[Downloaded from ijict.itrc.ac.ir on 2025-11-18]

IJICTR

International Journal of Information &

Communication Technology Research Volume 12- Number 2 - 2020 (54 -62)

Structural Analysis of GitLab's Users and
Projects Networks

Hadi Safari, Nazanin Sabri, Faraz Shahsavan, Behnam Bahrak”
School of Electrical and Computer Engineering
University of Tehran
Tehran, Iran
{hadi.safari, nazanin.sabri, faraz.shahsavan, bahrak} @ut.ac.ir

Received: 13 August 2019 - Accepted: 28 January 2020

Abstract—GitHub has long been perceived as the exclusive provider of hosting for software development in the minds
of many programmers. However, it is far from the only available service out there. GitLab is one of the many platforms
offering similar capabilities, which has experienced rapid growth in recent years. GitLab currently holds the second-
largest collection of repositories among its competitors. Despite its rapid growth, little attention has been paid to this
website by academia. This lack of information with regard to users and projects on the platform, as well as the fast
increase in the number of GitLab users, motivated us to conduct the current study. In this paper, we perform social
network analysis on the data we have collected from the public users and repositories of GitLab. We observe that GitLab
is similar to other code-hosting services with regard to its network structure. We also find that the most influential users
and projects on the website, are associated with the founding team of GitLab. We further analyze the collaboration and
membership networks and, among other things, find that both graphs display high values of assortativity with regard
to node degree. The relations between various attributes of projects have also been analyzed.

Keywords-GitLab; social network analysis; hosting services for software development.

services (referred to as "Pages" on these systems) has

L. INTRODUCTION also caused bloggers to gravitate towards these websites
Many factors have accelerated the growth of [2].
distributed version control systems (VCSs). For one, GitLab' was established in 2011 by Sijbrandij and

remote collaboration has become common among
programmers, especially in the open-source community
[1], thus increasing the need for such services. Besides,
it has become customary for teams to keep track of
changes made to the code base during the development
process to ease debugging and to have a log of events
for performance assessment.

Zaporozhets. The website is primarily known as a
software hosting platform using git as its version
control system. Still, like many of its competitors, it
offers several other services such as code review,
continuous integration and deployment (CI/CD), and
creation of wikis. In recent years, GitLab has seen
considerable growth in popularity and is now ranked
Nowadays’ developers are not the only target second among online hOStil’lg services, following
audience of these DevOps hfecycle tools’ graphic GitHub. After the acquisition of GitHub by Microsoft
designers, content strategists, and researchers are in October 2019, the surge of users to GitLab made the
amongst other professionals using such systems. The
ability to create static webpages on some online hosting

* Corresponding Author
! https://gitlab.com

International Journal of Information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-460-en.html

[Downloaded from ijict.itrc.ac.ir on 2025-11-18]

Volume 12- Number 2 - 2020 (54 -62)

news [3]. The rapid increase in repository counts was
also visible in the data collection process of this study.

The importance of the analysis of such platforms
stems from the significant role they play in the advances
made in the computer science community. Although
most notable projects consist of a core team dedicated
to their development, these code hosting platforms are
providing them with a lot of help and additional human
resources along the way. Thus, understanding how
users interact with one another on these code hosting
platforms, as well as getting some insights into how
they collaborate could help us in the understanding of
the developments made in the industry today.

In this paper, we perform social network analysis on
GitLab's networks of users and projects, investigating
structural properties of those networks as well as
finding key users and projects, and their characteristics,
to better understand network attributes of GitLab. We
start by creating the bi-partite project-user graphs with
edges indicating membership and collaborations. We
then create mono-partite projections of the networks.
Analyzing the resulting graphs, we find out that both
membership and contribution graphs are assortative
with respect to degree. We further find that most
members tend to make no contributions to the projects
they are part of. Degree distributions, community and
clique structures are also analyzed. Our contribution
consists of extracting and analyzing the attributes of
Gitlab's networks and comparing these attributes with
those of some of its competitors, such as GitHub and
SourceForge, based on some metrics which are
common in literature. Furthermore, we publish a dataset
of the aforementioned networks and find some bugs in
GitLab, as by-products of this research. To the best of
our knowledge, this dataset is the first public dataset of
Gitlab's users and repositories, encompassing a huge
portion of the data of the platform at the time of
collection. A previous version of this paper appeared at
the 10t International Symposium on
Telecommunications (IST2020) [4].

The rest of this paper is structured as follows: we first
offer a brief explanation of related work in Section II.
In Section III, we elaborate on the data collection and
analysis methods used. We then present the results in
Section IV, and conclude the paper with a summary of
the study and possible ways of continuing this research
in Section V.

II. RELATED WORK

GitHub, GitLab, Bitbucket, Source-Forge, and
Launchpad are the five most popular online code
hosting platforms [5]. Google Code, before
discontinuing its services in 2016, was also a well-
known service [6].

