffic is HTTPS[25].

• Some datasets, such as CICIDS[25] and

ISCX, have very small testbeds.

• Available datasets are often sanitized, and all

of the sensitive information, e.g., IP

addresses, payloads, times, and ports, are

anonymized or removed from them to be

distributed without any privacy issues.

Sanitization makes datasets inadequate for

evaluating some worm source and spread path

identification methods as it may remove some

necessary information needed for evaluations.

 Some example datasets for each issue are

illustrated in Table I.

C. Collecting Traffic of Real Networks

 The traffic of real networks contains sensitive

information of network users. Therefore, due to

privacy issues and potential security threats, network

administrators often refuse to expose the traffic of their

network, and if they do so, they will anonymize it .

Moreover, we cannot ensure that the traffic traces

captured in real networks only contain normal traffic,

due to the attack traffic which may exist.

TABLE I. SOME EXAMPLE DATASETS FOR EACH ISSUE

Issue Example Datasets

Outdated
PU-IDS[33], NSL-KDD[22], KDD

Cup[20], DARPA[14][15][16]

Not including new

protocols

PU-IDS[33], NSL-KDD[22], KDD

Cup[20], ISCX[24],
DARPA[14][15][16]

Being sanitized

IP: LBNL[10], Kent[3][4], UGR

16[6], MAWI[5], UNIBS[8], PUF[9],

Unified Host and Network[34]

Payload: LBNL[10], SANTA[7],
MAWI[5], CTU-13[35]

Time: Kent[3][4], Unified Host and
Network[34]

Ports: Kent[3][4]

Not accessible to

the public
SANTA[7] and IRSC[28]

Not available in
packet-based format

KDD Cup[20], Kent[3][4], NSL-

KDD[22], PU-IDS[33], PUF[9],

Unified Host and Network[34],
UNIBS[8], SANTA[7], SSENET-

2014[36], SSENET-2011[37] and

UGR 16[6]

Not providing
normal traffic

separately

CTU-13[35], MAWI[5], NGIDS-
DS[38], TUIDS[26][27] and UNSW-

NB15[39]

Lack of access to

necessary

information for
traffic injection

LBNL[10], MAWI[5], PUF[9],

Unified Host and Network[34], UGR

16[6], Kent[3][4], SANTA[7], CTU-
13[35], UNIBS[8]

Small testbed CICIDS[25], ISCX[24]

Volume 12- Number 1 – Winter 2020 (20 -31) 22

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

18
]

 3 / 12

http://ijict.itrc.ac.ir/article-1-451-en.html

D. Traffic Generation in Experimental Environment

1) Normal Traffic: the traffic generated by most

traffic generators is uni-directional. Some traffic

generators generate bi-directional traffic, but there is

no request-response interaction between two sides of

communication. The traffic generated by these two

categories of traffic generators is not suitable for

evaluating worm propagation studies. However, it

can be helpful in other applications, e.g.,

performance evaluation, quality of service

measurement, and optimization. The normal traffic

used to evaluate worm propagation studies should

be bi-directional traffic that each side of

communication affects the other side, e.g., request-

response communications in application-layer

protocols and retransmitting packets in TCP.

Below, we provide a brief discussion on some traffic

generators:

• Swing[40][41]: Swing captures the packet

interactions of applications and extracts

distributions for application, user, and

network behavior. Then, in an emulated

environment, it generates traffic based on the

underlying model. One of the limitations of

swing is that it generates realistic traces for a

single link.

• Tmix: Tmix is a traffic generation system

described in [42] for the NS-2 simulator[43].

Tmix takes a packet header trace obtained

from a network link as input and reverse-

compiled it to produce a source-level

characterization of each TCP connection in

the trace. Then it uses this characterization to

emulate the socket-level behavior of the

source application that created the

connections in the trace. Tmix is also

implemented for GTNetS[30] in [44]. Tmix,

like swing, generates traffic for a single link.

• PackMime-HTTP: PackMime-HTTP is a

model and implementation proposed in [45]

for generating realistic synthetic web traffic in

NS-2 simulator. The source variable

generation model of PackMime-HTTP was

extended and modified in [46] to work with

the NS-3 simulator [47]. Moreover, an

additional working mode was added to it.

These traffic generators are only able to

generate HTTP traffic.

• Ammar et al.[48] developed a tool for

generating traffic for the NS-3 simulator

based on the PPBP (Poisson Pareto Burst

Process) model [49]. The traffic generated by

this traffic generator is uni-directional.

• NeSSi [50]: NeSSi is a network simulation

tool that provides various network security

capabilities. NeSSi provides a scalable and

distributed architecture built on top of the

JIAC[51] framework. NeSSi includes a small

number of application-layer protocols.

2) Worm Traffic: The technologies of creating a

worm experimental environment are classified as

follows in [52]: hardware testbed, network emulation,

packet-level simulation, analytical model, and hybrid

method. The fidelity of analytical models, as discussed

in [52], is inadequate for our purpose. The use of

network emulation would not fulfill the required

scalability for worm propagation researches.

Furthermore, since worm experiments involve using a

lot of nodes, providing hardware testbeds is not

feasible. Packet-level simulation has better fidelity

than the analytical model. It also provides sufficient

scalability. Following is a brief discussion of several

network simulators that provide packet-level worm

simulation:

• SSFNET: Liljenstam et al.[53] developed a

model for large-scale worm attacks and made

it available as an add-on package to the

SSFNET simulator [54][55]. They use the

detailed packet-level simulation for part of the

network, and a less accurate but

computationally efficient model for other

parts[56].

