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Abstract— In order to exploit the advantages of the massive MIMO systems, it is vital to apply the channel estimation 

task. The huge number of antennas at the base station of a massive MIMO system produces a large set of channel paths 

which requires to be estimated. Therefore, the channel estimation in such systems is more troublesome. In this paper, 

we propose to leverage the temporal joint sparsity of the massive MIMO channels to offer a more accurate channel 

estimation. To attain this goal, we would model the problem to exploit the spatial correlation among different antennas 

of the BS as well as the inter-user similarity of the channel supports.  In addition, by assuming a slow time-varying 

channel, the supports of the channel matrices of various snapshots would be equal which enables us to impose the 

temporal joint sparsity on the channel submatrices. The simulation results validate the efficiency and superiority of the 

suggested scheme over its rivals.  

Keywords- Massive MIMO; Channel estimation; Sparisity; Joint sparsity. 

 

 

I. INTRODUCTION 

Massive MIMO systems have attracted a great deal 
of attention during recent years due to some outstanding 
features such as higher capacity and better 
communication gains. Therefore, they are recognized 
as a key technology for the next generation of 
communication system [1]. To leverage the higher 
degrees of freedom provided by the massive MIMO 
systems, it is essential to have the channel state 
information in the transmitter side (CSIT) [2-4]. In 
massive MIMO systems, due to the large number of 
antennas in the BS, the traditional channel estimation 
schemes would result in large pilot overhead. Thus, we 
need to look deeper into the challenge of massive 
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MIMO channel estimation. There are some features in 
the massive MIMO systems which can be used to 
estimate the channel. 

A number of recent works have investigated the 
massive MIMO channel estimation in TDD protocol [5] 
[6]. In TDD systems, the estimated uplink channel can 
be used to estimate the downlink channel owing to the 
reciprocity property. In FDD systems, however, there is 
no reciprocity and the downlink channel shall be 
estimated independently. Hence, massive MIMO 
channel estimation in the FDD mode is more 
challenging [4]. 

The conventional channel estimation methods such 
as Least square (LS) [7] and minimum mean square 
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error (MMSE) [8] are not suitable for the massive 
MIMO systems due to the huge number of pilots 
required, in other words they will increase the overhead. 

To deal with this issue, some special properties of 
the massive MIMO channels can be exploited. The 
massive MIMO channels can be modeled as sparse or 
structured sparse [9-12]. A signal is called sparse if 
most of its coefficients are zero in a domain [13]. 
Sparsity has found various applications in different 
fields [14-17]. In [18], the spatial correlation between 
various antennas of the BS and a user has been 
exploited to model the equivalent channel impulse 
response as a block sparse signal. Then, an iterative 
support detection scheme has been suggested to 
estimate the channels. In [19], the spatial temporal 
common sparsity of delay domain massive MIMO 
channels have been exploited to estimate the channel 
coefficient using a structured subspace pursuit 
algorithm. In [20], the individual and distributed joint 
sparsity have been leveraged to reduce the required 
pilot signals. In [21], joint sparsity of the users has been 
exploited to estimate the massive MIMO channel in a 
specific time. In [3], joint sparsity of the users in a non-
ideal feedback model has been investigated. 

In this paper, we have modeled the massive MIMO 
slow-varying channel estimation as a structured sparse 
signal recovery problem. The structured sparsity occurs 
due to the correlation of the channel paths between 
different BS antennas and users as well as the common 
support of the channel matrix over several time slots.  
The leveraged sparsity pattern which we call tensor 
sparsity reduces the pilot overhead to a desirable level 
and ameliorates the channel estimation accuracy at the 
same time. 

In this paper, we propose to exploit the structured 
sparsity of the slow-varying massive MIMO channels. 
The joint sparsity of the various BS antennas and users 
as well as the common-support of the channel matrices 
in several consecutive time slots leads to a structured 
sparsity pattern which we call tensor sparse. The joint 
sparsity of the channels of various users and BS 
antennas exists due to the limitted scattereres at the BS 
side, especially when the users are close to each other 
[20].  Furthermore, the common support of channels of 
consecutive time slots is an outcome of the slow-
variation of the channel over time.  We have suggested 
a tensor sparse recovery algorithm called Tensor 
Orthogonal Matching Pursuit (TOMP) to reconstruct  
the mentioned structured sparse signal. The suggested 
algorithm is a greedy scheme based on support 
estimation, support pruning, and residual update. The 
support is estimated using the correlation of the 
measurements and the sensing matrix. The pruning step 
is done based on thresholding. The channel elements 
are estimated using the least squares step.  