Considerable research has been done on code
hosting platforms. The area of focus in these papers
includes analysis of the code published on these
services, analysis of the version control systems from a
software development perspective, or looking at these
platforms from a social network perspective and
analyzing user relationships and network properties.
Older studies were mainly focused on Source-Forge,
while newer research is mostly done on GitHub.

International Journal of Information & Communication Technology Research

wictr (G

Thus far the primary focus of research on GitLab
has been centered on the academic use cases of the
website [7, 8, 9, 10], while GitHub has been analyzed
from multiple perspectives. The analysis of GitHub
includes the analysis of codes uploaded to this website
[11, 12], investigation of the social network of users and
repositories [13, 14, 15, 16], studying the platform for
software development purposes [17, 18] and natural
language processing [19], as well as examining its
connections to other websites [20, 21]. There are also
studies concentrated on the effect of factors such as
gender, nationality, language, and time on how people
behave on the website [22, 23]. Another aspect of
GitHub which has been scrutinized over is "pull
requests" and "issues" created on repositories [24, 25,
26, 27]. There has also been several work on the
academic and governmental use of the platform [28,
29]. [30] introduces a tool for profiling developers and
assessing their abilities using information collected
from their GitLab profiles. Using this method, which
analyzes users' information such as code quality and
project participation, the developer's expertise can be
extracted.

There are several work on code hosting platforms
from a social network perspective. Surian et al.
investigated the six degrees of separation theory on
Source-Forge's developer network [31]. The maximal
connected components of the network were also studied
and they found out that only 1.5% of programmers
worked alone and that a giant component with 54.07%
of users was present in the network. The network's
degree distribution was also shown to not fit a power
law distribution. They further observed that a large
proportion of users only work with a maximum of six
other users and that the triadic closure property is
present in this network, i.e. there is a high probability
that friends of a user, are friends with each other.

Allaho and Lee [13] created user interaction
networks based on follower-following relationships on
GitHub and Kudo giving patterns on Open Hub
(formerly Ohloh). They reported the diameter, the
average length of shortest paths, and the average
degrees for GitHub and Open Hub networks, thus
showing the presence of the small-world and six
degrees of separation property in these networks [32].
The authors additionally noted that both networks were
scale-free with their degree distributions following a
power law distribution. Hubs in these networks tended
to have links to low degree nodes thus deriving the
conclusion of the existence of relationships between
professionals and newcomers.

Influential GitHub projects and users were extracted
from their corresponding networks by Thung et al. [14].
From the two projections (for users and projects) of a
bi-partite graph of 100,000 GitHub repositories and the
random selection of 30,000 of their developers,
weighted networks were created and their node degrees,
average path lengths, PageRank, and diameter were
examined. The obtained values for the network
diameter and the average shortest paths were far less
than the expected values and that of similar values
reported for Source-Forge [31], which was attributed to
the more social nature of git and GitHub compared to
Source-Forge and subversion (SVN) repositories.
Another article that studies influence is [33], where a

http://ijict.itrc.ac.ir/article-1-460-en.html

[Downloaded from ijict.itrc.ac.ir on 2025-11-18]

B uictr

new approach is introduced in which multiple
indicators and centrality algorithms are used to model
different perspectives.

As previously pointed out, to the best of our
knowledge, no work has been conducted on the social
network properties of GitLab, thus encouraging this
study.

II1.

In this section, we begin by introducing the
terminology used in online code hosting services,
including GitLab. Next, a detailed description of our
data collection methods and tools is provided. We then
go over the definitions of our analysis methods and
metrics.

DATA AND METHODOLOGY

A. Terminology

Online code hosting platforms offer various features
with different terminology. To better understand
description of each feature in GitLab, we will go over
the terms they use in Table 1.

B. Data Collection

The data used in this study was collected using both
the official API of GitLab and a web crawler which has
been made available on GitLab?. The collected data,
saved in a MySQL database can also be accessed in the
same repository under the "dbdump" branch. Our data
includes project details, including the users who
worked on each project, some user properties, and the
relationships in the networks of users and projects,
consisting of forks, memberships, and contributions.
The collection process was completed on August 11,
2019 and includes the information concerning 667,686
projects (the total number of public projects at the time
of data collection) and 30,020 users. The created graphs
included 47,748 forks, 251,277 memberships, and
90,150 contributions links.

Python and the NetworkX [36] library were our
principal tools for analyzing the data. The results were
then visualized using Gephi [37], matplotlib [38], and
Graphviz [39]. The analysis code is publicly available
through the GitLab Analyzer repository?>.

As stated earlier, we had collected users who were
members of and those who had contributed to projects.
This data allowed us to create two bi-partite user-
project networks, with links in one network
representing memberships and in the other network
representing contributions. Mono-partite projections of
both networks were then used to analyze community of
users as well as most-worked-on projects.

Another relationship collected was that of forks
between projects. To analyze forks, we created a
directed network of forks with nodes representing
repositories and links connecting repository A to
repository B if and only if B was once forked from A.
The most forked, and thus to some extent the most
influential projects, were then extracted by calculating
centrality measures on the nodes.

