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Abstract—In this paper, we aim to study a [-user quantum multiple access wiretap channel with an arbitrary number
of wiretappers under one-shot setting. In this regard, we first introduce the general quantum multiple access wiretap
channel and the simplified proposed channel. Then, we calculate an achievable secrecy rate region for the main channel
with two users. The encoding process uses the superposition and wiretap coding techniques, and the decoding technique
is based on the simultaneous decoder. Also, Convex splitting is used to satisfy security requirements. At last, we extend

the results to the /-user case.
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[. INTRODUCTION

Information-theoretic security was first introduced
by Shannon, which led to introducing of the Shannon
cipher system [1]. After that, Wyner introduced the
wiretap channel in his basic paper [2]. After Wyner’s
work, Csiszar and Korner extended the Wyner wiretap
channel to a general case in which a transmitter wants
to transmit its message over a discrete memoryless
channel (DMC) to a legitimate receiver at the presence
of a passive wiretapper [3]. In all of the above
channels, the secrecy constraint can be considered as
follows: the message should be transmitted reliably
and confidentially as much as possible at the presence
of a passive wiretapper. This criterion is also used to
study the problem of physical layer security of multi-
terminal channels such as interference channel (IC),
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multiple access channel (MAC) [4], etc., in the
network information theory area.

The MACs are among important channels that have
been the subject of many studies. These channels can
be considered as building blocks of practical scenarios
in 5G wireless communication. Therefore, the secrecy
problem of MACs is an important issue.

The MAC as a type of multi-terminal channels has
accept two or more messages as inputs and one
receiver. The secrecy problem for the MACs is studied
in many types of research [4-11].

The quantum wiretap channel was first discussed in
[12] and [13]. In the quantum wiretap channel, a sender
wants to transmit classical or quantum message to a
legitimate receiver over a noisy quantum channel as
secure as possible from Eve’s attacks.
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The quantum multiple access channel (QMAC) and
its secrecy problem were investigated in [14] and [15],
respectively. In [15], the authors employed a
successive decoder to decode the sent messages. In
[16], the authors studied the private -classical
information transfer problem over a special quantum
interference channel based on the QMAC. In [17],
classical-quantum multiple access wiretap channel
with a common message (C-QMA-WTC-CM) under
one-shot setting is studied.

The usefulness of the quantum simultaneous
decoder is proved just for decoding two messages, and
it has remained as an unproven conjecture for the
general case [18]. P. Sen [18] proved that the
intersection argument is crucial in constructing a
simultaneous decoder for the receiver. In the
asymptotic independently and identically distributed
(1.i.d) setting for MAC, employing simultaneous
decoder instead of using successive decoder combined
with time-sharing, is a better choice [19]. However,
successive decoding gives a finite set of achievable rate
pairs in the one-shot case. Thus, using the simultaneous
decoder leads us to a continuous achievable rate
region.

In the area of quantum network information theory,
finding a general simultaneous decoder is an important
problem that can pave the way for progress in this field
of researches.

However, under the one-shot setting wherein users
allowed to send their messages with only one use of the
channel, the quantum simultaneous decoding scheme
has no limit on decoding any number of message. A
detailed discussion can be found in [18, 20-22].

In this paper, we aim to study private classical
communication over a C-QMAC with an arbitrary
number of wiretappers under the one-shot setting. In
this regard, achievable rate regions for the main
channel with two senders or more are calculated.

The paper is structured as follows:

In Section II, some notations and definitions are
presented. The main channel and information
processing task are presented in Section III, and in
Section IV, the main results and proofs are presented.

II. PRELIMINARIES

Throughout this paper, we assume that all random
variables have finite alphabets, and dimensions of
quantum systems are finite. Quantum and classical
systems are denoted by uppercase letters X, Y etc.