• NS-2: NS-2 includes some behavioral models

of worms. NS-2 uses the same approach we

mentioned above for SSFNet. Furthermore,

scanning worm models are problematic since

there is no mechanism for assigning IP

addresses to nodes in NS-2 [56].

• GTNetS: various worms can be simulated in

GTNetS by adjusting a number of parameters,

e.g., number of simultaneous connections,

transport layer protocols, scan rate, infection

length.

• PAWS [57]: PAWS is a distributed worm

propagation simulator. In PAWS, to improve

the simulation speed, worm propagation

behavior is simplified. For example, only

those scans are delivered to the destination

that the destination host has not yet infected.

To decrease overhead, PAWS also aggregates

the packets intended for transmission to a

node into a single message and transfers that

message at the end of the time unit.

• A worm propagation simulator is

implemented in the Perl language in [58].

While this simulator takes into account the

effect of propagation delays and link

bandwidth, it disregards competing traffic,

loss, and queuing. Furthermore, TCP-based

worms use a simplified TCP model, in which

some features, e.g., congestion window and

slow start, are not considered [56].

• NeSSi: In addition to generating normal

traffic, we can also simulate worm

propagation in Nessi. The Blaster and SQL

SQL Slammer worms can be simulated using

NeSSi’s worm propagation scheme. The

worm model provided by NeSSi can be

Volume 12- Number 1 – Winter 2020 (20 -31) 23

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

18
]

 4 / 12

http://ijict.itrc.ac.ir/article-1-451-en.html

extended. Furthermore, researchers are able

to develop a new worm model.

IV. OUR PROPOSED TECHNIQUE

According to our investigations, ReaSE can be an
appropriate tool to generate suitable datasets for
evaluating worm source and spread path identification
methods, but some necessary changes are needed. In
this section, we will first provide an overview of ReaSE
and its capabilities, followed by an explanation of the
changes we made to it.

A. OMNeT++ Overview

OMNeT++[59] is a component-based, modular
C++ simulation library and framework, primarily for
building network simulators. OMNeT++ model
consists of hierarchical modules communicating with
each other by message passing. This model is
illustrated in Fig. 1. At the lowest level of this hierarchy
are simple modules that realize the functionalities and
combine one or more C++ classes. One or more simple
modules form a compound module. Compound
modules can be connected to each other using channels,
i.e., outgoing and incoming gates. Each channel has a
certain delay and bandwidth. A compound module can
realize a complete functionality, e.g., the functionality
of a router. The top-level module in this hierarchy is the
system module. The system module is made up of
simple and compound modules.

For simulating with OMNeT++, two types of files
are necessary:

1) NED files: NED language is used to specify the

topology of a model. Each NED file, which has the

.ned suffix, facilitates the modular description of a

network, and contains import directives and the

definitions of channels, network, and simple and

compound modules.

2) Omnetpp.ini file: Omnetpp.ini is the

configuration file that describes the Configuration and

input data for the simulation.

As an example, consider the scenario in Fig. 2. This
network consists of three nodes, one router, and two
hosts. Omnetpp.ini specifies that the starting module is
MyNetwork. This compound module, defined in
MyNetwork.ned file, consists of several submodules
(clients and router) and the interconnections between
them. The functionality of the router and host is realized
with the compound modules Router and StandardHost,
respectively. Moreover, each of these modules
themselves consists of several submodules. For
example, the Router consists of modules NetworkLayer
and RoutingTable.

The INET[60] is an open-source OMNeT++ model
suite for wired, wireless, and mobile networks.
Common internet protocols, e.g., ICMP, TCP, UDP,
and IP, as well as intermediate and end systems, e.g.,
hosts and routers, can be simulated using INET.

Figure 1. OMNeT++ model.

Figure 2. An example of simulation setup[11].

B. ReaSE Overview

ReaSE is a tool developed upon the INET
framework and creates a realistic simulation
environment by considering three aspects, i.e., topology
generation, normal traffic generation, and attack traffic
generation. This tool is accessible to the public on
https://i72projekte.tm.uka.de/trac/ReaSE.

1) Topology generation: Topology generation in

ReaSE is made up of two parts. First, the connections

of Autonomous Systems (AS) are created.

Autonomous Systems are classified into two

categories: stub and transit. The topology inside each

AS is then generated. As illustrated in Fig. 3., the

structure of each AS is hierarchical, including three

layers edge, gateway, and core. ReaSE uses PFP

(positive-feedback preference) model[61] to generate

realistic topologies. The PFP model randomly

generates topologies that show the power-law

distribution in node degrees. The rich club feature[62]

is also considered. Furthermore, ReaSE uses the

heuristically optimal topology (HOT) approach[63] for

topology generation within an AS. In the HOT

approach, for generating topology inside each AS, in

addition to power-law distribution, market demands,

link costs, and hardware constraints are also

considered. This approach leads to a hierarchical

topology that the number of nodes and connectivity

increase from the core to edge, whereas link bandwidth

decreases.