The proposed method has two advantages: The 
number of required pilots to achieve a specific channel 
estimation error is decreased compared to the 
benchmarks. Also, the channel estimation task has been 
speeded up since a joint estimation is applied for several 
snapshots. 

The BS sends pilots to different users.  Then, all of 
the users feedback their received signal to the BS to 

perform the channel estimation. In practice, the sparsity 
level of the channel depends on local scatterers in the 
environment. The channel sparsity level (the number of 
non-zero coefficients) is usually available as the 
preliminary information for the channel estimation [22, 
23]. 

Notations: Uppercase and lowercase boldface 

denote the matrices and vectors, respectively. (.)H
 and 

†(.)  are conjugate transpose and Moore-Penrose 

pseudoinverse. 
A denotes the submatrix composed 

of the columns of A  whose indices belong to the set 

 .  FA‖ ‖  indicates the Frobenius norm. 

II. SYSTEM MODEL 

Suppose a massive MIMO system with 
tN  

antennas at the Base Station (BS) and K  single 

antenna users ( )tN K  that use OFDM modulation 

at the BS. The received signal at the 
thk  user and 

tht  

time slot can be considered in the frequency domain as: 

,

1

( ) ( ) ( )
tN

k ik i L k

i

t t t
=

= +y X F h n                    (1) 

where { }i idiag=X x and 
1N

i

x  denotes 

the transmitted pilots from the 
thi  antenna and N  is 

the OFDM symbol length. 
N L

L

F  is a sub-matrix 

consisting of the first L  columns of the normalized 
discrete fourier transform (DFT) matrix of size 

N N . 
1 2

1
, , , ,( ) [ ( ), ( ), , ( )]

L T L
k i k i k i k it h t h t h t = h  is 

the L -tap channel vector between the 
thi antenna of 

the BS and the 
thk user at the 

tht  snapshot. 
1( ) N

k t n  denotes the additive complex Gaussian 

noise vector that consists of independent and identically 
distributed (i.i.d) entries with zero mean and unit 
variance. Rewriting (1) in a matrix form, we have: 

( ) ( ) ( )kk kt t t= +y Ph n  (2) 

where (1) (2) ( )[ , , , ]
tL L L=  NP X F X F X F and 

1
,1 ,2 ,( ) [( ( ) ,( ( )) , ,( ( )) ] t

t

N LT T T T
k k k k Nt t t t


=  h h h h  

Due to the fact that there are a limited number of 
significant scatterers in the out-door environments, the 

delay-domain channel vectors, , ( )k i th , would be 

sparse [19]. In other words, only a small number of the 

L  taps of the channel vector would be non-zero which 
makes the channel sparse. 

Furthermore, since the inter-antenna space is much 
lower compared to the distance between user and BS, 
the channels between different antennas of the BS and 
a user would have similar sparsity pattern which is 
called the spatial correlation of different channels from 
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the BS to a user [18]. Therefore, the channels between 
different antennas of the BS and a user would have the 
same support which can be expressed as: 

,1 ,2 ,( ) ( ) ( )k k k Ntt t t
= ==

h h h
Ω Ω Ω  (3) 

Where 
, ( )k i th

Ω indicates for the ,( ( ))k isupport th

, i.e the indices of the non-zero channel coefficients. 
Moreover, in multi-user massive MIMO systems, a 
number of scatterers would be the same for all the users 
which causes a common block support between the 
channels of different users [20]. In addition, since the 
users are located in different places, there will be some 
different scatterers in the user-BS paths which causes 
the individual block support in the channel vector of 
various users. In summary, the supports of different 
users would have a common part as well as an 
individual part. 