Consider two quantum systems as X and Y .
Alphabet sets of X and Y are denoted by calligraphic
letters X and Y, respectively. The state of system X
which is presented as a density matrix py over X is
determined by its diagonal elements that are indexed
by elements x € X , ie., px = Yyex Px(x)|x){x|
where Py is a distribution over X. The density operator
px 1s a positive semidefinite operator with unit trace.
The shared state between sender and receiver is
denoted by pxy = Xxex Px(x)|x)(x| @ py, where Py
is the probability distribution, {|x)}, is an orthonormal
basis, and {p7}, is a set of quantum states. Note that
the state of Alice or Bob can be obtained by trace out
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uninvolved system. In other words, Alice and Bob’s
density operators can be obtained as py = Try{pxy}
and py = Try{pxy}, respectively. The pure state of
system X is denoted by |1,[J)X, while the corresponding
density operator is ¥ = |1,[J)(1,l)|X. The von Neumann
entropy of the state p, is denoted by H(X), =
—Tr{p,logp,}. Similar to the classical definition, the
quantum conditional entropy is defined as difference
between the von Neumann entropy of the joint system
and the von Neumann entropy of the individual system
for an arbitrary state such as ogyy : HX|Y), =
H(X,Y), — H(Y),. The quantum mutual information
between two systems is defined as I(X;Y), =
H(X); + H(Y), — H(X,Y), and conditional quantum
mutual information for arbitrary systems such as X, Y
and Z is defined as
IX;Y1Z)e = HX|Z)g + H(Y|Z); — H(X,Y|Z),.

Every quantum operation can be illustrated by
completely positive trace-preserving (CPTP) map
NX>Y where accepts input states in X and output
states in Y. The trace distance gives the distance
between two quantum states and is defined for two
arbitrary states o and p as follows:

llo = plls = Trlo = pl &)

where |D| = VD1D.

In the following, we provide definitions that we use to
derive and illustrate our main results.

Definition 1: (Quantum smooth hypothesis testing
mutual information) Quantum smooth hypothesis
testing mutual information is denoted by I5(X;Y)
:= DE(p*Y ||p* ® p¥), € € (0,1) [Proposition 1, 18]
where D (. ||.) is quantum smooth hypothesis testing
relative entropy [Eq. (1), 22]. p™*™¥ is the joint state
of input and output over their Hilbert spaces (Hy, Hy),
and it can be shown as p*Y:

P =D Pl @ pl @

where Py is input distribution.

Definition 2: (Max mutual information [23])
Consider a bipartite state pyy and a parameter € €
(0,1). The max mutual information can be defined as
follows:

Lnax (X; Y)p = Dpax(Pxy lpx®py )p

where p refers to the state pyy and D, is the max-
relative entropy [24] for py, ox € Hy:

Dpax(px lloy) = inf{y € R: px < 2¥oy}
Definition 3: (Quantum smooth max Rényi
divergence [23]) Consider pXr
=Y ex Py |x)x|* ® p¥ as a CQ state and a
parameter € € (0,1) . The smooth max mutual

information between the systems X and Y can be
defined as follows:
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Lnax (X;Y) = inf Dinax (p)’(Y llox®py )

Pxy€BE(pxy)
= inf Lnax (X;Y)
PxyEBE(pxy) max P

where B¢ (pyy) is €-ball for pyy and is defined in [21].

Definition 4: (Alternate smooth max-mutual
information) Consider a bipartite state p*¥ and a
parameter € € (0,1). The alternate definition of the
smooth max-mutual information between the systems
X and Y can be defined as follows:

irilax(Y;X) HES inf Dpnax (Pxy llox ® py )

pPxy€B¢(pxy)

Definition 5: (Conditional smooth hypothesis
testing  mutual  information)  Consider  pxyyz
=Y ex Py |x)(x|* @ p¥Z as a classical-quantum
state and a positive parameter €. Define

IS(Y;Z|X),:=max min I5(;Z
H( | )p o xesupp(pk) H( )p}/z

where  maximization is over all py=
Sex Pe(O)|x)x|*  satisfying P(pk,0x) <€ and,
P(.,.) is purified distance between two states [21].

supp (f) refers to set-theoretic support of f(x) and is
X-R

defined as the set of points in set X where f(x) is non-
zero (supp(f) = {xeX|f(x) # 0}). In other words,
given a quantum state p on Hilbert space H, supp(p)
is the subspace of H spanned by all eigen-vectors of p
with non-zero eigenvalues.

Definition 6: (One-shot lower bound of a classical-
quantum multiple access channel) [18] A two user C-
QMAC under the one-shot setting is defined by a triple
(X)X X, N XXV (20, 2)) = pY ., HY), where X;
and X, are the input alphabet sets, and Y is the output
system. pY 1x, 18 output quantum state, and the channel
is illustrated by V' *1*2=Y a5 CPTP. Considering the
joint typicality lemma introduced in [Corollary 4, 18],
the one-shot lower bound of a C-QMAC is as follows:

Ry < If(Xy; Y1X,Q), — 2 —log(Ye)
R, < I (X5 Y1X,Q), — 2 —log(1/e)
Ry + Ry < I5(Xy, X5;Y1Q), — 2 — log(1/e)

where I5 () is the quantum smooth hypothesis testing
mutual information defined in Definition 1 with
respect to the following state:

PO 1= N p(@p (P Dlaxxz)

qxi1Xxz

QX1 X:
(qxyx,| 7172 ®P§1x2

and Q is a random variable used as time-sharing.