2 https:/github.com/hadisfi/gitlab_crawler

Volume 12- Number 2 - 2020 (54 -62)

TABLE L. GITLAB TERMINOLOGY

Users can star topics and repositories to see
news related to those topics or projects in
their feeds.

Star

Creating a copy of the target repository
which is added to the repositories owned by
the forker. This feature is usually used in
order to further develop the available code.

Fork

A user can choose to watch a repository to be
informed of every single change and
announcement made to that project.

Watch

Problems, questions, feature requests, and
other issues related to a project can be
reported to the owners of the project through
this mechanism. An issue can be assigned to
a specific user.

Issue

Users who are not part of the founding team
of a project can develop the code on their
own copies of the repository (created via
forking that project) and then request their
changes to be added to the original project by
submitting merge requests. The owners of
the project can accept or deny these requests
or ask for minor or major revisions before the
changes are made.

Merge
Request

This term refers to the act of submitting one
or several changes in the codebase to the git
log. It is customary for each commit to be
followed by a descriptive message listing the
changes made.

Commit

Groups, in GitLab, are used for grouping
projects together. Members can be added to
groups which will consequently add them to
all projects within that group.

Group

A Git extension that improves how large files
are handled. It replaces them with tiny text
pointers that are stored on a remote server
instead of in their repository, speeding up
operations like cloning and fetching [34, 35].

LFS

gitlab-org/omnibus-gitlab, . 1" °4
R ¢ AR 7
.. gitlab-org/gitlab-ce’

- "“gitlab-com/www gitlab-com
= QIEIRRcom) gitlab-c
pages/plain-htm| ¢ @ »

@ NNE T
% gitlab-org/gitlab-ee s
> 2 gitlab-org/gitlab-runner.
pages/JekylyI > #]
LR 4 fdroid/fdroiddata

Figure 1. Fork forest. A directed network where nodes are
projects and two nodes are connected if one is a fork of the other.
Node size corresponds with the number of times the project was
directly forked.

3 https:/github.com/hadisfi/gitlab_analyzer

International Journal of Information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-460-en.html

[Downloaded from ijict.itrc.ac.ir on 2025-11-18]

Volume 12- Number 2 - 2020 (54 -62)

TABLEIL METRIC DEFENITIONS

A network whose degree distribution

follows a power law distribution. These
Scale-free .

networks have hubs with degrees much
Network .

larger than the average degree in the

network.

The centrality of a node refers to its
Centrality power and prestige in that network.

These metrics are used to offer a
Measures L - .

quantitative measure of influence in the

networks.

This metric uses node degrees as the

measure of importance. In directed
Degree networks, nodes with high outdegrees
Centrality have a high influence on the network,

while nodes with high indegrees are the

most popular users.
Closeness This measure shows how quickly a node
Centrality can reach other nodes in the network.

A measure of the influence of one node
Betweenness . e .

. on the connection of other individuals in

Centrality

the network.

This centrality measure works on this
Eigenvector premise that connections with high
Centrality degree nodes can cause a node to have

more power in a network.

A special case of eigenvector centrality
Katz . . .
Centrality in which the} problem of propagation of

zero centrality has been solved.

During data collection, we encountered some bugs
and inconsistencies in GitLab API endpoints, which are
reported to GitLab team.

C. Analysis methods and terminology

Table 2 shows the definition of the metrics used in
the rest of this study.

IV. RESULTS AND DISCUSSION

A. Graph Analysis

As stated in Section III, a graph connecting projects
that had been forked of one another was created. This
network has been illustrated in Fig. 1. The forks forest
is made up of 61,728 nodes, 47,748 edges and 13,980
trees. The longest chain of forks is 8 and the largest tree
has 4,100 nodes.

The number of direct and indirect forks of projects
follows a power law distribution with law's exponent of
o = 2.32 and a standard error of 0.06. As a result, the
network has a scale-free structure (2 < a < 3). To find
key projects, in other words those that were forked the
most, we calculated centrality measures such as degree
and Katz centrality. The results indicated that the
projects related to GitLab core, either projects on
GitLab's official group of projects* or on other groups
related to the functionalities offered by the website such
as Pages, were the most prominent. These projects have
been highlighted in Fig. 1. Additionally, the figure
shows how most projects are rarely forked.

4 https:/gitlab.com/gitlab-org

International Journal of Information & Communication Technology Research

Figure 2. Bi-partite project-user membership graph. The nodes
colored in pink are users and those colored in green are projects.

As previously stated as part of our dataset
description, two types of relationships could be defined
between users and projects, namely membership and
contribution. Using these relationships two bi-partite
networks were created. Fig. 2 displays the membership
connections between users and projects, showing how
project membership segregates users into different
components.

