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Abstract—Identifying the roots of a worm and reconstructing its spread path are among essential concerns in digital 

forensics. This knowledge assist the prosecutor in understanding how the attack happened in the network and how 

security protections were breached. Evaluating methods proposed for this purpose is problematic due to the lack of 

suitable datasets containing both worm traffic and normal traffic. In this paper, we investigate various approaches of 

generating such datasets and propose a technique to generate suitable datasets for these evaluations.  ReaSE is a tool 

for creating realistic simulation environments, which considers three aspects, i.e., topology generation, normal traffic 

generation, and attack traffic generation. We modify ReaSE to make it suitable for generating these datasets. We also 

generate various datasets for Code Red I, Code Red II, SQL Slammer and modified version of them in different 

scenarios and make them accessible to the public.  

Keywords-simulation;  dataset generation; spread path reconstruction; source detection; worm; Code-Red; SQL Slammer 

 

 

I. INTRODUCTION 

Locating the sources of a worm and reconstructing 
its spread path are among essential concerns in digital 
forensics. This information would help the forensic 
investigator guess which nodes were responsible for 
entering infection into the network and how security 
protections were breached. This knowledge is helpful 
in identifying network security weaknesses and better 
planning to mitigate future attacks. Despite the fact that 
the research community has realized this necessity, 
relatively few methods have been proposed for this 
purpose to date since evaluating these methods is 
problematic. Both worm traffic and normal traffic are 
needed to evaluate these methods. Currently, 
researchers inject worm traffic into separately-
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generated normal traffic; for example, in [1] and [2], 
this approach is used. In this approach, the network race 
condition (in real networks, worm traffic and normal 
traffic race each other to achieve bandwidth) is not 
considered since these two types of traffic are not 
generated in the same network and concurrently. 

Furthermore, obtaining normal traffic is a big 
challenge since network administrators often avoid 
exposing their network traffic due to privacy issues. 
Moreover, available  datasets are usually anonymized 
due to privacy issues, e.g., Kent[3][4], MAWI[5], 
UGR-16[6], SANTA[7], UNIBS[8], PUF[9],  
LBNL[10]. Currently, there are no suitable datasets for 
evaluating worm source and spread path identification 
methods, i.e., the datasets that include both worm traffic 
and normal traffic generated concurrently and in the 
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same network. If such datasets existed, the network race 
condition would be considered. In addition, the main 
concern of researchers for evaluating worm source and 
spread path identification methods, which is collecting 
normal traffic, would be addressed. 

 Our purpose is to suggest a technique for 
generating suitable datasets for worm propagation 
studies, as well as to generate a number of these 
datasets. To do this, we examine different approaches 
of generating datasets for worm propagation studies. 
We study 21 datasets and various traffic generators to 
obtain normal traffic. We also investigate various 
technologies of creating worm experimental 
environments. The result of our investigations is that 
ReaSE[11] is an appropriate tool for generating the 
datasets described above. However, some changes need 
to be made to it. So we modify ReaSE and also generate 
multiple datasets for SQL Slammer[12], Code-Red I, 
Code-Red II[13], and modified versions of them in 
various scenarios. 

      The rest of this paper is structured as follows: 
Section II introduces the related works of generating 
datasets. Section III discusses possible dataset 
generation approaches for evaluating worm source and 
spread path identification methods. Section IV 
describes our proposed technique. This section provides 
a short description of ReaSE and its features, as well as 
the changes we made to ReaSE. Section V details our 
generated datasets. Finally, Section VI concludes the 
paper and gives an outlook to future work. 

II. RELATED WORKS 

     So far, many different efforts have been made to 

generate suitable datasets for evaluations, e.g., IDS 

evaluations.  

     One of the most popular datasets for intrusion 

detection is DARPA dataset[14][15][16], which was 

generated in 1998/1999 and includes different kinds of 

attacks, e.g., port scan, buffer overflow, and DoS. In 

[17], [18] and [19], DARPA dataset is criticized. These 

criticisms show that DARPA dataset does not illustrate 

the realistic behavior of network traffic. KDD Cup[20] 

is based on the DARPA dataset and contains various 

kinds of attacks, e.g., DoS. The analysis performed in 

[21] shows that there are important issues with KDD 

Cup that lead to very poor evaluations. One of the most 

important drawbacks of  KDD Cup is the large number 

of duplicates[21]. NSL-KDD[22] improved KDD Cup 

and removed redundancies. These datasets have been 

generated many years ago and are outdated.  