Volume 12- Number 1 – Winter 2020 (20 -31) 24

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

18
]

 5 / 12

https://i72projekte.tm.uka.de/trac/ReaSE
http://ijict.itrc.ac.ir/article-1-451-en.html

Figure 3. Hierarchical topologies generated by ReaSE[64].

2) Normal traffic generation: ReaSE can generate

realistic normal traffic between hosts. Realistic in this

case means that the generated traffic exhibits self-

similar behavior[65] and is based on a combination of

different types of traffic.

 ReaSE defines eight traffic profiles, i.e., web,

backup, mail, interactive, streaming, ping, nameserver,

and Misc. By setting various parameters, i.e., Reply

Length, Request Length, Reply Per Request, Requests

Per Flow, Time To Respond, Time Between Requests,

Time Between Flows, WAN Probability, and Selection

Probability, the behavior of each traffic profile can be

defined. So, by using these traffic profiles and setting

their parameters appropriately, we can generate

various patterns of normal traffic. To generate a

specific traffic pattern, the settings, i.e., traffic profiles

and the parameters, should be given as an XML

configuration file to the simulator. As an example, Fig.

4. represents part of such a configuration file.

3) Attack traffic generation: ReaSE enables

simulation of DDoS attacks and worm propagations.

Although it is mentioned in [11] that both TCP-based

and UDP-based worms were implemented in ReaSE,

the TCP-based worm is not accessible to the public.

However, various UDP-based worms can be simulated

by setting parameters, e.g., payload length, the range

of IP addresses to scan, infection port, time between

probing packets, in the omnetpp.ini file.

Figure 4. An example file: traffic profiles and their parameters

C. ReaSE Modifications

Below, we shortly justify the changes we made to
ReaSE and do not go through the technical aspects:

• Nodes are divided into two categories in
ReaSE: nodes that can only generate normal
traffic and nodes capable of only generating
worm traffic. For evaluating worm
propagation studies, worm traffic and normal
traffic should be generated by the same nodes.
So we add the module that implements worm
propagation functionality (e.g.,
udpWormVictim.ned in UDP-based worms)
in the nodes that generate normal traffic and
remove the nodes that only generate worm
traffic from the simulator.

• In ReaSE, servers only listen to a specific port
and respond to requests. However, they cannot
send requests to other servers, unlike real
servers. So we add this capability to servers.
To accomplish this, we add the InetUser
module of ReaSE to the servers and make
required changes to InetUser and
ConnectionManager modules, as well as the
InetUser class. So each server can also
communicate with other servers.

• To generate datasets in packet-based format,
each node’s traffic should be captured in pcap
format. We provide this capability by adding
the TCPDump module of INET to nodes.

• Although in real networks, hosts use random
source ports for communications, In ReaSE,
each traffic profile uses a fixed source port to
generate traffic. We consider this randomness
in source port selection by modifying the
TrafficProfile struct of ReaSE.

• In ReaSE, each server does not necessarily
listen to requests on a unique port, unlike real
servers. We set the port parameter of each
server to listen on a unique port.

• To generate normal traffic containing new
network protocols, we add four traffic profiles,
i.e., FTP, SSH, HTTP, and HTTPS, to ReaSE
and create a server for each of them (except
SSH). To accomplish this, we create a
compound module for each server, i.e.,
FTPServer.ned, HTTPSServer.ned and
HTTPServer.ned.

• The TCP-based worm implemented in ReaSE
is not accessible to the public. TCP-based
worms establish a TCP connection to each
target machine before sending payload
packets. Furthermore, they use multiple
concurrent TCP connections to infect multiple
machines at the same time, speeding up the
propagation process. Thus, by considering the
behaviors of TCP-based worms, we
implement a model that various TCP-based
worms with different scanning strategies, such
as uniform random scanning and local
preference scanning, and propagation models
SIR (Susceptible-Infected-Recovered) or SI
(Susceptible-Infected) can be simulated by

Volume 12- Number 1 – Winter 2020 (20 -31) 25

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

18
]

 6 / 12

http://ijict.itrc.ac.ir/article-1-451-en.html

setting different parameters, e.g., infection
port, infection length, the range of IP address
to scan, the number of simultaneous
connections, preference probability, and
recovery probability. We implement two
classes, TCPWorm and TCPWormThread.
TCPWorm class is responsible for storing
threads in a list and managing them.
TCPWormThread class handles each thread.
We also implement a module named
TCPWorm, which consists of these two
classes, and add it to vulnerable hosts.

• The model implemented in ReaSE for UDP-

based worms is uniform random scanning and

SI. We change this model such that both

uniform random scanning and local

preference scanning worms with propagation

models SI or SIR can be simulated by setting

the parameters preference probability and

recovery probability. Furthermore, the UDP-

based worm in ReaSE always sends probing

packets from a fixed source port. We modify

it to scan IP addresses using random source

ports.

D. Generating Datasets

 Various datasets containing both worm traffic and

normal traffic can be generated using the technique

proposed in this section. Using different traffic profiles

and adjusting their parameters, Various patterns of

normal traffic can be generated. Various random

network topologies can also be generated by setting a

number of parameters. Furthermore, we can simulate

various types of local preference and uniform random

scanning worms by simply adjusting different

parameters. Other kinds of scanning worms, such as

sequential scanning worms, can also be simulated by

making small changes.

E. Validation

 Multiple experiments were carried out in [64] to

validate that the normal traffic and topologies

generated by ReaSE have realistic characteristics.