The contribution graph is a bi-partite graph made up
of 18,010 users, 68,849 projects and 90,150 edges
among the two sets of nodes. There exist 66,999
maximal complete bi-partite subgraphs in this graph.
Meanwhile the membership bi-partite graph includes
30,020 users, 68,491 projects, and 251,277 edges
between the two sets of nodes, making a total of 22,240
maximal complete bi-partite subgraphs.

We observe that the membership graph includes 1.6
times more users than the contribution graph, while
including fewer projects. The bi-partite membership
graph has 0.0122% of all potential edges, meanwhile,
the contribution graph includes only 0.007%. In other
words, the membership graph is much denser than the
contribution graph.

It is interesting to note that if projects with only one
member are set aside, on average only 20% of all
project members contribute to the project.
Consequently, the contribution graph is a better
indicator of user activities on the website, while the
membership graph can be a better pointer to groups and
colonies of people.

We now take a closer look at projects. Using the bi-
partite membership graph we find out that the average
number of members of a project is 59.23 while the
average number of contributors is 9.5, showing that not
all members of the teams contribute to all projects of
their teams. This fact can be explained by the use of
groups (defined in Table 1) since members of groups
will automatically be considered members of all

http://ijict.itrc.ac.ir/article-1-460-en.html

[Downloaded from ijict.itrc.ac.ir on 2025-11-18]

B uictr

projects defined as part of that group, which
consequently results in a larger number of members
than contributors. The low number of average
contributors also indicates that, on this platform, most
projects are small with only few people working on
them, rather than being popular open-source projects
that attract many programmers and contributors. The
distributions of these parameters are illustrated in
Fig. 3. Building the mono-partite projection graph of
projects constructed using the contribution graph which
is visualized in Fig. 4, we find out that it is made up of
68,849 nodes and 3,162,879 edges. The degree
distribution can be modeled using a power law
distribution with o = 1.66 and a standard error of 0.01.
The component size distributions can also be estimated
using a power law distribution with o = 2.40 and a
standard error of 0.06. Both degree and component size
distributions are shown in Fig. 5.

In order to better understand user behavior and
activities, we create the mono-partite users-

10°

100
g o g |
3 4
E 10
2 2w
10 |
0 200 00 €00 oo o 0 100 150 200 %0 00 38)7

Number of Contributors Number of Members

Number of P

Figure 3. Distribution of number of contributors (left) and
number of members (right) of projects.

Figure 4. Project graph. Created by mono-partite projection of
the user-project contribution bi-partite graph. Colors represent
different modularity classes of the nodes.

10 15 10 10*

e projects dogrees biparite projects componenss sire

Figure 5. Degree (left) and component size (right)
distributions of project graph.

5 To calculate distances, we use the SNAP Python
package [40] which offers methods to approximate

Volume 12- Number 2 - 2020 (54 -62)

membership graph by creating a projection of users in
the bi-partite membership graph described above. By
calculating degree assortativity, which has a value of
0.95, we find that most nodes in the graph are linked to
nodes with similar degrees. Since degree of a node
(user) in this graph demonstrates the number of users
this node has worked with in shared projects or has been
part of groups with, if we assume that the more people
one has been teamed up with, the more experience
he/she has, then the high assortativity value shows that
developers of different experience levels tend to work
with people with similar levels of experience. In [13], it
is reported that the assortativity of Github's follower-
following network (a feature that is not available on
GitLab) is negative, which indicates that newcomers
tend to follow experts, but the co-working relationship
between the users is not analyzed.

By finding maximal connected components, we
discover that 7% of users work alone and that the largest
component of the graph encapsulates only 10% of all
users. It should be noted that the largest component of
this graph is much smaller than the giant component of
a typical social network which often includes more than
90% of the nodes. We further find that clustering
coefficient is 0.8 in this network, meaning that users
form closely knit groups and teams. By calculating
average shortest path equal to 9.89 and a diameter® of
19 we observe that the six degrees of separation theory
is not valid in this network.

We now move on to creating and analyzing the
users graph made based on projecting the bi-partite
user-contribution graph on its user partite, resulting in a
graph with 18,010 nodes and 507,217 connections.
Fig. 6 provides a visualization of this network. The
degree distribution can be estimated using a power law
distribution (Fig. 7). As expected the graph includes a
giant component and many small-components. With
7,767 components making up the entirety of the graph.
The component sizes can be estimated using a power
law distribution. The average shortest path in the
network is 4.56 (compared to 6.55 in SourceForge [31]
and 2.47 in GitHub [14]) and the graph's diameter is 15
(compared to 19 in SourceForge [31] and 5 in GitHub
[14]), thus meaning that the theory of six degrees of
separation holds in this graph. Clustering coefficient is
0.46 in this network (compared to 0.85-0.95 in
SourceForge [41] and 0.395 in GitHub [42]), showing
that contributors have less solid team structure
compared to members of projects. Degree assortativity
has the value of 0.47 in this graph, which does stipulate
that contributors with similar degrees have a higher
tendency to work with one another on shared projects
(compared to negative degree assortativity of -0.0386
in GitHub [42]).