     Kyoto 2006+[23] dataset was collected from 

diverse types of honeypots in 2011. Although it 

includes various attacks, e.g., port scans, DoS, 

shellcode, and malware, it contains a small amount of 

normal traffic.  ISCX[24] dataset contains both normal 

traffic and some kinds of attack traffic, e.g., DoS, 

DDoS, and SSH brute force. It was generated in 2012 

by capturing traffic in an emulated network 

environment. In order to generate this dataset, two 

profiles were considered. α-profile defines a 

description of an attack scenario, and β-profile 

characterizes normal user behavior. ISCX dataset does 

not include HTTPS traffic. However, nowadays, nearly 

70% of network traffic is HTTPS[25]. Moreover, the 

testbed of generating ISCX dataset contains very few 

nodes. TUIDS[26][27] dataset was generated within an 

emulated environment in 2012 and contains normal 

traffic and some primary attacks, e.g., Dos, DDoS, and 

port scanning. TUIDS includes three parts: a TUIDS 

intrusion dataset, a TUIDS coordinated scan dataset, 

and a TUIDS DDoS dataset. SANTA dataset[7] is a 

flow-based dataset captured within an ISP 

environment in 2014 and contains real network traffic. 

IRSC[28] was generated in 2015 by capturing normal 

and attack traffic from the internet and also running 

manual attacks. SANTA and IRSC are not accessible 

to the public for privacy reasons. Kent dataset[3][4] 

was generated in 2016 by capturing the traffic of the 

Los Alamos National Laboratory network within 58 

days. This dataset is heavily anonymized, e.g., IP, time, 

and port, due to privacy issues. CICIDS dataset[25] 

was generated within an emulated environment in 

2017. For generating a wide range of attack types, six 

attack profiles were created, i.e., heartbleed, DDoS, 

DoS, botnet, brute force, web, and infiltration. 

Moreover, the abstract behavior of human interactions 

was profiled by the B-profile system and used to 

generate normal traffic.  The testbed of generating the 

CICIDS dataset is very small. PUF[9] is a DNS dataset 

captured within a campus network in 2018, and is 

available in the flow-based format. Due to privacy 

issues, IP addresses are removed from this dataset.  

     None of the mentioned datasets are suitable for 

evaluating worm source and spread path identification 

methods. To the best of our knowledge, there is no  

suitable dataset containing both worm traffic and 

normal traffic for evaluating these methods. Due to the 

lack of such datasets, researchers usually inject the 

worm spread traffic to separately-generated normal 

traffic. In this approach, worm spread traffic is usually 

generated using simulation. Then this traffic is 

combined with normal traffic obtained from real 

networks or available datasets. For example, in [29], 

the worm spread traffic simulated with GTNetS[30] 

was combined with normal traffic of the ISCX 

dataset[24]. Also, In [1], traffic of a real network was 

recorded and used as normal traffic.  

      In this paper, we propose a technique to generate 

suitable datasets for worm propagation studies and also 

generate a number of these datasets, which enable 

researchers to evaluate their proposed methods without 

facing any challenge, e.g., [31]. 

III. DATASET GENERATION APPROACHES 

To evaluate methods proposed for detecting the 
source of a worm and reconstructing its spread path, we 
require datasets that include both worm traffic and 
normal traffic. There are two approaches for creating 
such datasets: 

1) injecting separately -generated worm traffic into 

normal traffic  

2) Generating both worm traffic and normal traffic 

concurrently . 
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Furthermore, our studies show that there are three 

methods for obtaining worm traffic and normal traffic: 

using available datasets, collecting traffic of real 

networks, traffic generation in the experimental 

environment. We investigate these methods in this 

section. 

B. Using Available Datasets 

     To obtain normal traffic for evaluating worm source 

and spread path identification methods, we investigate 

21 datasets. The results of our investigations show that 

available datasets have some issues to be used for these 

evaluations. We categorize these issues as below: 

• Some of the datasets were created many years 

ago, e.g., DARPA, KDD CUP, NSL-KDD, 

and PU-IDS, date back to 1998/1999. 

Networks and their traffic have been changed 

a lot since then, e.g., new protocols have been 

introduced, and some protocols have been 

outdated. Therefore, these datasets are 

deprecated and should not be used for today’s 

evaluations.  

• The format of available datasets can be 

categorized as below[32]: 

- Flow-based: In the flow-based format, all 

packets with a number of same properties 

within a time window are aggregated into 

a single flow. Flow-based data only 

contain metadata about network 

connections. 

- Packet-based: Packet-based data are 

usually captured in pcap format. 