These experiments yielded the following results:

• Although there are some deviations in a small
number of nodes, the topologies generated by
ReaSE display the power-law distribution in
node degrees well.

• The generated background traffic shows self-
similar behavior.

It is worth noting that we made no changes to
ReaSE's topology generation capability. Furthermore,
ReaSE employs two mechanisms to achieve self-
similar traffic behavior:

• Using several traffic sources that are switched
on and off based on heavy-tailed intervals.

• Using heavy-tailed packet sizes for different

traffic flows.

 We did not interfere in the operation of these

mechanisms. So the self-similarity of normal traffic

has been preserved.

V. OUR GENERATED DATASETS

We generate two categories of datasets, each
contains several sets of traffic traces[66]. In this section,
we describe how we generate these datasets. We will
make these datasets accessible to the public on
https://github.com/Sara-Asgari/Datasets.

 In order to create realistic topologies, one approach

is taking advantage of real-world network

observations. The topologies created using this

approach are very realistic. Another approach is

random topology generation[67], which is widely used

in the research community[11]. We generate two

categories of datasets; each uses one of these

approaches.

A. Category I

The topology and link parameters of the network in
which the category I datasets were generated are
illustrated in Fig. 5 and Table II, respectively. This
network was derived from a simplified version of a
large ISP in Italy, described in [68]. To design this
network, we also consider network properties in [69]
and the common topology of today’s networks. For
ensuring network availability, this network provides
redundancies, too. It consists of four subnets and is
made up of four core nodes, eight gateway nodes,
sixteen edge nodes, and two hundred end-hosts.

To generate normal traffic, we extracted the type
and percentage of application-layer protocols from the
CICIDS dataset’s first-day traffic (shown in Table III)
and used these values to choose the traffic profiles and
their selection probabilities. We also extracted the
approximate values of the parameters (on average) for
traffic profiles from this dataset.

Figure 5. Network topology - category I.

Volume 12- Number 1 – Winter 2020 (20 -31) 26

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

18
]

 7 / 12

https://github.com/Sara-Asgari/Datasets
http://ijict.itrc.ac.ir/article-1-451-en.html

TABLE II. BANDWIDTHS AND DELAYS OF LINKS - CATEGORY

I

Link Bandwidth Delay

Core to Core 50 Gbps 3 ms

Core to Gateway 20 Gbps 2 ms

Gateway to Edge 10 Gbps 0.25 ms

Edge to Server 2.5 Gbps 5 µs

Edge to Client 100 Mbps 5 µs

TABLE III. TRAFFIC PROFILES - CATEGORY I

Traffic Profile %

HTTP 53.85%

HTTPS 38.13%

DNS 6.87%

SSH 0.78%

FTP 0.20%

Email 0.14%

Ping 0.03%

TABLE IV. OUR GENERATED DATASETS

 We generate six sets, each contains three traffic
traces with different worm sources and spread path,
in Category I (Table IV).

 Code-Red II was a TCP-based, local preference
scanning worm that exploited a buffer overflow
vulnerability in IIS web servers. Since its scanning
technique was the local preference, it scanned local
IP addresses with more probability than others. More

precisely,
1

8
 of the time, it sent probing packets to

random IP addresses on port 80, looking for other

hosts to infect,
1

2
 of the time, it sent probing packets

within the same class A range of the local IP

addresses, and
3

8
 of the time, it scanned the same class

B range of the local IP addresses. The number of
threads spawned by an infected host was 300 for non-
Chinese systems and 600 for Chinese systems. Code-
Red I was a TCP-based, uniform random scanning
worm, i.e., it found vulnerable hosts by sending
probing packets to random IP addresses[70]. Similar
to Code-Red II, it exploited a security hole in IIS web

Infection network

parameters
Worm parameters

dataset

C
a

te
g
o

ry
 I

Type of

nodes
Number

of nodes

Recovery

Probability

Preference

probability

(local preference

scanning worms)

Scanning

strategy

Time between

probing

packets (UDP

worms)

The

number

of

threads

(TCP

worms)

Transport

layer

protocol
Name

Client,

HTTPS
Server and

HTTP

Server

30 10-4 per ms -
Uniform

Random

Uniform(4m

s,8ms)
- UDP

SQL

Slammer
Set 1

HTTP

Server
28

10-4 per ms

1

8
: random

1

2
: same class A

3

8
: same class B

Local

Preference

Uniform(5m

s,10ms)
- UDP

Modified

Slammer
Set 2

Client 35 10-4 per ms
0.3: random

0.7: same subnet

Local
Preference

Uniform(5m
s,10ms)

- UDP
Modified
Slammer

Set 3

HTTP
Server

28 10-4 per ms -
Uniform
Random

- 23 TCP
Code-Red

I
Set 4

HTTP

Server
28 10-4 per ms

1

8
: random

1

2
: same class A

3

8
: same class B

Local

Preference
- 25 TCP

Code-Red

II
Set 5

Client 35 10-4 per ms
0.3: random

0.7: same subnet

Local

Preference
- 25 TCP

Modified

Code-Red

II

Set 6

HTTP

Server
52 10-5 per ms

0.3: random

0.7: same subnet

Local

Preference
- 20 TCP

Modified

Code-Red
II

Set 1

C
a

te
g
o

ry
 I

I

HTTP

Server
52 10-5 per ms

0.3: random

0.7: same subnet

Local

Preference

Uniform(10

ms,12ms)
- UDP

Modified

Slammer
Set 2

Volume 12- Number 1 – Winter 2020 (20 -31) 27

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

18
]

 8 / 12

http://ijict.itrc.ac.ir/article-1-451-en.html

servers. SQL Slammer, also known as Sapphire, was
a UDP-based, uniform random scanning worm with
a total size of 376 bytes which exploited a buffer
overflow vulnerability in Microsoft’s SQL servers
and Microsoft SQL Server Desktop Engines by
sending a single UDP packet to port 1434. It was the
fastest worm in history, with the maximum scanning
rate of 55 million scans per second[71].