Additionally, cliques and communities of users are
calculated for both contribution and membership
projections. Communities are detected using Louvain
community detection algorithm [43]. We can observe
in Fig. 8 and Fig. 9 that the component sizes follow
similar distributions in both projected graphs, with

these values using sampling methods and
GetBfsFullDiam GetBfsEffDiam.

International Journal of Information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-460-en.html

[Downloaded from ijict.itrc.ac.ir on 2025-11-18]

Volume 12- Number 2 - 2020 (54 -62)

Figure 6. User graph. Created by mono-partite projection of
the user-project contribution bi-partite graph. Colors in the graph
indicate different modularity classes.

ity it 10 ity
bipartie users dearees. bipartite users components size

Figure 8. Degree (left) and component size (right)
distributions of user graph.
/ ‘-\ 1750 f‘-l

o 1500 gy

Figure 7. Distribution of users clique sizes in projected
contributions graph (left) and projected members graph (right).

Figure 9. Distribution of users community sizes in projected
contributions graph (left) and projected members graph (right).

many communities/cliques having few members and a
few being made up of large numbers of users.

Table 3 summarizes the attributes of the mono-
partite graphs resulted from the projection of
contribution and membership graphs. Using the names
given to the graphs in the table, we can see that the
number of components of Gc-p equals that of Ge-u, and
the same holds for Gm-p and Gum-u. This is expected,
since both of the projection graphs of each pair (i.e. the
pair of {(Gc-p, Gc-u) and (Gm-p, Gm-u)) are derived

International Journal of Information & Communication Technology Research

vicTR (EN

from the same bi-partite graphs (i.e. Contribution and
Membership graph respectively), and hence, projection
on either of projects or users yields the same number of
components.

B. Analysis of Attributes of Projects

In addition to network analysis of projects and users
of GitLab, we analyzed some attributes of GitLab
projects. Fig. 10 and Table4 show the Pearson
correlation matrix of attributes of projects.

We observe a strong correlation (0.897) between the
number of stars and forks of projects, which is as
expected, since both are representatives of a project's
popularity.

There is a moderate correlation between storage size
and the number of forks and stars of projects (0.502 and
0.463, respectively). Often the majority of a project's
storage in contemporary integrated version control
systems belongs not to the project's codebase, but to the
artifacts of CI/CD builds. As a result, these correlations
display a relationship between the size of the CI/CD
build artifacts, and the project's popularity.

As previously mentioned, the number of likes and
forks of a project is a metric of the project's popularity.
Let's now consider the number of commits and the
repository size as indicators of the codebase size. We
can see a weak correlation between the popularity of a
GitLab project and its codebase size.

V. CONCLUSION & FUTURE WORK

In this study, we carefully analyzed the GitLab
projects, as well as membership and contribution
networks. It is worth mentioning that the collected data
only includes public projects, which does introduce a
bias towards these projects. Our results indicate that, on
average, there are significantly more members than
contributors to projects. Additionally, we investigated
different network metrics that explain users' behavior
on the platform.

We also found that the website is used mostly for
small projects and personal usage, and very few notable
open-source projects exist on the platform. This fact,
however, might change due to the migration of a
significant number of users from GitHub to GitLab
after the acquisition of the former by Microsoft. We
additionally present degree, component size and
community size structure of the graphs. As well as
showing the assortative nature of both membership and
contribution graphs.

The dataset introduced in this study, allows the
study of numerous aspects of GitLab in future work.
For instance, all the calculations we have done can be
repeated across multiple timestamps to monitor the
evolution of GitLab's network over time. Additionally,
deeper insight into the GitLab's network can be
obtained by analyzing language-specific features of
projects and developers. Correlation of programming
languages used in projects with other attributes such as
popularity, can also offer a better understanding of the
platform and its users. These results can further be
compared with similar analyses on GitHub [44, 45, 46].

http://ijict.itrc.ac.ir/article-1-460-en.html

[Downloaded from ijict.itrc.ac.ir on 2025-11-18]

B ictr

Volume 12- Number 2 - 2020 (54 -62)