- Other: Some datasets have no standard 

format. 

To evaluate worm source and spread path 

identification methods, traffic should be 

available in packet-based format because in 

flow-based or other formats, some essential 

data for evaluations are not provided. Note 

that packet-based data can be converted to 

flow-based or other formats, but not vice 

versa. 

• Because of privacy reasons, some datasets are 

not accessible to the public.  

• In some datasets, attack traffic and normal 

traffic are combined. These datasets do not 

provide normal traffic separately. 

• Some necessary information, e.g., link delay, 

bandwidth, and network topology, to inject 

worm traffic into normal traffic is not 

available in some datasets, such as LBNL. 

• Some of the datasets do not contain a number 

of new network protocols. For example, there 

are no HTTPS traces in many of the available 

datasets. However, nowadays, nearly 70% of 

network traffic is HTTPS[25]. 

• Some datasets, such as CICIDS[25] and 

ISCX, have very small testbeds. 

• Available datasets are often sanitized, and all 

of the sensitive information, e.g., IP 

addresses, payloads, times, and ports, are 

anonymized or removed from them to be 

distributed without any privacy issues. 

Sanitization makes datasets inadequate for 

evaluating some worm source and spread path 

identification methods as it may remove some 

necessary information needed for evaluations. 

      Some example datasets for each issue are 

illustrated in Table I. 

C. Collecting Traffic of Real Networks 

     The traffic of real networks contains sensitive 

information of network users. Therefore, due to 

privacy issues and potential security threats, network 

administrators often refuse to expose the traffic of their 

network, and if they do so, they will anonymize it . 

Moreover, we cannot ensure that the traffic traces 

captured in real networks only contain normal traffic, 

due to the attack traffic which may exist. 

TABLE I.  SOME EXAMPLE DATASETS FOR EACH ISSUE 

Issue Example Datasets 

Outdated 
PU-IDS[33], NSL-KDD[22], KDD 

Cup[20], DARPA[14][15][16] 

Not including new 

protocols 

PU-IDS[33], NSL-KDD[22], KDD 

Cup[20], ISCX[24], 
DARPA[14][15][16] 

Being sanitized 

IP: LBNL[10], Kent[3][4], UGR 

16[6], MAWI[5], UNIBS[8], PUF[9], 

Unified Host and Network[34]  

Payload: LBNL[10], SANTA[7], 
MAWI[5], CTU-13[35] 

Time: Kent[3][4], Unified Host and 
Network[34] 

 

Ports: Kent[3][4] 

Not accessible to 

the public 
SANTA[7] and IRSC[28] 

Not available in 
packet-based format 

KDD Cup[20], Kent[3][4], NSL-

KDD[22], PU-IDS[33], PUF[9], 

Unified Host and Network[34], 
UNIBS[8], SANTA[7], SSENET-

2014[36], SSENET-2011[37] and 

UGR 16[6] 

Not providing 
normal traffic 

separately 

CTU-13[35], MAWI[5], NGIDS-
DS[38], TUIDS[26][27] and UNSW-

NB15[39]  

Lack of access to 

necessary 

information for 
traffic injection 

LBNL[10], MAWI[5], PUF[9], 

Unified Host and Network[34], UGR 

16[6], Kent[3][4], SANTA[7], CTU-
13[35], UNIBS[8] 

Small testbed CICIDS[25], ISCX[24] 
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D. Traffic Generation in Experimental Environment 

1) Normal Traffic: the traffic generated by most 

traffic generators is uni-directional. Some traffic 

generators generate bi-directional traffic, but there is 

no request-response interaction between two sides of 

communication. The traffic generated by these two 

categories of traffic generators is not suitable for 

evaluating worm propagation studies. However, it 

can be helpful in other applications, e.g., 

performance evaluation, quality of service 

measurement, and optimization. The normal traffic 

used to evaluate worm propagation studies should 

be bi-directional traffic that each side of 

communication affects the other side, e.g., request-

response communications in application-layer 

protocols and retransmitting packets in TCP. 

Below, we provide a brief discussion on some traffic 

generators: 

• Swing[40][41]: Swing captures the packet 

interactions of applications and extracts 

distributions for application, user, and 

network behavior. Then, in an emulated 

environment, it generates traffic based on the 

underlying model. One of the limitations of 

swing is that it generates realistic traces for a 

single link. 

• Tmix: Tmix is a traffic generation system 

described in [42] for the NS-2 simulator[43]. 