In order to exploit the common sparsity pattern of 

the channel vectors, we reshape the vector ( )k th  and 

the columns of the matrix P  so that the similar 

channel taps of different ( )k th  vectors appear in a 

block. Thus, ( )k th  can be written as: 

1 1 1 2

,1 ,2 , ,1

2

, ,1 ,

( ) ( ( ))

[ ( ), ( ) , ( ), ( )

, , ( ), , ( ), , ( )]

t

t t

kk

k k k N k

L L T

k N k k N

t reshape t

h t h t h t h t

h t h t h t

= =



  

h h

 (4) 

The schematic diagram of our reshaping procedure 
has been depicted in Figure (1). 

After reshaping the channel vector of all users, we 
concatenate them in a column-wise manner as: 

1 2[ ( ), ( ), , ( )]t Kt t t= H h h h  (5) 

 

Figure 1.  The schematic diagram of the channel between the BS 

antennas and the users for 4tN = , 8L =  and 2K = . 

The structured sparsity pattern of the channel matrix 

at 
tht  snapshot is represented as:  

l=1

0 0 0 0

l=2

0 0 0 0

0 0 0

l=3

0 0 0

0 0 0

l=L

0 0 0

t

 
  

  
  
 

  
  
  

 
 = 
  
  
  

 
 
 

 
 
 
  

H

★ ★ ★ ★

★ ★ ★ ★

★

★

★

★

 (6) 

Also, we define 
lP as: 

1 2[ (:, ), (:, ), , (:, )]
tl L L N Ll l l= P X F X F X F

(7) 

By concatenating the 
tN N  sub-matrices, 

lP , 

we obtain the matrix P  as: 

1 2[ , , , ]L= P P P P  (8) 

As a result, the received matrix at the 
tht snapshot 

in the BS can be written as: 

t t t= +Y PH N  (9) 

where
1 2[ ( ), ( ), , ( )]t kt t t= Y y y y and 

1 2[ ( ), ( ), , ( )]t kt t t= N n n n  

By concatenating the  T  consecutive time slots of 
the received signals, we will have: 

(:,:, ) tt = YY  (10) 

where 
N K T Y  is the received tensor. N , K

, and T  are the length, width, and depth  of the tensor, 
respectively.   

T shall be less than or equal to the channel 
coherence time. Since the channel has slow variation 
over time, the channel sparsity pattern would not 

change considerably during  T  consecutive snapshots. 
In other words, the path delays vary much slower than 
the path gains due to the temporal channel correlation, 
so the channel support is almost unchanged during the 
coherence time [24]. The concatenated channel matrix 
can be constructed in a similar way as: 

(:,:, ) tt = HH  (11) 

where lN L K T 
H . 

Hence, the channel model is presented in 
consecutive time slots as a tensor with non-zero 3D 
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blocks for joint support between users and 2D blocks 
for each user's individual support in sequential time 
slots. 

The following shows a schematic of the channel 
tensor. 

 

 

III. THE PROPOSED CHANNEL ESTIMATION 

TECHNIQE 

In this section, we illustrate the proposed method to 
recover the tensor sparse signal for MIMO channel 

estimation. The aim is to recover the tensor ( )H t  from 

the received matrix ( )Y t  over T  time slots. The 

suggested scheme is a greedy tensor sparse recovery 
technique which we call tensor orthogonal matching 
pursuit (TOMP). 

At the first step, the algorithm estimates the 
common support between the users. The next step is to 
obtain the individual supports of the various users 
channel. At the last step, the channel matrix elements 
are recovered from the estimated support and the 
received matrices using the least squares technique. The 
details of the proposed TOMP algorithm has been given 
in Algorithm 1. 

It should be noted that in this algorithm, 
c  

represents common support of the users. 
i

k  

represents individual support of the 
thk  user. The 

operator jI   has value 1  if j  belongs to the set   

and is zero otherwise. 

 

The algorithm consists of two parts: In the first part, 
the common support of the users is estimated. At the 
second part, the individual supports of the users are 
estimated. In Lines 17-19, the candidate support values 
have been detected based on the correlation of the 
residual and sensing matrices. In Line 20, the support 
pruning is conducted using a thresholding operator. The 
common support element is identified in Line 21 using 
the maximum number of occurrences among all the 
users. In Line 22, the effect of the identified common 
support element has been removed from the residual 
matrix to produce an updated residual matrix. After 
estimating the common support, the individual support 
elements have been detected. For each of the users, the 
correlation of the residual vector and the pilot matrix is 
calculated (Line 29). The corresponding element of the 
maximum correlation is selected as the individual 
support element of the user (Line 30). The effect of the 
chosen support element has been removed from the 
residual vector (Line 31). After estimating both the 
common support and individual supports, the channel 
matrix is estimated based on the least squares technique 
(Line 36). 