TABLE III. ATTRIBUTES OF PROJECTED GRAPHS
Projected on Projects Users
Projected from Contribution Membership | Contribution Membership
Graph name Gceor Gvop Gcou Gum-u
nodes 68,849 68,491 18,010 30,020
edges 3,162,879 3,989,353 507,217 395,444
components 7,767 4,715 7,767 4,715
components with size=1 3,117 981 6,307 2,223
largest component size 21,372 9,267 4,368 3,094
diameter 16 19 15 19
clustering coefficient 0.88 0.89 0.46 0.80
degree assortativity 0.81 0.51 0.47 0.95
TABLE IV. CORRELATION MATRIX OF ATTRIBUTES OF PROJECTS
stars | forks | commits storage Repository git LFS size
size size
stars 1.000 [0.897 [0.009 0.463 0.021 0.000
forks 0.897 | 1.000 | 0.009 0.502 0.021 0.000
commits 0.009 | 0.009 1.000 0.017 0.210 —0.000
storage size 0.463 | 0.502| 0.017 1.000 0.061 0.022
repository size 0.021 0.021 | 0.210 0.061 1.000 0.004
git LFS size 0.000 | 0.000 | —0.000 0.022 0.004 1.000
= https://en.wikipedia.org/w/index.php?title=Comparison_of so
_— urce_code_hosting_facilities\&oldid=856012346
o [6] L.Yu, A. Mishra, and D. Mishra, "An empirical study of the
) 0.8 dynamics of GitHub repository and its impact on distributed
Sorks ’ software development," in On the Move to Meaningful Internet
Systems: OTM 2014 Workshops, R. Meersman, H. Panetto,
p—— A. Mishra, R. Valencia-Garc\'ia, A.L. Soares, L Ciuciu,
F. Ferri, G. Weichhart, T. Moser, M. Bezzi, and H. Chan, Eds.
- 0.6 newBerlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp.
storage size 457-466.
[7] M. Novak, M. Binas, M. Michalko, and F. Jakab, "Student's
repository size - progress tracking on programming assignments," in 2012 I[EEE
-0.4 10th International Conference on Emerging eLearning
git LFS size- ;;z;ﬁ;;lzogies and Applications (ICETA), November 2012, pp.
o > 3 o 2 o [8] M. Biias, "Version control system in CS1 course: Practical
3 > 3 3 3 = 0.2 experience," in 2013 IEEE 11th International Conference on
B3 R & a Emerging eLearning Technologies and Applications (ICETA),
&2 & October 2013, pp. 23-28.
§ [91 A. Villarrubia and H. Kim, "Building a community system to
~0.0 teach collaborative software development," in 2015 10th
International Conference on Computer Science Education
(ICCSE), July 2015, pp. 829-833.
Figure 10. Correlation matrix of at'tributes of projects using [10] G.C.Diniz, M. A. G. Silva, M. A. Gerosa, and L. Steinmacher,
Pearson correlation. "Using gamification to orient and motivate students to
contribute to oss projects," in 2017 IEEE/ACM 10th
REFERENCES International Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE), May 2017, pp. 36-42.
. . [11] S.Horschig, T.Mattis, and R. Hirschfeld, "Do Java
[1] O.Jarczyk, B.Gruszka, S.Jaroszewicz, L.Bukowski, and programmers write better Python? studying off-language code
A. Wierzbicki, GitHub Projects. Quality Analysis of Open- quality on GitHub," in Conference Companion of the 2nd
Source Software. Cham: Springer International Publishing, International Conference on Art, Science, and Engineering of
2014, pp. 80-94. Programming, ser. Programming’18 Companion. newNew
[2] D.-C.Yan,Z.-W. Wei, X.-P. Han, and B.-H. Wang, "Empirical York, NY, USA: Association for Computing Machinery, 2018,
analysis on the human dynamics of blogging behavior on pp. 127-134.
GitHub," Physica A: Statistical Mechanics —and its [12] P.S. Kochhar and D. Lo, "Revisiting assert use in GitHub
Applications, vol. 465, pp. 775-781, 2017. projects," in The 21st International Conference on Evaluation
[3] D. Oberhaus, "13,000 projects ditched GitHub for GitLab and Assessment in Software Engineering, ser. EASE'17. New
monday morming," Motherboard, 2018, accessed 15 February York, NY, USA: ACM, 2017, pp. 298-307.
2020. [Online]. Available: [13] M. Y. Allaho and W.-C. Lee, "Analyzing the social ties and
https://www.vice.com/en_us/article/ywen8x/13000-projects- structure of contributors in open source software community,"
ditched-GitHub-for-GitLab-monday-morning in The 2013 IEEE/ACM International Conference on Advances
[4] H. Safari, N. Sabri, F. Shahsavan, and B. Bahrak, "An analysis in Social Networks Analysis and Mining, ser. ASONAM '13.
of GitLab's users and projects networks," in 2020 10th newNew York, NY, USA: ACM, 2013, pp. 56-60.
International ~Symposium on Telecommunications (IST). [14] F. Thung, T.F. Bissyandé, D.Lo, and L. Jiang, "Network

newlEEE, 2020, pp. 194-200.
Wikipedia contributors, "Comparison of source code hosting

facilities — Wikipedia, the free encyclopedia," 2018, accessed
17 August 2018. [Online]. Available:

International Journal of Information & Communication Technology Research

structure of social coding in GitHub," in 2013 17th European
Conference on Sofiware Maintenance and Reengineering,
March 2013, pp. 323-326.

http://ijict.itrc.ac.ir/article-1-460-en.html

[Downloaded from ijict.itrc.ac.ir on 2025-11-18]

Volume 12- Number 2 - 2020 (54 -62)

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

J. Jiang, L.Zhang, and L.Li, "Understanding project
dissemination on a social coding site," in 2013 20th Working
Conference on Reverse Engineering (WCRE), October 2013,
pp. 132-141.