 The simulated worms in Set 1, Set 4, and Set 5 are
similar to the original versions of SQL Slammer,
Code-Red I, and Code-Red II, respectively, but their
scanning rates are much lower than the original
versions. This is because of the fact that original
versions spread in the internet containing several
thousands of machines, while our simulated network
contains much lower nodes, and the large scanning
rate causes the network to become infected in a split
second, which is not suitable for evaluations. One of
our goals is dataset generation for different worms in
different scenarios. So we also change some
parameters of Code-Red II and SQL Slammer and
simulate modified versions of them in Set 2, Set 3 and
Set 6.

 Similar to real networks, in our simulated
networks, only some hosts have the specific
vulnerability. The number and type of these nodes are
illustrated in Table IV. Other nodes are not
vulnerable and only play the role in generating
normal background traffic.

 In our simulations, we concentrate on spreading
part of worms while ignoring their attacking part.

B. Category II

 In category II, we generate the network
topology using ReaSE’s topology generation
capability. This topology and the link parameters are
illustrated in Fig. 6 and Table V, respectively. This
network comprises ten core nodes, twenty gateway
nodes, 152 edge nodes, and 1162 end-hosts, located
in ten subnets.

 Table VI shows the percentage and type of

application-layer protocols used to generate normal

traffic. Furthermore, the values assigned to traffic

profile parameters vary from those assigned to

category I.

 We generated two sets of traffic traces in category

II. The parameters are illustrated in Table IV.

Figure 6. Network topology -category II.

TABLE V. BANDWIDTHS AND DELAYS OF LINKS -

CATEGORY II

Link Bandwidth Delay

Core to Core 40 Gbps 4 ms

Core to Gateway 16 Gbps 2.5 ms

Gateway to Edge 8 Gbps 0.3 ms

Edge to Server 2 Gbps 10 µs

Edge to Client 80 Mbps 10 µs

TABLE VI. TRAFFIC PROFILES - CATEGORY II

Traffic Profile %

HTTPS 49.2%

HTTP 35.5%

DNS 8.9%

FTP 3.3%

Email 2.8%

VI. CONCLUSION AND FUTURE WORK

 Currently, suitable datasets, including worm

traffic and normal traffic, for evaluating worm

source and spread path identification approaches do

not exist. Therefore, researchers face many

difficulties in evaluating their proposed methods. In

this paper, we addressed this problem and introduced

a technique to generate these datasets. ReaSE is a

tool developed on top of the INET framework, an

extension of OMNeT++, and creates a realistic

simulation environment for IP-based networks by

considering three aspects, i.e., random topology

generation, normal traffic generation, and attack

traffic generation. In this paper, we modified ReaSE

to get suitable for generating the datasets for

evaluating worm propagation studies. We also

validated that the generated topologies and normal

traffic demonstrate realistic characteristics.

Moreover, we generated eigth sets of traffic traces,

each contains three traffic traces in pcap format, for

TCP-based and UDP-based scanning worms in

different scenarios and will make them accessible to

the public soon.

 In this paper, we focus on simulating the

propagation behavior of worms. Simulating attack

behavior when a node becomes infected, e.g.,

launching DoS attack, is out of the scope of this

paper. However, considering both, i.e., propagation

behavior and attack behavior, will lead to more

realistic simulations, which we leave for future

work. Another future work is generating datasets for

large-scale networks.

Volume 12- Number 1 – Winter 2020 (20 -31) 28

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

18
]

 9 / 12

http://ijict.itrc.ac.ir/article-1-451-en.html

REFERENCES

[1] Y. Xie, V. Sekar, D. A. Maltz, M. K. Reiter, and H. Zhang,

“Worm origin identification using random moonwalks,” in
2005 IEEE Symposium on Security and Privacy (S&P’05),
pp. 242–256, 2005.

[2] W. Shi, Q. Li, J. Kang, and D. Guo, “Reconstruction of
worm propagation path by causality,” in 2009 IEEE

International Conference on Networking, Architecture, and
Storage, pp. 129–132, 2009.

 [3] A. D. Kent, “Cyber security data sources for dynamic

network research,” in Dynamic Networks and Cyber-
Security, World Scientific, pp. 37–65, 2016.

[4] A. D. Kent, "Comprehensive, multi-source cyber-security
events data set," Los Alamos National Lab. (LANL), Los
Alamos, NM (United States), 2015.

[5] R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda,

"Mawilab: combining diverse anomaly detectors for

automated anomaly labeling and performance
benchmarking," in Proceedings of the 6th International
Conference, pp. 1–12, 2010.