Definition 7: (Inner bound of a classical-quantum
multiple access wiretap channel) [15] A two-user C-
QMA-WTC is defined by a triple ( Xj X
X, N X1 X22Y2 (x0 20)) = pi%  HY @ HZ) , where
X; and X, denote the input alphabet sets, and Y, Z
denote the output systems.

The inner bound of a two-user C-QMA-WTC is as
follows:
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Ry < I(Xy;Y1X,Q) = 1(X1; Z|Q)
Ry < 1(Xy; Y1X1Q) — 1(X2; Z1Q)
Ry + R, < I1(X1X2;Y|Q) — I(X1X2; Z1|Q)
where Q is a random variable used as time-sharing.

Definition 8: (Pretty good measurement) [26]:

Consider an operator T. Then T2 is the inverse
square root of operator T and is defined only on the
supp(T). That is, given a spectral decomposition of

the operator T
7= dexel ®
t

and
7 = FOlexe] ®
where ‘
(&, t=%0
fo= {0 , t#0 (5)

The main concept of square-root measurement is
based on the positive-operator valued measure
(POVM) elements {Am}lrflel, that correspond to the
sent messages and A, that corresponds to an error
result.

1 1
M| 2 M 2
Am = z Pml Pm Z Pml (6)
m'=1 m'=1
where
P, = I, 11 7

and the operator P, is a positive operator, and II, I1,,
are the code subspace projector and the codeword
subspace projector, respectively.

More details can be found in [15.4.2, 26].

III. CHANNEL MODEL

In this section, we want to define the main channel.

A [ -user C-QMA-WTC with d wiretappers is
defined by a triple ( Xy xX,..X%
Xy, N XXz XoY2aZ2 -2 (), %, . %)) =

oaZz Il WY @ HA ® .. @ HZ4), where X, i €
{1,2, ..., 1} denote the input alphabet sets and Y, Z;,i €
{1,2, ..., d} denote the output systems at the legitimate
receiver and d wiretappers, respectively.

A (27R1 2Rz 2TRI) code for C-QMA-WTC
consists of the [ independent messages My, M, ... M;,
each of them is selected from their message sets M; =
{1,..,2™"R},i € {1,2,..,1} . There are [ stochastic
encoders for each user: &;: M; = X; and [ decoding
POVMs.

The main channel model is illustrated in Fig. 1.

Remark 1: We should note that, in all of discussed
cases in the paper, all channels assumed to be
memoryless and all of the wiretappers have the same
effect on the sent messages. In other words, the
capability of all wiretappers assumed to be equal.
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Figure. 1. The l-user classical-quantum multiple access wiretap channel with d wiretappers. (for one-shot setting set n=1).

IV. MAIN RESULTS AND PROOFS

In this section, to provide our main results, we
consider the two-user case without the one-shot setting
at first. Then we generalize our results to the [-user
case with one-shot setting.

Theorem 1: (An inner bound -two user case) An
achievable secrecy rate region for the C-QMA-WTC
with an arbitrary number of wiretappers is the convex
closure of all non-negative rates (Ry, R;):

d

RS IXGYIGQ) - ) 1 ZiIQ)
;—1

Ry I YIXQ) ~ ) 1(X5Z110)

d

Ri+ Ry < 1(X:1X;Y[Q) — § ) 1(X4;Z;1Q) —
i=1
d

PRLCAEA

where Q is an auxiliary random variable which is used
as time-sharing, d is the number of wiretappers, and
the probability density function is:

T p(Qp (x| O | O (Y2 o 71| %1 %7)
Proof: In Appendix A.

Remark 2: In the case of the channel with one
wiretapper, if we assume that the leaked information of
each wuser 1is independent from another user

13
( I06X521Q) = 10X Z1Q) + (X5 Z1X,Q)
I(X;Z1Q) + 1(X5;Z|1Q) ), then the result of the
Theorem 1 is reduced to the results in [15]. This
assumption is due to the employment of the successive
cancellation decoder in [15].

