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Abstract— In order to exploit the advantages of the massive MIMO systems, it is vital to apply the channel estimation
task. The huge number of antennas at the base station of a massive MIMO system produces a large set of channel paths
which requires to be estimated. Therefore, the channel estimation in such systems is more troublesome. In this paper,
we propose to leverage the temporal joint sparsity of the massive MIMO channels to offer a more accurate channel
estimation. To attain this goal, we would model the problem to exploit the spatial correlation among different antennas
of the BS as well as the inter-user similarity of the channel supports. In addition, by assuming a slow time-varying
channel, the supports of the channel matrices of various snapshots would be equal which enables us to impose the
temporal joint sparsity on the channel submatrices. The simulation results validate the efficiency and superiority of the

suggested scheme over its rivals.
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. INTRODUCTION

Massive MIMO systems have attracted a great deal
of attention during recent years due to some outstanding
features such as higher capacity and better
communication gains. Therefore, they are recognized
as a key technology for the next generation of
communication system [1]. To leverage the higher
degrees of freedom provided by the massive MIMO
systems, it is essential to have the channel state
information in the transmitter side (CSIT) [2-4]. In
massive MIMO systems, due to the large number of
antennas in the BS, the traditional channel estimation
schemes would result in large pilot overhead. Thus, we
need to look deeper into the challenge of massive

* Corresponding Author

International Journal of Information & Communication Technology Research

MIMO channel estimation. There are some features in
the massive MIMO systems which can be used to
estimate the channel.

A number of recent works have investigated the
massive MIMO channel estimation in TDD protocol [5]
[6]. In TDD systems, the estimated uplink channel can
be used to estimate the downlink channel owing to the
reciprocity property. In FDD systems, however, there is
no reciprocity and the downlink channel shall be
estimated independently. Hence, massive MIMO
channel estimation in the FDD mode is more
challenging [4].

The conventional channel estimation methods such
as Least square (LS) [7] and minimum mean square
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error (MMSE) [8] are not suitable for the massive
MIMO systems due to the huge number of pilots
required, in other words they will increase the overhead.

To deal with this issue, some special properties of
the massive MIMO channels can be exploited. The
massive MIMO channels can be modeled as sparse or
structured sparse [9-12]. A signal is called sparse if
most of its coefficients are zero in a domain [13].
Sparsity has found various applications in different
fields [14-17]. In [18], the spatial correlation between
various antennas of the BS and a user has been
exploited to model the equivalent channel impulse
response as a block sparse signal. Then, an iterative
support detection scheme has been suggested to
estimate the channels. In [19], the spatial temporal
common sparsity of delay domain massive MIMO
channels have been exploited to estimate the channel
coefficient using a structured subspace pursuit
algorithm. In [20], the individual and distributed joint
sparsity have been leveraged to reduce the required
pilot signals. In [21], joint sparsity of the users has been
exploited to estimate the massive MIMO channel in a
specific time. In [3], joint sparsity of the users in a non-
ideal feedback model has been investigated.

In this paper, we have modeled the massive MIMO
slow-varying channel estimation as a structured sparse
signal recovery problem. The structured sparsity occurs
due to the correlation of the channel paths between
different BS antennas and users as well as the common
support of the channel matrix over several time slots.
The leveraged sparsity pattern which we call tensor
sparsity reduces the pilot overhead to a desirable level
and ameliorates the channel estimation accuracy at the
same time.

In this paper, we propose to exploit the structured
sparsity of the slow-varying massive MIMO channels.
The joint sparsity of the various BS antennas and users
as well as the common-support of the channel matrices
in several consecutive time slots leads to a structured
sparsity pattern which we call tensor sparse. The joint
sparsity of the channels of various users and BS
antennas exists due to the limitted scattereres at the BS
side, especially when the users are close to each other
[20]. Furthermore, the common support of channels of
consecutive time slots is an outcome of the slow-
variation of the channel over time. We have suggested
a tensor sparse recovery algorithm called Tensor
Orthogonal Matching Pursuit (TOMP) to reconstruct
the mentioned structured sparse signal. The suggested
algorithm is a greedy scheme based on support
estimation, support pruning, and residual update. The
support is estimated using the correlation of the
measurements and the sensing matrix. The pruning step
is done based on thresholding. The channel elements
are estimated using the least squares step.

The proposed method has two advantages: The
number of required pilots to achieve a specific channel
estimation error is decreased compared to the
benchmarks. Also, the channel estimation task has been
speeded up since a joint estimation is applied for several
snapshots.

The BS sends pilots to different users. Then, all of
the users feedback their received signal to the BS to
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perform the channel estimation. In practice, the sparsity
level of the channel depends on local scatterers in the
environment. The channel sparsity level (the number of
non-zero coefficients) is usually available as the
preliminary information for the channel estimation [22,
23].