[6] G. Maciá-Fernández, J. Camacho, R. Magán-Carrión, P.

García-Teodoro, and R. Therón, “UGR ‘16: A new dataset

for the evaluation of cyclostationarity-based network IDSs,”
Computers & Security, vol. 73, pp. 411–424, 2018.

[7] C. Wheelus, T. M. Khoshgoftaar, R. Zuech, and M. M.
Najafabadi, “A Session Based Approach for Aggregating

Network Traffic Data--The SANTA Dataset,” in 2014 IEEE

International Conference on Bioinformatics and
Bioengineering, pp. 369–378, 2014.

 [8] F. Gringoli, L. Salgarelli, M. Dusi, N. Cascarano, F. Risso,
and K. C. Claffy, “Gt: picking up the truth from the ground

for internet traffic,” ACM SIGCOMM Computer
Communication Review, vol. 39, no. 5, pp. 12–18, 2009.

[9] R. Sharma, R. K. Singla, and A. Guleria, “A New Labeled

Flow-based DNS Dataset for Anomaly Detection: PUF
Dataset,” Procedia Computer Science, vol. 132, pp. 1458–
1466, 2018.

[10] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson, and B.

Tierney, “A first look at modern enterprise traffic,” in

Proceedings of the 5th ACM SIGCOMM conference on
Internet Measurement, p. 2, 2005.

[11] T. Gamer and M. Scharf, “Realistic simulation
environments for IP-based networks,” in Proceedings of the

1st international conference on Simulation tools and

techniques for communications, networks and systems &
workshops, p. 83, 2008.

[12] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford,
and N. Weaver, "Inside the Slammer Worm," IEEE Security
and Privacy, vol. 1, no. 4, pp. 33–39, 2003.

[13] D. Moore, C. Shannon, and K. Claffy, "Code-Red: a case

study on the spread and victims of an Internet worm," in

Proceedings of the 2nd ACM SIGCOMM Workshop on
Internet measurement, pp. 273–284, 2002.

[14] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K.
Das, “The 1999 DARPA off-line intrusion detection

evaluation,” Computer networks, vol. 34, no. 4, pp. 579–
595, 2000.

[15] “Datasets.” [Online]. Available: https://www.ll.mit.edu/r-
d/datasets?keywords=DARPA

[16] R. P. Lippmann et al., “Evaluating intrusion detection

systems: The 1998 DARPA off-line intrusion detection
evaluation,” in Proceedings DARPA Information

Survivability Conference and Exposition. DISCEX’00, vol.
2, pp. 12–26, 2000.

[17] J. McHugh, “Testing intrusion detection systems: a critique

of the 1998 and 1999 darpa intrusion detection system
evaluations as performed by lincoln laboratory,” ACM

Transactions on Information and System Security

(TISSEC), vol. 3, no. 4, pp. 262–294, 2000.

[18] M. V Mahoney and P. K. Chan, “An analysis of the 1999

DARPA/Lincoln Laboratory evaluation data for network
anomaly detection,” in International Workshop on Recent
Advances in Intrusion Detection, pp. 220–237, 2003.

[19] J. McHugh, “The 1998 lincoln laboratory ids evaluation,” in

International Workshop on Recent Advances in Intrusion

Detection, pp. 145–161, 2000.

[20] “KDD Cup 1999 Data.” [Online]. Available:
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[21] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A
detailed analysis of the KDD CUP 99 data set,” in 2009

IEEE symposium on computational intelligence for security
and defense applications, pp. 1–6, 2009.

[22] “NSL-KDD dataset.” [Online]. Available:
https://www.unb.ca/cic/datasets/nsl.html.

[23] J. Song, H. Takakura, Y. Okabe, M. Eto, D. Inoue, and K.

Nakao, “Statistical analysis of honeypot data and building
of Kyoto 2006+ dataset for NIDS evaluation,” in

Proceedings of the first workshop on building analysis

datasets and gathering experience returns for security, pp.
29–36, 2011.

[24] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani,
“Toward developing a systematic approach to generate

benchmark datasets for intrusion detection,” Computers and
Security, vol. 31, no. 3, pp. 357–374, 2012.

[25] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward

generating a new intrusion detection dataset and intrusion
traffic characterization.,” in ICISSP, pp. 108–116, 2018.

[26] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita,
“Towards Generating Real-life Datasets for Network

Intrusion Detection.,” IJ Network Security, vol. 17, no. 6,
pp. 683–701, 2015.

[27] P. Gogoi, M. H. Bhuyan, D. K. Bhattacharyya, and J. K.

Kalita, “Packet and flow based network intrusion dataset,”
in International Conference on Contemporary Computing,
pp. 322–334, 2012.

[28] R. Zuech, T. M. Khoshgoftaar, N. Seliya, M. M. Najafabadi,

and C. Kemp, “A new intrusion detection benchmarking

system,” in The Twenty-Eighth International Flairs
Conference, 2015.

[29] T. Tafazzoli and B. Sadeghiyan, “A four-step method for
investigating network worm propagation,” in 2019 7th

International Symposium on Digital Forensics and Security
(ISDFS), pp. 1–7, 2019.

[30] G. F. Riley, “The georgia tech network simulator,” in

Proceedings of the ACM SIGCOMM workshop on Models,
methods and tools for reproducible network research, pp. 5–
12, 2003.