Tmix takes a packet header trace obtained 

from a network link as input and reverse-

compiled it to produce a source-level 

characterization of each TCP connection in 

the trace. Then it uses this characterization to 

emulate the socket-level behavior of the 

source application that created the 

connections in the trace. Tmix is also 

implemented for GTNetS[30] in [44]. Tmix, 

like swing, generates traffic for a single link. 

• PackMime-HTTP: PackMime-HTTP is a 

model and implementation proposed in [45] 

for generating realistic synthetic web traffic in 

NS-2 simulator. The source variable 

generation model of PackMime-HTTP was 

extended and modified in [46] to work with 

the NS-3 simulator [47]. Moreover, an 

additional working mode was added to it. 

These traffic generators are only able to 

generate HTTP traffic. 

• Ammar et al.[48] developed a tool for 

generating traffic for the NS-3 simulator 

based on the PPBP (Poisson Pareto Burst 

Process) model [49]. The traffic generated by 

this traffic generator is uni-directional. 

• NeSSi [50]: NeSSi is a network simulation 

tool that provides various network security 

capabilities. NeSSi provides a scalable and 

distributed architecture built on top of the 

JIAC[51] framework. NeSSi includes a small 

number of application-layer protocols. 

2) Worm Traffic: The technologies of creating a 

worm experimental environment are classified as 

follows in [52]: hardware testbed, network emulation, 

packet-level simulation, analytical model, and hybrid 

method. The fidelity of analytical models, as discussed 

in [52], is inadequate for our purpose. The use of 

network emulation would not fulfill the required 

scalability for worm propagation researches. 

Furthermore, since worm experiments involve using a 

lot of nodes, providing hardware testbeds is not 

feasible. Packet-level simulation has better fidelity 

than the analytical model. It also provides sufficient 

scalability. Following is a brief discussion of several 

network simulators that provide packet-level worm 

simulation: 

• SSFNET: Liljenstam et al.[53] developed a 

model for large-scale worm attacks and made 

it available as an add-on package to the 

SSFNET simulator [54][55]. They use the 

detailed packet-level simulation for part of the 

network, and a less accurate but 

computationally efficient model for other 

parts[56]. 

• NS-2: NS-2 includes some behavioral models 

of worms. NS-2 uses the same approach we 

mentioned above for SSFNet. Furthermore, 

scanning worm models are problematic since 

there is no mechanism for assigning IP 

addresses to nodes in NS-2 [56]. 

• GTNetS: various worms can be simulated in 

GTNetS by adjusting a number of parameters, 

e.g., number of simultaneous connections, 

transport layer protocols, scan rate, infection 

length. 

• PAWS [57]:  PAWS is a distributed worm 

propagation simulator. In PAWS, to improve 

the simulation speed, worm propagation 

behavior is simplified. For example, only 

those scans are delivered to the destination 

that the destination host has not yet infected. 

To decrease overhead, PAWS also aggregates 

the packets intended for transmission to a 

node into a single message and transfers that 

message at the end of the time unit. 

• A worm propagation simulator is 

implemented in the Perl language in [58]. 

While this simulator takes into account the 

effect of propagation delays and link 

bandwidth, it disregards competing traffic, 

loss, and queuing. Furthermore, TCP-based 

worms use a simplified TCP model, in which 

some features, e.g., congestion window and 

slow start, are not considered [56]. 

• NeSSi: In addition to generating normal 

traffic, we can also simulate worm 

propagation in Nessi. The Blaster and SQL 

SQL Slammer worms can be simulated using 

NeSSi’s worm propagation scheme. The 

worm model provided by NeSSi can be 
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extended. Furthermore, researchers are able 

to develop a new worm model. 

IV. OUR PROPOSED TECHNIQUE 

According to our investigations, ReaSE can be an 
appropriate tool to generate suitable datasets for 
evaluating worm source and spread path identification 
methods, but some necessary changes are needed. In 
this section, we will first provide an overview of ReaSE 
and its capabilities, followed by an explanation of the 
changes we made to it. 

A. OMNeT++ Overview 

OMNeT++[59] is a component-based, modular 
C++ simulation library and framework, primarily for 
building network simulators. OMNeT++ model 
consists of hierarchical modules communicating with 
each other by message passing. This model is 
illustrated in Fig. 1. At the lowest level of this hierarchy 
are simple modules that realize the functionalities and 
combine one or more C++ classes. One or more simple 
modules form a compound module. Compound 
modules can be connected to each other using channels, 
i.e., outgoing and incoming gates. Each channel has a 
certain delay and bandwidth. A compound module can 
realize a complete functionality, e.g., the functionality 
of a router. The top-level module in this hierarchy is the 
system module. The system module is made up of 
simple and compound modules.  