Notations: Uppercase and lowercase boldface
denote the matrices and vectors, respectively. (.)"™ and
()" are conjugate transpose and Moore-Penrose
pseudoinverse. A, denotes the submatrix composed
of the columns of A whose indices belong to the set
Q. I Al indicates the Frobenius norm.

Il.  SYSTEM MODEL

Suppose a massive MIMO system with N,
antennas at the Base Station (BS) and K single
antenna users (N, >> K that use OFDM modulation

at the BS. The received signal at the k" user and t"
time slot can be considered in the frequency domain as:

Y ) :ZXiFLﬁk-i(t)+nk(t) @)

where X, =diag{x,} and X, €[] denotes

the transmitted pilots from the i" antenna and N is
the OFDM symbol length. FL el ™" is a sub-matrix

consisting of the first L columns of the normalized
discrete fourier transform (DFT) matrix of size
N < N

= —1 =2 =L

hii (t) = [hei (), hii (t), - hii (O] 0™ s
the L -tap channel vector between the i antenna of
the BS and the k" user at the t" snapshot.

n, (t) €0 ™ denotes the additive complex Gaussian

noise vector that consists of independent and identically
distributed (i.i.d) entries with zero mean and unit
variance. Rewriting (1) in a matrix form, we have:

Yy (t) = 5Hk (t) +Ny (t) 2
where P =[XF, XpF ... Xo,F] and
hi(t) =[(he2(®)", (he2 ()T, (hin, ()T e M

Due to the fact that there are a limited number of
significant scatterers in the out-door environments, the

delay-domain channel vectors, h_k,(t) , would be

sparse [19]. In other words, only a small number of the
L taps of the channel vector would be non-zero which
makes the channel sparse.

Furthermore, since the inter-antenna space is much
lower compared to the distance between user and BS,
the channels between different antennas of the BS and
a user would have similar sparsity pattern which is
called the spatial correlation of different channels from
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the BS to a user [18]. Therefore, the channels between
different antennas of the BS and a user would have the
same support which can be expressed as:

Q =Q_ = Qﬁmt ® (3)

Pica (t) heat) "0

Where €2 (o indicates for the support(ﬁk,i t)

, i.e the indices of the non-zero channel coefficients.
Moreover, in multi-user massive MIMO systems, a
number of scatterers would be the same for all the users
which causes a common block support between the
channels of different users [20]. In addition, since the
users are located in different places, there will be some
different scatterers in the user-BS paths which causes
the individual block support in the channel vector of
various users. In summary, the supports of different
users would have a common part as well as an
individual part.

In order to exploit the common sparsity pattern of

the channel vectors, we reshape the vector Nk (t) and

the columns of the matrix P so that the similar

channel taps of different hk(t) vectors appear in a

block. Thus, hi (t) can be written as:
h, (t) = reshape(h (t)) =
[he,(0), he, (®)....héy, (0, Rl ()
v hZ @, ), R O

)

The schematic diagram of our reshaping procedure
has been depicted in Figure (1).

After reshaping the channel vector of all users, we
concatenate them in a column-wise manner as:

H, =[h,(®),h,(©),....h (O] ©)

first user secound user

h i=2 E Individual Support E 2N h
12 22
Reshape nm..}o
7 M- e | - r
h’m h’zs
al __Jdhk
hm 24
O 7ero coellic
H common non-zero coefficients
O individ cients of fitst user
\_/ B Individ icats of second nser N/

Figure 1. The schematic diagram of the channel between the BS
antennas and the usersfor N, =4, L =8 and K =2.

The structured sparsity pattern of the channel matrix
h .
at t' snapshot is represented as:
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(% K Kk - K|
: =1

*x *x * - %

0 0 0 0
=2

0 0 0 0

H=|% 0 0 0 ©)

S : =3

* 0 0 - 0

0 0 0 - %
SR : =L

0 0 0 - %

Also, we define P, as:

P :[XlFL(:!I)’XZFL(:’I)l""XNlFL(:II)]
(7
By concatenating the N x N, sub-matrices, P, ,
we obtain the matrix P as:

P=[P,P,,....,P.] (8
As a result, the received matrix at the t" snapshot
in the BS can be written as:

Y, =PH,+N, (9

where Y=y (®),y,(®),....y, (V)] and
N, =[n,(t),n,(t),....n, ()]

By concatenating the T consecutive time slots of
the received signals, we will have:

Y1) =Y, (10)

where Y €[] VT is the received tensor. N, K

,and T are the length, width, and depth of the tensor,
respectively.