[31] S. Asgari and B. Sadeghiyan, “Reconstruction of Worm

Propagation Path Using a Trace-back Approach,” in 2020

10th International Conference on Computer and Knowledge
Engineering (ICCKE), pp. 233–238, 2020.

[32] M. Ring, S. Wunderlich, D. Scheuring, D. Landes, and A.
Hotho, “A survey of network-based intrusion detection data
sets,” Computers & Security, pp.147-167, 2019.

[33] R. Singh, H. Kumar, and R. K. Singla, “A reference dataset

for network traffic activity based intrusion detection

system,” International Journal of Computers

Communications & Control, vol. 10, no. 3, pp. 390–402,
2015.

[34] M. J. M. Turcotte, A. D. Kent, and C. Hash, “Unified host
and network data set,” ArXiv e-prints, vol. 1708, 2017.

[35] S. Garcia, M. Grill, J. Stiborek, and A. Zunino, “An

empirical comparison of botnet detection methods,”
Computers & Security, vol. 45, pp. 100–123, 2014.

[36] S. Bhattacharya and S. Selvakumar, "SSENet-2014 dataset:
A dataset for detection of multiconnection attacks," in 2014

3rd International Conference on Eco-friendly Computing
and Communication Systems, pp. 121–126, 2014.

[37] Ar. Vasudevan, E. Harshini, and S. Selvakumar, “SSENet-

2011: a network intrusion detection system dataset and its
comparison with KDD CUP 99 dataset,” in 2011 second

asian himalayas international conference on internet (AH-
ICI), pp. 1–5, 2011.

[38] W. Haider, J. Hu, J. Slay, B. P. Turnbull, and Y. Xie,

“Generating realistic intrusion detection system dataset
based on fuzzy qualitative modeling,” Journal of Network
and Computer Applications, vol. 87, pp. 185–192, 2017.

Volume 12- Number 1 – Winter 2020 (20 -31) 29

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

18
]

 10 / 12

http://ijict.itrc.ac.ir/article-1-451-en.html

[39] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive

data set for network intrusion detection systems (UNSW-

NB15 network data set),” in 2015 military communications

and information systems conference (MilCIS), pp. 1–6,
2015.

[40] K. V. Vishwanath and A. Vahdat, “Swing: Realistic and

responsive network traffic generation,” IEEE/ACM
Transactions on Networking, vol. 17, no. 3, pp. 712–725,
2009.

[41] K. V. Vishwanath and A. Vahdat, “Realistic and responsive

network traffic generation,” in Proceedings of the 2006

conference on Applications, technologies, architectures, and
protocols for computer communications, pp. 111–122,
2006.

[42] M. C. Weigle, P. Adurthi, F. Hernández-Campos, K. Jeffay,

and F. D. Smith, “Tmix: a tool for generating realistic TCP

application workloads in ns-2,” ACM SIGCOMM
Computer Communication Review, vol. 36, no. 3, pp. 65–
76, 2006.

[43] L. Breslau et al., “Advances in network simulation,”

Computer (Long. Beach. Calif)., vol. 33, no. 5, pp. 59–67,
2000.

[44] P. Adurthi and M. C. Weigle, “Realistic TCP Traffic
Generation in ns-2 and GTNetS.”

[45] J. Cao, W. S. Cleveland, Y. Gao, K. Jeffay, F. D. Smith, and

M. Weigle, “Stochastic models for generating synthetic
HTTP source traffic,” in IEEE INFOCOM 2004, vol. 3, pp.
1546–1557, 2004.

[46] Y. Cheng, E. K. Çetinkaya, and J. P. G. Sterbenz,

“Transactional traffic generator implementation in ns-3,” in

Proceedings of the 6th International ICST Conference on
Simulation Tools and Techniques, pp. 182–189, 2013.

[47] “The ns-3 network simulator. ” [Online]. Available:
https://www.nsnam.org/.

[48] D. Ammar, T. Begin, and I. Guerin-Lassous, “A new tool
for generating realistic internet traffic in ns-3,” in

Proceedings of the 4th international ICST conference on
simulation tools and techniques, pp. 81–83, 2011.

[49] M. Zukerman, T. D. Neame, and R. G. Addie, “Internet

traffic modeling and future technology implications,” IEEE
INFOCOM 2003. Twenty-second Annual Joint Conference

of the IEEE Computer and Communications Societies, vol.
1, pp. 587–596, 2003.

[50] R. Bye, S. Schmidt, K. Luther, and S. Albayrak,

“Application-level simulation for network security,” in
Proceedings of the 1st international conference on

Simulation tools and techniques for communications,
networks and systems & workshops, p. 33, 2008.

[51] S. Fricke, K. Bsufka, J. Keiser, T. Schmidt, R. Sesseler, and

S. Albayrak, “Agent-based telematic services and telecom
applications,” Communications of the ACM, vol. 44, no. 4,
pp. 43–48, 2001.

[52] K. Xiaohui, X. Fei, L. Jin, and Z. Jianbo, “A Large-Scale

Network Worm Emulation Experimental Environment,” in
2011 First International Conference on Instrumentation,

Measurement, Computer, Communication and Control, pp.
837–842, 2011.

[53] M. Liljenstam, D. M. Nicol, V. H. Berk, and R. S. Gray,

“Simulating realistic network worm traffic for worm
warning system design and testing,” in Proceedings of the
2003 ACM workshop on Rapid malcode, pp. 24–33, 2003.