C. Hunger, L. Vilanova, C.Papamanthou, Y. Etsion, and
M. Tiwari, "DATS - data containers for web applications," in
The Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems,
ser. ASPLOS '18. New York, NY, USA: ACM, 2018, pp. 722—
736.

R. L. Q. Portugal, J. C. S. do Prado Leite, and E. Almentero,
"Time-constrained requirements elicitation: reusing GitHub
content," in 2015 IEEE Workshop on Just-In-Time
Requirements Engineering (JITRE), August 2015, pp. 5-8.

M. Menichinelli, "A data-driven approach for understanding
open design. mapping social interactions in collaborative
processes on GitHub," The Design Journal, vol. 20, no. supl,
pp. S3643-S3658, 2017.

V. J. Hellendoorn, P. T. Devanbu, and A. Bacchelli, "Will they
like this?: Evaluating code contributions with language
models," in The 12th Working Conference on Mining Sofiware
Repositories, ser. MSR '15. Piscataway, NJ, USA: IEEE Press,
2015, pp. 157-167.

B. Vasilescu, V. Filkov, and A. Serebrenik, "StackOverflow
and GitHub: Associations between software development and
crowdsourced knowledge," in 2013 International Conference
on Social Computing, September 2013, pp. 188-195.

A.S. Badashian, A. Esteki, A.Gholipour, A.Hindle, and
E. Stroulia, "Involvement, contribution and influence in
GitHub and Stack Overflow," in 24th Annual International
Conference on Computer Science and Software Engineering,
ser. CASCON '14. Riverton, NJ, USA: IBM Corp., 2014, pp.
19-33.

B. Vasilescu, D. Posnett, B.Ray, M.G. vanden Brand,
A. Serebrenik, P. Devanbu, and V. Filkov, "Gender and tenure
diversity in GitHub teams," in The 33rd Annual ACM
Conference on Human Factors in Computing Systems, ser. CHI
'15. newNew York, NY, USA: ACM, 2015, pp. 3789-3798.

J. Aué, M. Haisma, K.F. Tomasdottir, and A. Bacchelli,
"Social diversity and growth levels of open source software
projects on GitHub," in The 10th ACM/IEEE International
Symposium on Empirical ~ Sofiware Engineering and
Measurement, ser. ESEM '16. New York, NY, USA: ACM,
2016, pp. 41:1-41:6.

M. M. Rahman and C.K. Roy, "An insight into the pull
requests of GitHub," in The I1Ith Working Conference on
Mining Software Repositories, ser. MSR 2014. newNew York,
NY, USA: ACM, 2014, pp. 364-367.

S. Yu, L. Xu, Y. Zhang, J. Wu, Z. Liao, and Y. Li, "NBSL: A
supervised classification model of pull request in GitHub," in
2018 IEEE International Conference on Communications
(ICC), May 2018, pp. 1-6.

T. F. Bissyand¢, D. Lo, L. Jiang, L. Réveillére, J. Klein, and
Y. L. Traon, "Got issues? who cares about it? a large scale
investigation of issue trackers from GitHub," in 2013 [EEE
24th International Symposium on Software Reliability
Engineering (ISSRE), November 2013, pp. 188-197.

T. Zhang, J. Chen, X. Luo, and T. Li, "Bug reports for desktop
software and mobile apps in GitHub: What's the difference?"
IEEE Software, vol. 36, no. 1, pp. 6371, 2019.

F. Arcelli Fontana and C. Raibulet, "Students' feedback in
using GitHub in a project development for a software
engineering course," in The 2017 ACM Conference on
Innovation and Technology in Computer Science Education,
ser. ITiCSE '17. newNew York, NY, USA: ACM, 2017, pp.
380-380.

J.Longo and T.M. Kelley, "GitHub use in public
administration in canada: Early experience with a new
collaboration tool," Canadian Public Administration, vol. 59,
no. 4, pp. 598-623, 2016.

J. Wang, X.Meng, H.Wang, and H.Sun, "An online
developer profiling tool based on analysis of GitLab
repositories," in CCF Conference on Computer Supported
Cooperative Work and Social Computing. Springer, 2019, pp.
408-417.

International Journal of Information & Communication Technology Research

[31]

[32]

(33]

(34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

vicTR (G

D. Surian, D. Lo, and E. Lim, "Mining collaboration patterns
from a large developer network," in 2010 17th Working
Conference on Reverse Engineering, October 2010, pp. 269—
273.

J. Travers and S. Milgram, "An experimental study of the small
world problem," Sociometry, vol. 32,no0. 4, pp. 425443, 1969.

Y. Hu, S. Wang, Y. Ren, and K.-K. R. Choo, "User influence
analysis for github developer social networks," Expert Systems
with Applications, vol. 108, pp. 108-118, 2018.