Conjecture: (An inner bound-l-user case) An
achievable secrecy rate region for the C-QMA-WTC
with an arbitrary number of wiretappers is the convex
closure of all non-negative rates (R, R, ..., R;)

V] c [£],VT c [D]

D R I(XY1XQ), — ) 10X 2:]0),

sej 1T
where L ={1,2,..,1} and D ={1,2,...,d}. Q is an
auxiliary random variable that denotes time-sharing, |
is an arbitrary subset of the set L denotes the set of
users, J¢ denotes the complementary of the subset | in
the space of the set L, T is a subset of the set D denotes
the set of wiretappers, and the probability density
function is:

T:p(Qp (D (X2 Q) D2y - Zal %1% - X))

with respect to the following state:

pqxlxz WXYZy..Zg

= Z p(Qp (x| PDp(21q) - 2l qxix; - x1)
qx1X2..X|

QX1X5..X] ® pYZl...Zd

(qx1x2 xll X1X2..X]

Proof: The proof is similar to the two-user case.
The only difference is assuming that a proven
simultaneous decoder exists. The proof of secrecy
constraint is presented in Appendix B.

Remark 3: We should note that the proof of the
above conjecture is based on simultaneous decoding.
Therefore, according to the discussion presented in the
first section, this technique leads us to a conjecture, not
a theorem.

Remark 4: In contrast to the general case, the
usefulness of the simultaneous decoder is proven for
some special cases such as min-entropy case and the
special case of QMAC where the induced channel to
each receiver has average output states that commute
(commutative version of output states) [27].

Now, we want to discuss about the main channel
under the one-shot setting. As mentioned before, in the
one-shot case there are fewer quantum computing
limitations compared to the general case. Two of these
benefits are availability of a proven simultaneous
decoder and one-shot quantum joint typicality lemma.

The main results for the one-shot case is presented
below.

Theorem 2: (One shot inner bound- two user case)
An achievable secrecy rate region for the C-QMA-
WTC with an arbitrary number of wiretappers is the
convex closure of all non-negative rates (R, R,):

d
Ry SIS YIGQ), = ) Tt 210), =2

1
—(d + 1)log (E)
d ~
Ry S 1Y 100, = ) T (a3 2100, — 2
1
—(d + 1)log (Z)
d

'_1ir$1ax(X1; ZilQ)p

L

d
D T Z10), 2

Rl + RZ < lf,(Xl.Xz; YlQ)p - Z

—(2d + 1)log (é)
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Set of classical codewords for user-1

vicTR (G

Set of classical codewords for user-2

000]C
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k=1
£
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I3

%

Figure. 2. The code structure for private classical information over QMAC (it is the same for the one-shot setting). For
simplicity of illustration, we assumed m; € {1,2}; i € {1,2} and k¢, k; € {1,2,3,4}; f € {1,2, ..., d}. We only show the typical

subspace of nth Eve.

where Q is an auxiliary random variable that denotes
time-sharing, d is the number of wiretappers, and the
probability density function is:

: p(Qp e | Do (X2 | D (V71 - 24| %1 %7)

Sketch of proof: The main concepts in the proof of
the Theorem 2 are the same as Theorem 1. The only
difference is that in the one-shot case, we use convex
split lemma (instead of the covering lemma) for
calculating the leaked information from senders to
wiretappers. The detailed proof is presented in
Appendix C.

Theorem 3: (One-shot inner bound-general case)
An achievable secrecy rate region for the l-user C-
OMA-WTC with an arbitrary number of wiretappers is
the convex closure of all non-negative rates

(Rl’ Rz, ...,Rl).'
V] c [£],VT c [D]

D R S 0), = ) T (X5 2410), =2

S€J LT
1
— W1+ Dlog (),
where L ={1,2,..,1} and D ={1,2,...,d}. Q is an

auxiliary random variable that denotes time-sharing, |
is an arbitrary subset of the set L denotes the set of
users, J¢ denotes the complementary of the subset | in
the space of the set L, T is a subset of the set D denotes
the set of wiretappers, and the probability density
function is:

T:p(Qp (D (X2 Q) D24 - Zal X1 %5 - X))

with respect to the following state:

QX1X3..X|YZ1 .. Zg

p
= Z p(@p (e |)p(x2|q) . p (il qxs x5 ... )
qx1Xz..X|
(qx1x; ...xl|QX1X2---Xt ® pYZl---Zd

X1X2..X]

International Journal of Information & Communication Technology Research

Proof: The proof is similar to the two-user case.
The leaked information analysis is presented in
Appendix D

V. DISCUSSION AND FUTURE WORKS

In this paper, we studied the problem of private
classical communication over a [ -user quantum
multiple access channel with an arbitrary number of
wiretappers. We also studied the proposed channel
under the one-shot setting. We constructed a
simultaneous decoder in order to guarantee that Bob
can decode the messages reliably and confidentially.
We also used the convex split lemma [28] to ensure
that the wiretappers are unable to determine which
user’s message is transmitted. This paper shows that
convex splitting is an effective method to study multi-
terminal quantum channels' privacy.