For simulating with OMNeT++, two types of files 
are necessary:  

1) NED files: NED language is used to specify the 

topology of a model. Each NED file, which has the 

.ned suffix, facilitates the modular description of a 

network, and contains import directives and the 

definitions of channels, network, and simple and 

compound modules. 

2) Omnetpp.ini file: Omnetpp.ini is the 

configuration file that describes the Configuration and 

input data for the simulation. 

As an example, consider the scenario in Fig. 2. This 
network consists of three nodes, one router, and two 
hosts. Omnetpp.ini specifies that the starting module is 
MyNetwork. This compound module, defined in 
MyNetwork.ned file, consists of several submodules 
(clients and router) and the interconnections between 
them. The functionality of the router and host is realized 
with the compound modules Router and StandardHost, 
respectively. Moreover, each of these modules 
themselves consists of several submodules. For 
example, the Router consists of modules NetworkLayer 
and RoutingTable. 

The INET[60] is an open-source OMNeT++ model 
suite for wired, wireless, and mobile networks. 
Common internet protocols, e.g., ICMP, TCP, UDP, 
and IP, as well as intermediate and end systems, e.g., 
hosts and routers, can be simulated using INET. 

 

 

 

Figure 1.  OMNeT++ model. 

 

Figure 2.  An example of simulation setup[11]. 

B. ReaSE Overview 

ReaSE is a tool developed upon the INET 
framework and creates a realistic simulation 
environment by considering three aspects, i.e., topology 
generation, normal traffic generation, and attack traffic 
generation. This tool is accessible to the public on 
https://i72projekte.tm.uka.de/trac/ReaSE. 

1) Topology generation: Topology generation in 

ReaSE is made up of two parts. First, the connections 

of Autonomous Systems (AS) are created. 

Autonomous Systems are classified into two 

categories: stub and transit. The topology inside each 

AS is then generated. As illustrated in Fig. 3., the 

structure of each AS is hierarchical, including three 

layers edge, gateway, and core. ReaSE uses PFP 

(positive-feedback preference) model[61] to generate 

realistic topologies. The PFP model randomly 

generates topologies that show the power-law 

distribution in node degrees. The rich club feature[62] 

is also considered. Furthermore, ReaSE uses the 

heuristically optimal topology (HOT) approach[63] for 

topology generation within an AS. In the HOT 

approach, for generating topology inside each AS, in 

addition to power-law distribution, market demands, 

link costs, and hardware constraints are also 

considered. This approach leads to a hierarchical 

topology that the number of nodes and connectivity 

increase from the core to edge, whereas link bandwidth 

decreases. 
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Figure 3.  Hierarchical topologies generated by ReaSE[64]. 

2) Normal traffic generation: ReaSE can generate 

realistic normal traffic between hosts. Realistic in this 

case means that the generated traffic exhibits self-

similar behavior[65] and is based on a combination of 

different types of traffic. 

     ReaSE defines eight traffic profiles, i.e., web, 

backup, mail, interactive, streaming, ping, nameserver, 

and Misc. By setting various parameters, i.e., Reply 

Length, Request Length, Reply Per Request, Requests 

Per Flow, Time To Respond, Time Between Requests, 

Time Between Flows, WAN Probability, and Selection 

Probability, the behavior of each traffic profile can be 

defined. So, by using these traffic profiles and setting  

their parameters appropriately, we can generate 

various patterns of normal traffic. To generate a 

specific traffic pattern, the settings, i.e., traffic profiles 

and the parameters, should be given as an XML 

configuration file to the simulator. As an example, Fig. 

4. represents part of such a configuration file.  

 

3) Attack traffic generation: ReaSE enables 

simulation of DDoS attacks and worm propagations. 

Although it is mentioned in [11] that both TCP-based 

and UDP-based worms were implemented in ReaSE, 

the TCP-based worm is not accessible to the public. 

However, various UDP-based worms can be simulated 

by setting parameters, e.g., payload length, the range 

of IP addresses to scan, infection port, time between 

probing packets, in the omnetpp.ini file. 

 

 

Figure 4.  An example file: traffic profiles and their parameters 

 

C. ReaSE Modifications 

Below, we shortly justify the changes we made to 
ReaSE and do not go through the technical aspects: 

• Nodes are divided into two categories in 
ReaSE: nodes that can only generate normal 
traffic and nodes capable of only generating 
worm traffic. For evaluating worm 
propagation studies, worm traffic and normal 
traffic should be generated by the same nodes. 
So we add the module that implements worm 
propagation functionality (e.g., 
udpWormVictim.ned in UDP-based worms) 
in the nodes that generate normal traffic and 
remove the nodes that only generate worm 
traffic from the simulator. 