T shall be less than or equal to the channel
coherence time. Since the channel has slow variation
over time, the channel sparsity pattern would not
change considerably during T consecutive snapshots.
In other words, the path delays vary much slower than
the path gains due to the temporal channel correlation,
so the channel support is almost unchanged during the
coherence time [24]. The concatenated channel matrix
can be constructed in a similar way as:

H(,:,t)=H, (11)

N, LK xT
where H €[] "%

Hence, the channel model is presented in
consecutive time slots as a tensor with non-zero 3D
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blocks for joint support between users and 2D blocks
for each user's individual support in sequential time
slots.

The following shows a schematic of the channel
tensor.

0
: 0
* Kk kT K :
0
00 0 0 =l o
00 0 0 I

Ill.  THE PROPOSED CHANNEL ESTIMATION
TECHNIQE
In this section, we illustrate the proposed method to
recover the tensor sparse signal for MIMO channel

estimation. The aim is to recover the tensor H(t) from

the received matrix Y(t) over T time slots. The

suggested scheme is a greedy tensor sparse recovery
technique which we call tensor orthogonal matching
pursuit (TOMP).

At the first step, the algorithm estimates the
common support between the users. The next step is to
obtain the individual supports of the various users
channel. At the last step, the channel matrix elements
are recovered from the estimated support and the
received matrices using the least squares technique. The
details of the proposed TOMP algorithm has been given
in Algorithm 1.

It should be noted that in this algorithm, Q°
represents common support of the users.

represents individual support of the k™ user. The

operator |jew has value 1 if j belongs to the set @
and is zero otherwise.
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Algorithm 1 The proposed TOMP method

=R R Y A s e

: input:

: The received tensor at the BS: ).
: The pilot matrix: P.

: The individual support size: S;.

: The common support size: S..

: The number of time slots: 7.

: The predefined threshold value: 7.
: output: N
: The estimated channel tensor: H.
: procedure The proposed method

H<+0
Common Support Identification:
Q° 0.
R; — Yl
for i=1:5, do
a+0
a(l) « L, R PYp, Vi
e « sort|a, descend)
d e[l :2x (5. —1)]
dy « {j:7€d. ST |RE(k)Pyllp 2T x n} Vk
Qf« Q°U {”7'97””‘5Z;{‘:ll{;,e,j;}
Rr — R; - (PUVPLt‘Rl)-Vl
end for
Individual Support Identification:
for k=1:K do
ry + Ry(:, k)
Q. =0,b«0
for j=1:5; do
b(l) « L4 e/ P, ¥,
Qp + Qy Uargmax(b)
ry < Iy — (PSEiPL;)r(

32: end for

33: Q, + [Q°,QF]

34 for t=1:7 do

3s: z «— V(i k.t)

36: Ho, (k. t) « P}, 2
37 end for

38: end for

39: end procedure

The algorithm consists of two parts: In the first part,
the common support of the users is estimated. At the
second part, the individual supports of the users are
estimated. In Lines 17-19, the candidate support values
have been detected based on the correlation of the
residual and sensing matrices. In Line 20, the support
pruning is conducted using a thresholding operator. The
common support element is identified in Line 21 using
the maximum number of occurrences among all the
users. In Line 22, the effect of the identified common
support element has been removed from the residual
matrix to produce an updated residual matrix. After
estimating the common support, the individual support
elements have been detected. For each of the users, the
correlation of the residual vector and the pilot matrix is
calculated (Line 29). The corresponding element of the
maximum correlation is selected as the individual
support element of the user (Line 30). The effect of the
chosen support element has been removed from the
residual vector (Line 31). After estimating both the
common support and individual supports, the channel
matrix is estimated based on the least squares technique
(Line 36).

IV. SIMULATION RESULTS

In this section, the simulation results are reported.
We consider a single-cell massive MIMO system with
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N, =16 antennas at BS and K =8 single-antenna

users. The channel vectors are assumed to have
L =16 tapsand T time slots. The thresholding value
of the proposed TOMP algorithm has been set to

1 = 21.4 . The non-zero channel locations are selected

uniformly at random. The pilot signals are random
values generated from the standard normal distribution.
The proposed method is compared with three related
schemes (OMP [25, 26], Joint OMP [20], and Block
ISD [18]) as benchmarks in different scenarios. In
addition, the Exact least squares (LS) algorithm has
been simulated as the lower bound of channel
estimation error. In the Exact LS algorithm, it is
assumed that the BS has the prior knowledge of the
channel supports and estimates the channel vectors by
least squares technique.

The normalized mean square error (NMSE) has
been considered as the performance measure which is
defined as:

IH-HI?2
TR

The simulations have been repeated for 10 times
and the average NMSE has been reported in different
experiments.