APPENDIX

Appendix A: (Proof of Theorem 1)

Outline of the proof: The sender’s goal is to build
two separate indexed codebooks
{xl'(my, ks, oy kd)}mleMl,kfeﬂCf,f:[lzd] and
{xz (Mg, ki, ..o, ké)}mZEMZ,k}GK},f:[lzd] so  that Bob
should be able to detect the pair messages (m,, m,)
and the junk variables (ky, ..., kg, k1, ..., kg) with high
probability. The coding scheme has been illustrated in
Fig. 2.

In this illustration, we have assumed m; €
{1,2}; i € (1,2} and k, k} € {1,2,34},f € (1, ..., d}.
The users want to transmit one of the two messages
separately, and they have variables ky, k}, fe
{1, ..., d} for randomizing Eve’s state. Thus, we have
4d classical codewords (2d codewords for user-1 and
2d codewords for the second user). Each of the
codewords is mapped into a distinguishable subspace
on Bob’s typical subspace (for simplicity of
illustration, we showed four mappings in Fig. 2). In
other words, each of the x{'(my, ky,..,kg) and
x3(my, ki, ..., k) are grouped in a box. These boxes
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indicate the privacy amplification sets. Here we have
four amplification sets. When randomizing the junk
variables k; and kf the codewords {x1'(1, k1, ..., k4)}
and {x'(2, k4, ..., kg)} uniformly cover Eve’s typical
subspace. Thus, that is nearly impossible for Eve to
understand whether user-1 is sending the first
codeword or the second. This scenario is the same for
another user. From the packing lemma, we can
understand that user-1 can reliably send about
2MGAYIX2)  and  user-2  can  reliably  send
distinguishable information about 2MX2YIXD and
from the covering lemma, we can understand that the
minimum size for each of the privacy amplification set
is 27 (iZ5); i € {1,2}, f € {1,2, ..., d}. For docoding,
as mentioned before, the simultaneous decoding is
employed to decode the messages.

Now, we provide analysis of the probability of error
in detail.

Codebook construction: To generate codebooks,
fix p(q),p(x119),p(x21q) . Consider the c-q
controlling state, which controls the performance of
encoding and decoding schemes of the channel:

prlxzyzl...zd

= > p@pCalOpGlDlaxx)

qx1Xx2
QX1X YZy..Z
(qr,2,| 972 @ py i td ®)
Randomly and independently generate 2"Ri; i €
{1,2} sequences xt(my, ky, oo kg) and
x3(my, ky, ..., ky) according to
H}l:l pxl(xlj, klj' 'kf]) and

[17=1 px, (x2j, k1, ... kf;), respectively. Suppose that
the receiver employs a decoding POVM
My g kykeq kel }- Based on the definition of the
probability of error in [17], it is defined for our channel
model as:

pe(my, my) = pr{(My, M3) # (my, my)}

) ynz9.z} }
PPN ’ ’
My, My K,k gk, kg mllmz’kl'---Jkd'k;.v--'kzli

=Tr{(I—A

Also, we need the following lemma in our proof.

Lemma 1: (Hayashi-Nagaoka inequality [29])
Suppose that S, T € P(Hy) such that (I—S5) €
P(Hy) are operators such thatT = 0and 0 < S < I.
Then, the following relation holds:

1 1
[—(S+T)25(S+T)2
<2(I-S)+4T ®
where P (Hy) is set of non-negative operators on Hy.
Proof: see [29].