[54] J. Cowie, H. Liu, J. Liu, D. Nicol, and A. Ogielski,

"Towards realistic million-node internet simulations," in

International Conference on Parallel and Distributed
Processing Techniques and Applications, 1999.

[55] J. H. Cowie, D. M. Nicol, and A. T. Ogielski, “Modeling the
global internet,” Computing in Science and Engineering,
vol. 1, no. 1, pp. 42–50, 1999.

[56] G. E. Riley, M. L. Sharif, and W. Lee, “Simulating internet

worms,” in The IEEE Computer Society’s 12th Annual

International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunications Systems,
2004.(MASCOTS 2004). Proceedings., pp. 268–274, 2004.

[57] S. Wei and J. Mirkovic, "A realistic simulation of internet-

scale events," in Proceedings of the 1st international

conference on Performance evaluation methodologies and
tools, pp. 28-es, 2006.

[58] A. Wagner, T. Dübendorfer, B. Plattner, and R. Hiestand,

“Experiences with worm propagation simulations,” in
Proceedings of the 2003 ACM workshop on Rapid Malcode,
pp. 34–41, 2003.

[59] A. Varga, “Discrete event simulation system,” in

Proceedings of the European Simulation Multiconference
(ESM’2001), pp. 1–7, 2001.

[60] “INET Framework.” [Online]. Available:
https://inet.omnetpp.org/.

[61] S. Zhou, G. Zhang, G. Zhang, and Z. Zhuge, “Towards a

precise and complete internet topology generator,” in 2006
International Conference on Communications, Circuits and
Systems, vol. 3, pp. 1830–1834, 2006.

[62] S. Zhou and R. J. Mondragón, “The rich-club phenomenon

in the Internet topology,” IEEE Communications Letters,
vol. 8, no. 3, pp. 180–182, 2004.

[63] L. Li, D. Alderson, W. Willinger, and J. Doyle, “A first-

principles approach to understanding the internet’s router-
level topology,” ACM SIGCOMM Computer
Communication Review, vol. 34, no. 4, pp. 3–14, 2004.

[64] T. Gamer and C. P. Mayer, “Simulative evaluation of

distributed attack detection in large-scale realistic

environments,” Simulation, vol. 87, no. 7, pp. 630–647,
2011.

[65] M. E. Crovella and A. Bestavros, “Self-similarity in World
Wide Web traffic: evidence and possible causes,”

IEEE/ACM Transactions on Networking, vol. 5, no. 6, pp.
835–846, 1997.

[66] S. Asgari, B. Sadeghiyan, “Towards Generating Benchmark

Datasets for Worm Infection Studies,” in 10th International
Symposium on Telecommunications (IST), pp. 1-8, 2020.

[67] M. Al-Tamimi, W. El-Hajj, and F. Aloul, “Framework for
creating realistic port scanning benchmarks,” in 2013 9th

International Wireless Communications and Mobile
Computing Conference (IWCMC), pp. 1114–1119, 2013.

[68] L. Chiaraviglio, M. Mellia, and F. Neri, “Minimizing ISP

network energy cost: Formulation and solutions,”
IEEE/ACM Transactions on Networking, vol. 20, no. 2, pp.
463–476, 2011.

[69] W. El‒Hajj, M. Al‒Tamimi, and F. Aloul, “Real traffic logs

creation for testing intrusion detection systems,” Wireless

Communications and Mobile Computing, vol. 15, no. 14,
pp. 1851–1864, 2015.

[70] “Code Red II Analysis.” [Online]. Available:
https://www.giac.org/paper/gcih/247/code-red-ii-
analysis/100825.

[71] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford,

and N. Weaver, “The spread of the sapphire/slammer

worm,” CAIDA, ICSI, Silicon Defense, UC Berkeley EECS
and UC San Diego CSE, 2003.

Volume 12- Number 1 – Winter 2020 (20 -31) 30

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

18
]

 11 / 12

http://ijict.itrc.ac.ir/article-1-451-en.html

Sara Asgari received her B.Sc.

degree in Information

Technology Engineering from

Isfahan University of

Technology, Isfahan, Iran, in

2017, and her M.Sc. degree in

Computer Engineering from

Amirkabir Unviersity of

Technology, Tehran, Iran, in 2020. She is currently

a Ph.D. student in Computer Engineering at Sharif

Unviersity of Technology, Tehran, Iran. Her

research interests include Network Security, Web

Application Security, Digital Forensics and

Software Security.

Babak Sadeghiyan received

his Ph.D. in Computer Science

from University College,

University of New South

Wales, Australia in 1993.

Since then, he has joined as a

faculty member to the

Department of Computer

Engineering in Amirkabir University of Technology,

Tehran, Iran. His research interests include all

aspects of Information Security. So far, he has been

an author to 5 books, more than 50 journal papers

and more than 200 conference papers. His current

research interests include Intrusion Detection

Systems, Privacy Issues, Malware Forensics and

Vulnerability Analysis.

Volume 12- Number 1 – Winter 2020 (20 -31) 31

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

18
]

Powered by TCPDF (www.tcpdf.org)

 12 / 12

http://ijict.itrc.ac.ir/article-1-451-en.html
http://www.tcpdf.org