• In ReaSE, servers only listen to a specific port 
and respond to requests. However, they cannot 
send requests to other servers, unlike real 
servers. So we add this capability to servers. 
To accomplish this, we add the InetUser 
module of ReaSE to the servers and make 
required changes to InetUser and 
ConnectionManager modules, as well as the 
InetUser class. So each server can also 
communicate with other servers. 

• To generate datasets in packet-based format, 
each node’s traffic should be captured in pcap 
format. We provide this capability by adding 
the TCPDump module of INET to nodes. 

• Although in real networks, hosts use random 
source ports for communications, In ReaSE, 
each traffic profile uses a fixed source port to 
generate traffic. We consider this randomness 
in source port selection by modifying the 
TrafficProfile struct of ReaSE. 

• In ReaSE, each server does not necessarily 
listen to requests on a unique port, unlike real 
servers. We set the port parameter of each 
server to listen on a unique port.  

• To generate normal traffic containing new 
network protocols, we add four traffic profiles, 
i.e., FTP, SSH, HTTP, and HTTPS, to ReaSE 
and create a server for each of them (except 
SSH). To accomplish this, we create a 
compound module for each server, i.e., 
FTPServer.ned, HTTPSServer.ned and 
HTTPServer.ned. 

• The TCP-based worm implemented in ReaSE 
is not accessible to the public. TCP-based 
worms establish a TCP connection to each 
target machine before sending payload 
packets. Furthermore, they use multiple 
concurrent TCP connections to infect multiple 
machines at the same time, speeding up the 
propagation process. Thus, by considering the 
behaviors of TCP-based worms, we 
implement a model that various TCP-based 
worms with different scanning strategies, such 
as uniform random scanning and local 
preference scanning, and propagation models 
SIR (Susceptible-Infected-Recovered) or SI 
(Susceptible-Infected) can be simulated by 
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setting different parameters, e.g., infection 
port, infection length, the range of IP address 
to scan, the number of simultaneous 
connections, preference probability, and 
recovery probability. We implement two 
classes, TCPWorm and TCPWormThread. 
TCPWorm class is responsible for storing 
threads in a list and managing them. 
TCPWormThread class handles each thread. 
We also implement a module named 
TCPWorm, which consists of these two 
classes, and add it to vulnerable hosts. 

• The model implemented in ReaSE for UDP-

based worms is uniform random scanning and 

SI. We change this model such that both 

uniform random scanning and local 

preference scanning worms with propagation 

models SI or SIR can be simulated by setting 

the parameters preference probability and 

recovery probability. Furthermore, the UDP-

based worm in ReaSE always sends probing 

packets from a fixed source port. We modify 

it to scan IP addresses using random source 

ports.  

D.  Generating Datasets 

     Various datasets containing both worm traffic and 

normal traffic can be generated using the technique 

proposed in this section. Using different traffic profiles 

and adjusting their parameters, Various patterns of 

normal traffic can be generated. Various random 

network topologies can also be generated by setting a 

number of parameters. Furthermore, we can simulate 

various types of local preference and uniform random 

scanning worms by simply adjusting different 

parameters. Other kinds of scanning worms, such as 

sequential scanning worms, can also be simulated by 

making small changes. 

E.  Validation 

     Multiple experiments were carried out in [64] to 

validate that the normal traffic and topologies 

generated by ReaSE have realistic characteristics. 

These experiments yielded the following results: 

• Although there are some deviations in a small 
number of nodes, the topologies generated by 
ReaSE display the power-law distribution in 
node degrees well. 

• The generated background traffic shows self-
similar behavior. 

It is worth noting that we made no changes to 
ReaSE's topology generation capability. Furthermore, 
ReaSE employs two mechanisms to achieve self-
similar traffic behavior: 

• Using several traffic sources that are switched 
on and off based on heavy-tailed intervals. 

• Using heavy-tailed packet sizes for different 

traffic flows. 

     We did not interfere in the operation of these 

mechanisms. So the self-similarity of normal traffic 

has been preserved. 

V. OUR GENERATED DATASETS 

We generate two categories of datasets, each 
contains several sets of traffic traces[66]. In this section, 
we describe how we generate these datasets. We will 
make these datasets accessible to the public on 
https://github.com/Sara-Asgari/Datasets.  