Now, consider that Bob uses the positive-operator
valued measure (POVM) with (1)

; q.x1(mq)x2(mz),6
— Y —
Let S= (H’)q.x1(m1).xz(mz),5 : and T=

!
Z(ﬁhﬂ’ﬁz)i(mpmz)(HI)E,X1(m1),X2(mz).5' Then from the
above lemma, we have:
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b,

N
<2Tr [(’ = () ey )y (), 6) (o )q,xl(mo,xz(mz)]
+4

(Mq,m2)*
(mq,mz)

N4 N4
Tr [(H )1 ()2 (72,8 (P )q,X1(m1),xZ(mz)]

Now, the last term of the above relation is split to
three terms, each of them is corresponding to an error
event. So,

A
N4
<2Tr [(1 - )q x1 (1),22 (1722), 5) (o )q,xl(ml)JXz(mz)]

+4

(Mm)#(mq) kq kq
N4 N4
Tr [(“ )1 (), (m3),5 (P )q,xl(mlxxz(mz)]

+4

(M)#=(m2) ki k)

N N
Tr [(H )q,x1(m1).xz(7ﬁz).5(p )q,xl(ml),xz(mz)]

L))

(Mymz)# k1 ka kj
(mq1,mz)

N4 N4
Tr [(H )1 G2 (72,5 (P )q,xl(mﬂ,xZ(mz)]

By applying the expectation over the codebook, we
have:

{Tr [(1 mlmzklkz)(p,)g’lxﬂmﬂ:xz(mz)]}
< > p@rElopcala) Tr[(1

qx1x2

N
- (v )q x4 () 22 (), 5) (p )qJX1(m1),Xz(mz)]

+4(2" 1) Y p@pCalp@EIDPCe ) Tr
qx{xz
(H,)g,xl(‘r’ﬂl),xz (my),6 (p,)g,xl (mq)x, (mz)]
+4(27% = 1) 3" p@pCal PGPl Tr

qx1x£
7 Y’ ’ Y’
(1) g ey (ma) 2 (2,8 (P D g, () e (o) ]
+4(2"R — 1)(2"R2 — 1)
Z p(@p (x| (1l Qp(x2|p(x319)
axix;
N INd
Tr [} sy s (225 (0 ey e )

After a straightforward calculation similar to what
explained in [27], we have:
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Pe
da

<e + nlkfl zn}?lz—l(X11Y|X2Q)p

=1
d

+ nlkH 2n§2 2—I(X2:Y|X1Q)p

f=1
d

* 1_[|kf||k}| QnR4nRz p=1(1X2Y1Q)p
f=1

Then, we have:

R, < 1(X1:Y|X,Q),
R, <1(X5:Y1X:Q),

+ Ry S 1(X1, X2:Y1Q),

2n1(X1;zf)p and [Ic}| = znz(xl;z})p

R

By setting |kf| =
we have:

s

d

Ry S I YIXQ) ~ ) 1(X5Z110)
]2‘_

Ry I YIXQ) ~ ) 1(XZ110)

d
Rit Ry S ICXnYIQ) = ) 10X Zi1Q) -
=1

d
PIRLEATAL)

This completes the proof.
Appendix B: (Proof of the secrecy constraint)

In this section, we provide the proof of the secrecy
constraint.

Secrecy constraint: (two-user case) The secrecy
criterion for C-QMA-WTC can be defined as follows:

[(My, My; Z7, ..., Z0) < A (10)

This relation tells us that the mutual information
between Eve and the pair messages (M, M) (leaked
information) is smaller than an arbitrarily small
positive number.

The senders select the junk variables k; and k}, fe
{1, ..., d} uniformly at random in order to randomize
each Eve’s knowledge about the sent messages
m,, m,. Then Eves’ expected state can be defined as

follows:
ez?...zg
mq,my

1
e P T(my, kq, . k
|7C1||7C2|kz Z xl(x1 (my, ky a)
1€X1 ko €Ky
n ! ! ZIL Zd
Py, (x5 (M, k1, o Kg))Pynn

Let §%'+Zd denote Eves® state averaged over all
possible messages:

Gl — L Z z o728
| My || M | 2

m1EM; myeM, (11)
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If Eves’ state be close to a constant state (671 Zd) the
constraint of A-privacy holds:

”gz{‘...z}; _ ez{‘...zg‘” <20 < l (12)
1 e

This constraint implies that Eves’ information
about the sent messages is small:

I(My My 28, ., Z8) = H(ZT, ..., Z]) —
H(Zl,.. Z7| My, M)

=S - |M1||M2 2. 2, seni)

m1EM; my€EM,

SS(QZ}..ZZ;) |]v[||]v[ Z z 5(921 Zd)
11IM3

mq1EM; myEM,

+2n4' logdim H %1% =22 log 24’
= 2nl’ log dim H #1--Za -2} log 21’ (13)

The inequality follows from wusing Fannes’
inequality [30] for both entropies. With choosing A’
arbitrarily small, for example A’ = 27" , equation (13)
guarantees that the Eves knowledge about the sent
messages exponentially vanishes.