NMSE = (12)

At the first scenario, we examine the effect of the
number of time slots on the accuracy of channel
estimation using the proposed algorithm. Figure 2
shows the average NMSE curves versus the number of
time slots (T ). In this simulation, the value of SNR is
12dB , the number of pilots is N =100 , the

common support size is S, =3 and the size of
individual supportis S; =1 for each of the users.

Al —e—TOMP |

NMSE

10-2 L L I
1 2 3 4 5
Number of time slots

Figure2. NMsefor S, =3, S; =1, SNR =12dB and
N =100 versus T .
As expected, as the time passes, the error decreases.

Because larger number of time slots leads to higher
accuracy in detecting non-zero blocks.

In the next simulation, we investigate the
performances of methods for various SNR values
ranging from 2dB to 20dB . Figure 3 shows the
average NMSE curves versus SNR. In this simulation,
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the number of pilots is N =90, the number of time
slots is T =10, the common support size is set to

S, = 2, and the size of individual supportis S; =1.

TOMP

BISD
—4&— OMP

JOMP
Semid Exact LS |

NMSE
/

~.
~..
~

Figure 3. NMSE Comparison of the methods for S, = 2,
S; =1, N =90 and T =10 versus SNR.

According to this figure, we see that the channel
estimation error of the methods decreases with the SNR
value. Moreover, the suggested TOMP method
outperforms the other methods and its average NMSE
curve coincides with that of the exact LS scheme which
has been selected as a performance bound. This
indicates that all non-zero blocks have been correctly
detected and the support estimation is perfect.

In the third simulation, we study the performances
of algorithms in the case of changing the number of
pilots. The average NMSE curves of the methods have
been depicted versus the number of pilots in Figure 4.

We have considered S, =2, S; =1, T =10 and
SNR =12dB.

TOMP

BISD
—&— OMP

JOMP
Exact LS

NMSE

number of pilot

Figure 4. Comparison of the methods for S_ =2, S, =1,
T =10 and SNR =12dB for different number of pilots.

By increasing the number of pilots, the channel
estimation error of all the methods is reduced. This
decreasing trend is more outstanding for the TOMP
method compared to the others. The proposed method
outperforms its counterparts. It achieves lower NMSE
with lower number of pilots.
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It should be noted that the number of pilots required
for the reliable estimation of the conventional methods

is N,L =16x16 = 256 [18] which is much more
than that of the sparsity-based schemes.

In another experiment, we investigate the effect of
the common support size, S, , in the estimation
accuracy of the methods. To this end, we depict the
average NMSE of the methods versus S_ ranging from
1 to 4 in Figure 5. We have considered
SNR=12dB, N=90, T =5 and S, =1 for
this simulation.

NMSE
\,

- TOMP
~ BISD
-1 e —&—omp
10 P
- JomMP
P —-=-=--Exact LS

Sc

Figure 5. Average NMSE versus common support size, SC , for

SNR=12dB, N =90, T =5d S, =1.

According to this figure, we observe that the
estimation error of the methods increases with the
common support size. This increasing trend is due to
the fact that for larger values of S_, the channel sparsity

is reduced (the channel becomes denser). Therefore, the
performance of the  sparsity-based  schemes
deteriorates. Furthermore, owing to the usage of tensor
sparsity property of the channel in the proposed
algorithm, this scheme still works better than the other
methods and coincides with the exact LS method.

In the last scenario, we study the effect of the
individual support size, S;. The average NMSE curves

of the methods versus different values of S, have been

shown in Figure 6. In this test, we have set
SNR=12dB, N =90, T=5and S, =1.

Volume 13- Number 1 — 2021 (25 -31)

NMSE
S

Figure 6. Comparison of the methods for SNR =12dB,
N =90, S, =1 and different values of S;.

The results of this figure also validates that the
suggested method has better performance. In addition,
similar to the previous figure, increasing the support
size deteriorates the estimation accuracy of all of the
methods.

As a general conclusion, the performance of the
proposed method in all of the simulated scenarios is
much better than those of the benchmarks and coincides
with the exact LS algorithm. It should be emphasized
that the exact LS algorithm has the ideal prior
information of the channel support. Therefore, this
indicates that the proposed method has achieved
accurate channel support estimation. This advantage is
due to the fact that the proposed method exploits the
tensor sparsity property which leads to high accuracy in
channel estimation.

V. CONCLUSION

This paper considers the challenge of channel
estimation in slow- varying massive MIMO systems. At
first, the channel of the consecutive time slots has been
modeled as a tensor with a few non-zero 3D blocks
which we called tensor sparsity pattern. In the next
step, a tensor sparse recovery algorithm called TOMP
has been proposed to estimate the channel. The
simulation results have confirmed the outperformance
of the suggested TOMP scheme in comparison with its
rivals.
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