     In order to create realistic topologies, one approach 

is taking advantage of real-world network 

observations. The topologies created using this 

approach are very realistic. Another approach is 

random topology generation[67], which is widely used 

in the research community[11]. We generate two 

categories of datasets; each uses one of these 

approaches.  

A. Category I 

The topology and link parameters of the network in 
which the category I datasets were generated are 
illustrated in Fig. 5 and Table II, respectively. This 
network was derived from a simplified version of a 
large ISP in Italy, described in [68]. To design this 
network, we also consider network properties in [69] 
and the common topology of today’s networks. For 
ensuring network availability, this network provides 
redundancies, too. It consists of four subnets and is 
made up of four core nodes, eight gateway nodes, 
sixteen edge nodes, and two hundred end-hosts. 

To generate normal traffic, we extracted the type 
and percentage of application-layer protocols from the 
CICIDS dataset’s first-day traffic (shown in Table III) 
and used these values to choose the traffic profiles and 
their selection probabilities. We also extracted the 
approximate values of the parameters (on average) for 
traffic profiles from this dataset. 

 

 

Figure 5.  Network topology - category I. 
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TABLE II.  BANDWIDTHS AND DELAYS OF LINKS - CATEGORY 

I 

Link Bandwidth Delay 

Core to Core 50 Gbps 3 ms 

Core to Gateway 20 Gbps 2 ms 

Gateway to Edge 10 Gbps 0.25 ms 

Edge to Server 2.5 Gbps 5 µs 

Edge to Client 100 Mbps 5 µs 

 

TABLE III.  TRAFFIC PROFILES - CATEGORY I 

Traffic Profile % 

HTTP 53.85% 

HTTPS 38.13% 

DNS 6.87% 

SSH 0.78% 

FTP 0.20% 

Email 0.14% 

Ping 0.03% 

 

TABLE IV.  OUR GENERATED DATASETS 

 

     We generate six sets, each contains three traffic 
traces with different worm sources and spread path, 
in Category I (Table IV).  

     Code-Red II was a TCP-based, local preference 
scanning worm that exploited a buffer overflow 
vulnerability in IIS web servers. Since its scanning 
technique was the local preference, it scanned local 
IP addresses with more probability than others. More 

precisely, 
1

8
 of the time, it sent probing packets to 

random IP addresses on port 80, looking for other 

hosts to infect, 
1

2
 of the time, it sent probing packets 

within the same class A range of the local IP 

addresses, and 
3

8
 of the time, it scanned the same class 

B range of the local IP addresses. The number of 
threads spawned by an infected host was 300 for non-
Chinese systems and 600 for Chinese systems. Code-
Red I was a TCP-based, uniform random scanning 
worm, i.e., it found vulnerable hosts by sending 
probing packets to random IP addresses[70]. Similar 
to Code-Red II, it exploited a security hole in IIS web 

Infection network 

parameters 
Worm parameters 

dataset 

C
a

te
g
o

ry
 I

 

Type of 

nodes 
Number 

of nodes 

Recovery 

Probability 

Preference 

probability 

(local preference 

scanning worms) 

Scanning 

strategy 

 

Time between 

probing 

packets (UDP 

worms) 

The 

number 

of 

threads 

(TCP 

worms) 

Transport 

layer 

protocol 
Name 

Client, 

HTTPS 
Server and 

HTTP 

Server 

30 10-4 per ms - 
Uniform 

Random 

Uniform(4m

s,8ms) 
- UDP 

SQL 

Slammer 
Set 1 

HTTP 

Server 
28 

10-4 per ms 

 

1

8
: random 

1

2
: same class A 

3

8
: same class B 

 

Local 

Preference 

Uniform(5m

s,10ms) 
- UDP 

Modified 

Slammer 
Set 2 

Client 35 10-4 per ms 
0.3: random 

0.7: same subnet 

Local 
Preference 

Uniform(5m
s,10ms) 

- UDP 
Modified 
Slammer 

Set 3 

HTTP 
Server 

28 10-4 per ms - 
Uniform 
Random 

- 23 TCP 
Code-Red 

I 
Set 4 

HTTP 

Server 
28 10-4 per ms 

1

8
: random 

1

2
: same class A 

3

8
: same class B 

 