G. Docs, "Git large file storage (Ifs)," accessed 2 March 2020.
[Online]. Available: https://docs.gitlab.com/ee/topics/git/1fs/

B. Support, "Git large file storage," accessed 2 March 2020.
[Online]. Available:
https://confluence.atlassian.com/bitbucketserver/git-large-file-
storage-794364846.html

A. A. Hagberg, D. A. Schult, and P.J. Swart, "Exploring
network structure, dynamics, and function using networkx," in
The 7th Python in Science Conference, G.Varoquaux,
T. Vaught, and J. Millman, Eds., Pasadena, CA USA, 2008, pp.
11-15.

M. Bastian, S. Heymann, and M. Jacomy, "Gephi: An open
source software for exploring and manipulating networks," in
International AAAI Conference on Weblogs and Social Media,
2009, pp. 361-362.

J.D. Hunter, "Matplotlib: A 2d graphics environment,"
Computing In Science & Engineering, vol. 9, no. 3, pp. 90-95,
2007.

J. Ellson, E. Gansner, L.Koutsofios, S.C. North, and
G. Woodhull, "Graphviz— open source graph drawing tools,"
in Graph Drawing, P. Mutzel, M. Jiinger, and S. Leipert, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 483—
484.

J. Leskovec and R. Sosi¢, "SNAP: A general-purpose network
analysis and graph-mining library," ACM Trans. Intell. Syst.
Technol., vol. 8, no. 1, Jul. 2016.

Y.Gao and G.Madey, "Network analysis of the
sourceforge.net community," in Open Source Development,
Adoption and Innovation, J. Feller, B. Fitzgerald, W. Scacchi,
and A. Sillitti, Eds. Boston, MA: Springer US, 2007, pp. 187—
200.

A. Lima, L. Rossi, and M. Musolesi, "Coding together at scale:
Github as a collaborative social network," CoRR, vol.
abs/1407.2535, 2014. [Online]. Available:
http://arxiv.org/abs/1407.2535

V.D. Blondel, J.-L. Guillaume, R.Lambiotte, and
E. Lefebvre, "Fast unfolding of communities in large
networks," Journal of Statistical Mechanics: Theory and
Experiment, vol. 2008, no. 10, p. P10008, Oct 2008.

H. Borges, A. C. Hora, and M. T. Valente, "Understanding the
factors that impact the popularity of github repositories,"
CoRR, vol. abs/1606.04984, 2016. [Online]. Available:
http://arxiv.org/abs/1606.04984

F. Tomassetti and M. Torchiano, "An empirical assessment of
polyglot-ism in github," in The 18th International Conference
on Evaluation and Assessment in Software Engineering, ser.
EASE '14. New York, NY, USA: ACM, 2014, pp. 17:1-17:4.
[Online]. Available:
http://doi.acm.org/10.1145/2601248.2601269

C. Casalnuovo, B. Vasilescu, P.Devanbu, and V. Filkov,
"Developer onboarding in github: The role of prior social links
and language experience," in The 2015 10th Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE 2015.
newNew York, NY, USA: ACM, 2015, pp. 817-828. [Online].
Available: http://doi.acm.org/10.1145/2786805.2786854

http://ijict.itrc.ac.ir/article-1-460-en.html

[Downloaded from ijict.itrc.ac.ir on 2025-11-18]

IJICTR

Hadi Safari has received his
Bachelor's degree in Software
Engineering from University of
Tehran in 2019. Currently, he is a
Master's student in Software
Engineering at University of Tehran.
His research interests are Network
Science, Social Network Analysis,
Scientometrics, and Model-Based Software Testing.

Nazanin Sabri is currently pursuing a
Master's degree in Artificial
Intelligence and Robotics from the
University of Tehran, Tehran, Iran.
She received her Bachelor's degree in
Information Technology from The
University of Tehran in 2019.

Faraz Shahsavan is currently a
Research Associate at EPFL of
Lausanne, University of Tehran, and
3 formerly, IPM Institute for Research
‘ in Fundamental Sciences of Tehran,
N and an undergraduate student in

L Computer Engineering at the
University of Tehran. Graduated from Allameh Helli
high school, affiliated with Iran's National
Organization for Development of Exceptional Talents
(NODET). He is intrigued by the field of Computer
Networks and Distributed Systems in general. Some of
his other keen research interests are IoT, SDNs,
Blockchain, Network Security, and the use of Data
Science in Computer Networks.

Behnam Bahrak received his

25 Bachelor's and Master's degrees, both

C’, in Electrical Engineering, from Sharif

: University of Technology, Tehran,

@ Iran, in 2006 and 2008, respectively.

\ / He received the Ph.D. degree from the

-~ mw ‘ Bradley Department of Electrical and

Computer Engineering at Virginia

Tech in 2013. He is currently an Assistant Professor of

Electrical and Computer Engineering at University of
Tehran.

Volume 12- Number 2 - 2020 (54 -62)

International Journal of Information & Communication Technology Research

http://ijict.itrc.ac.ir/article-1-460-en.html
http://www.tcpdf.org