The security proof for the [-user case can be
concluded by a similar procedure.

Appendix C: (Proof of the Theorem 2)

In this section, we prove Theorem 2. Some steps
are similar to those for Theorem 1. So, we only
mention the differences.

Encoding and transmission: This step is the same
as Theorem 1. The only difference is that under the
one-shot setting, we can only use the channel once.

Decoding: In order to decode the messages and the
junk variables, we use the simultaneous decoder and
convex split lemma [28] which is employed as a useful
tool in recent developments in quantum information
theory and it also has been used to obtain the one-shot
bounds for secure communications [25,31,32] over
quantum channels.

Lemma 2: (Convex split lemma) [28)] let pyy be an
arbitrary state and suppose that tx, x,p be the

following state:

K
1
TX1.XkB = EZ Px, R .8 Pxp_q ® PxyB ® PXps1
Q ...px,
Let € € (0,1) andn € (0,v€], if
1
log, K In‘{;x"(Y; X), + 2log, (5) (14)

then,

P(Tx,. x50 Px; ® - ® py, ® Py) S Ve

for some state py such that P(py, Py) < Ve —1.

Proof: see [25].
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To generate codebooks, fix
p(q), p(x119), p(x;1q) . Consider the following c-q
state, which is employed to control the performance of
encoding and decoding operations of the channel:

QX1XYZ1..Zg

p
= > p@pCalOpGallax)

qx1X2

(g2, %2 @ pyr-2a (15)

X1X2

Generate 2Ri codewords x; with the probability
p(xilq) - x;(m;), i € {1,2}.

According to the described setting in [18], we can
consider new alphabets according to the Hilbert space
H:Q =QXH,X{ =X, XH and X; =X, XK.
Now, the new codewords can be shown as: (q, hq) =
G, (x,he) =%, (x2,hy,) =% and the new

n3
controlling state is p@*1%2¥%1-Za R |O)(O|(C2 ® IIHI3 )
These choices are due to the tilting map described in
[18]. The new channel, named as perturbed channel,
can be trivially obtained from the main channel.

Note that, the expected average decoding error for
the main channel is the same as the perturbed channel.
Now, the controlling state of the perturbed channel is
as follows:

Iyl Iyl ! !
nNQ'xixsy'z) ..z
(P) 142Y 21+4q

=|H| z p(q)p(x1Iq)p(leq)I¢7><¢7IQ’

%1%,
® |3?1)<971| ® |x2)(x2|X2 ® (0% qxlxzé' (16)
where 0 <6 < 1.
For m; = {1, ...,2%1}, choose (&)(m;) € X; x

H, and for m, = {1,...,2R2} choose (&,)(m,) €
X, X H.

Decoding: At first, we should analyze the error
events. Bob uses (11"} z. m, ) z,(my),6 tO construct his
POVM (see Definition 8). Let A 1 be

Mg, g,k enkg k] Ky
Bob’s POVM for decoding the messages.

Consider the Hayashi-Nagaoka inequality. Let S =
()7 2, (my) 22 m2),8 and r=

INd
Z(Tﬁpﬁz)i(mpmz)(n )q,f1(m1),fz(mz),5' Then frOm the
lemma 2, we have:

P,

N N
< 2Tr [(1 -3 )q.f1(7ﬁ1)-fz(m2)-5) (o )a.fl(mo.fz(mz)]
+4

(My,M)*
(mq,mz)

Yy’ Yy’
Tr [(H')@xl(ml)xz(mz),s(P')q,fl(ml).fz(mz)]
_ Y’ Y!
= 2Tr [(1 - (H')a.fl(rm)xz(mz),s) (P')a.fl(mﬂ,fz(mz)]

+4

(M)#(my) kq kq
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N4 IN4
Tr [(“ D@51 (7)) % (my),5 (P )q.fl(mo.fz(mz)]
+4
(M2)#(m2) ki k:i
INY N4
Tr [(“ )G.51 (my) 2 (7),5 (P )q,fl(mnxz(mz)]

EIDIONEDS

(M1 M2)#* k1 ka ki
(mq,mz)

' '
Tr [(“')a.f1<m1).fz 6P g2, 0m) 2, (mz)]

By applying the expectation over the codebook, we
have:

{TT [(1 Am1m2k1k2)(p,)g;ﬁ(ml)’fz(mz)]}

<2017 ) p@pCalople) Tr[(1
Gx1%;
ING
- (I )qxl(moxz(mzw) (o )q.fl(ml).fz(mz)]
+4(2R - 1)

3¢ Zp(q)pm|q)p<x1|q)p(xz|q)Tr[

INd N4
() g 27 () 2(m,6 (P ) 21 (my) 22 (m) ]
+4(2F — 1)
717> p@pCalapCalDpCela) Tr
4%, %,
N NG
()3 2, (my). 28 (70,6 (P V21 (my) 22 (ma)]
+4(2F —1)(2R — 1)
17175 p@pCalop G lapee Pl
Gx1%;
N4 INg
L) g 21 6my), 24 72,6 (P 21 (my) 22 ()]
At this step, using the quantum joint typicality
lemma [Corollary 4, 18], we have:
-15(X1;Y1X2Q),,
+ 2R2+22—1161(X1J Y|X2Q)p
+ 2§1+§2+22_II€I(X1'X2; Y|Q)p

Pe < €' + 2FR1%2)

Then, we have:
Ry < 15X Y1X:0), — 2~ 108 )
Ry < I5(X5:Y1X,Q), — 2 — log (%) (17
Ry + Ry < If (X1, X2;Y1Q), — 2 — log (%)
Using the convex split lemma, we have:
logy Ky = IS (Xy; 70), + 210g, (%) (18)
log, K} = I, (X, 711Q)  + 2log, (%) (19)

Suppose n; = Ve, i € {1,2}, then:

International Journal of Information & Communication Technology Research


http://ijict.itrc.ac.ir/article-1-455-en.html

[ Downloaded from ijict.itrc.ac.ir on 2025-11-18 ]

Volume 12- Number 2 — 2020 (1 -10)

_ 1
log, Ky = I (X3 /]Q) +log, (E) (20)

- 1
log, K7 = T (X2 271Q), +log(Z) 2D

Combining (20), (21), and (17) with a
straightforward simplification completes the proof.

Appendix D: (Leaked information analysis)

Secrecy criterion: In fact, the mutual information
between sent messages and wiretappers, should be
negligible. Actually, it should be smaller than an
arbitrary small number:

I(Ml, MZ;Zl "'Zd) < €,€EE (0,1) (22)

The leaked information from the ,user-i to Eve is
I(ML-;Zf) <e€,f €{1,..,d}. we just calculate the
sum rate leakage (R; + R3).

Let pX1XzZ1...Zd = Zmle[le] 2Rl—+R2 |m1)<m1| X1
mye[2R2)
Im,)(m, | ® Px,x, be the joint state of the senders

and Eves (X;X,Z; ...Zy). Then, we have:

le...Zd _ 1

M™mz R+ R, , ,
kfe[le],k}e[sz],f=[1:a]
Zy..2q
X1 (M K,k g) 2 (Mo k], k)

p
(23)

Z1..Zd YZy.Zq
x1 (M K1,k ) xz(Mma Ky, .. ,kd) TrY[pxl X2 ]

YZ1.2q , X1 Xy—>YYZq..Z X1X2 Z1..Z
andpxlx2 = NHaXao Vi -Za(pld 2) | Let pPa-Zd

where p

Zy.Z2q

2R3 2R1 Zd
R +RI my= 12m1 1P mlmz and p

Zy.Z24
xl X2 {px1 X2

Information leakage can be calculated as follows:

Rj
2 2R1

D EAE T Yl @ g,

my=1

® pmlmz

2R)

- Z“ ) (m | @ Iyl
my= 1Rr +Rr 1 1 2 2

my=1

2R,1 1 Zy1.Z2q
Lo
= Z_lZm - 27 o
— pZ1- Za” < Z ZZ & ” Z1.Zq
2R1+R Pmim,

_pzl Zd” + ”p21 Zg _ ﬁZ1---Zd”
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2R3

2R —_—
2 Z z 12R1+R ” m11“7.712d
— pZ-Za| < 2 Z Z T IEc||Pm1m2

© my=1
_le...Zd” ; €'

where (a) follows from triangle inequality [33], (b)
follows from applying expectation over the random
codebook and using the symmetry of the code
construction and (c) follows from using the Gentle
operator lemma for ensembles [26].

This relation tells us that the leaked information
from both senders to Eve while they are
communicating simultaneously with a legitimate
receiver is smaller than an arbitrarily small number.
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