Local 

Preference 
- 25 TCP 

Code-Red 

II 
Set 5 

Client 35 10-4 per ms 
0.3: random 

0.7: same subnet 

Local 

Preference 
- 25 TCP 

Modified 

Code-Red 

II 

Set 6 

HTTP 

Server 
52 10-5 per ms 

0.3: random 

0.7: same subnet 

Local 

Preference 
- 20 TCP 

Modified 

Code-Red 
II 

Set 1 

C
a

te
g
o

ry
 I

I
 

HTTP 

Server 
52 10-5 per ms 

0.3: random 

0.7: same subnet 

Local 

Preference 

Uniform(10

ms,12ms) 
- UDP 

Modified 

Slammer 
Set 2 
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servers. SQL Slammer, also known as Sapphire, was 
a UDP-based, uniform random scanning worm with 
a total size of 376 bytes which exploited a buffer 
overflow vulnerability in Microsoft’s SQL servers 
and Microsoft SQL Server Desktop Engines by 
sending a single UDP packet to port 1434. It was the 
fastest worm in history, with the maximum scanning 
rate of 55 million scans per second[71].  

     The simulated worms in Set 1, Set 4, and Set 5 are 
similar to the original versions of SQL Slammer, 
Code-Red I, and Code-Red II, respectively, but their 
scanning rates are much lower than the original 
versions. This is because of the fact that original 
versions spread in the internet containing several 
thousands of machines, while our simulated network 
contains much lower nodes, and the large scanning 
rate causes the network to become infected in a split 
second, which is not suitable for evaluations. One of 
our goals is dataset generation for different worms in 
different scenarios. So we also change some 
parameters of Code-Red II and SQL Slammer and 
simulate modified versions of them in Set 2, Set 3 and 
Set 6.  

     Similar to real networks, in our simulated 
networks, only some hosts have the specific 
vulnerability. The number and type of these nodes are 
illustrated in Table IV.  Other nodes are not 
vulnerable and only play the role in generating 
normal background traffic.  

     In our simulations, we concentrate on spreading 
part of worms while ignoring their attacking part.  

B. Category II 

     In category II, we generate the network 
topology using ReaSE’s topology generation 
capability. This topology and the link parameters are 
illustrated in Fig. 6 and Table V, respectively. This 
network comprises ten core nodes, twenty gateway 
nodes, 152 edge nodes, and 1162 end-hosts, located 
in ten subnets. 

    Table VI shows the percentage and type of 

application-layer protocols used to generate normal 

traffic. Furthermore, the values assigned to traffic 

profile parameters vary from those assigned to 

category I. 

     We generated two sets of traffic traces in category 

II. The parameters are illustrated in Table IV. 

 

Figure 6.  Network topology -category II. 

TABLE V.  BANDWIDTHS AND DELAYS OF LINKS -  

CATEGORY II 

Link Bandwidth Delay 

Core to Core 40 Gbps 4 ms 

Core to Gateway 16 Gbps 2.5 ms 

Gateway to Edge 8 Gbps 0.3 ms 

Edge to Server 2 Gbps 10 µs 

Edge to Client 80 Mbps 10 µs 

 

TABLE VI.  TRAFFIC PROFILES - CATEGORY II 

Traffic Profile % 

HTTPS 49.2% 

HTTP 35.5% 

DNS 8.9% 

FTP 3.3% 

Email 2.8% 

 

VI. CONCLUSION AND FUTURE WORK 

     Currently, suitable datasets, including worm 

traffic and normal traffic, for evaluating worm 

source and spread path identification approaches do 

not exist. Therefore, researchers face many 

difficulties in evaluating their proposed methods. In 

this paper, we addressed this problem and introduced 

a technique to generate these datasets. ReaSE is a 

tool developed on top of the INET framework, an 

extension of OMNeT++, and creates a realistic 

simulation environment for IP-based networks by 

considering three aspects, i.e., random topology 

generation, normal traffic generation, and attack 

traffic generation. In this paper, we modified ReaSE 

to get suitable for generating the datasets for 

evaluating worm propagation studies. We also 

validated that the generated topologies and normal 

traffic demonstrate realistic characteristics. 

Moreover, we generated eigth sets of traffic traces, 

each contains three traffic traces in pcap format, for 

TCP-based and UDP-based scanning worms in 

different scenarios and will make them accessible to 

the public soon.  

     In this paper, we focus on simulating the 

propagation behavior of worms. Simulating attack 

behavior when a node becomes infected, e.g., 

launching DoS attack, is out of the scope of this 

paper. However, considering both, i.e., propagation 

behavior and attack behavior, will lead to more 

realistic simulations, which we leave for future 

work. Another future work is generating datasets for 

large-scale networks.  
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