IV. SIMULATION RESULTS 

In this section, the simulation results are reported. 
We consider a single-cell massive MIMO system with  
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16tN = antennas at BS and 8K =  single-antenna 

users. The channel vectors are assumed to have 

16L =  taps and T  time slots. The thresholding value 

of the proposed TOMP algorithm has been set to 

21.4 = . The non-zero channel locations are selected 

uniformly at random. The pilot signals are random 
values generated from the standard normal distribution. 
The proposed method is compared with three related 
schemes (OMP [25, 26], Joint OMP [20], and  Block 
ISD [18]) as benchmarks in different scenarios. In 
addition, the Exact least squares (LS) algorithm has 
been simulated as the lower bound of channel 
estimation error. In the Exact LS algorithm, it is 
assumed that the BS has the prior knowledge of the 
channel supports and estimates the channel vectors by 
least squares technique. 

The normalized mean square error (NMSE) has 
been considered as the performance measure which is 
defined as:  

2

2

F

F

NMSE
−

=
H H

H

‖ ‖

‖ ‖
 (12) 

The simulations have been repeated for 10 times 
and the average NMSE has been reported in different 
experiments. 

At the first scenario, we examine the effect of the 
number of time slots on the accuracy of channel 
estimation using the proposed algorithm. Figure 2 
shows the average NMSE curves versus the number of 

time slots (T ). In this simulation, the value of SNR is 

12dB , the number of pilots is 100N =  , the 

common support size is 3cS =  and the size of 

individual support is 1iS =  for each of the users. 

 

Figure 2.  NMSE for 3cS = , 1iS = , 12SNR dB=  and 

100N =  versus T . 

As expected, as the time passes, the error decreases. 
Because larger number of time slots leads to higher 
accuracy in detecting non-zero blocks. 

In the next simulation, we investigate the 
performances of methods for various SNR values 
ranging from 2dB  to 20dB . Figure 3 shows the 

average NMSE curves versus SNR. In this simulation, 

the number of pilots is 90N = , the number of time 

slots is 10T = , the common support size is set to 

2cS = , and the size of individual support is 1iS = . 

 

Figure 3.  NMSE Comparison of the methods for 2cS = , 

1iS = , 90N =  and 10T =  versus SNR. 

According to this figure, we see that the channel 
estimation error of the methods decreases with the SNR 
value. Moreover, the suggested TOMP method 
outperforms the other methods and its average NMSE 
curve coincides with that of the exact LS scheme which 
has been selected as a performance bound. This 
indicates that all non-zero blocks have been correctly 
detected and the support estimation is perfect. 

In the third simulation, we study the performances 
of algorithms in the case of changing the number of 
pilots. The average NMSE curves of the methods have 
been depicted versus the number of pilots in Figure 4. 

We have considered 2cS = , 1iS = , 10T =  and 

12SNR dB= . 

 

Figure 4.  Comparison of the methods for 2cS = , 1iS = , 

10T =  and 12SNR dB=  for different number of pilots. 

By increasing the number of pilots, the channel 
estimation error of all the methods is reduced. This 
decreasing trend is more outstanding for the TOMP 
method compared to the others. The proposed method 
outperforms its counterparts.  It achieves lower NMSE 
with lower number of pilots. 
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It should be noted that the number of pilots required 
for the reliable estimation of the conventional methods 

is 16 16 256tN L =  =  [18] which is much more 

than that of the sparsity-based schemes. 

In another experiment, we investigate the effect of 

the common support size, 
cS , in the estimation 

accuracy of the methods. To this end, we depict the 

average NMSE of the methods versus 
cS  ranging from 

1  to 4  in Figure 5. We have considered 

12SNR dB= , 90N = , 5T =  and 1iS =  for 

this simulation. 

 

Figure 5.  Average NMSE versus common support size, 
cS , for 

12SNR dB= , 90N = , 5T =  and 1iS = . 

According to this figure, we observe that the 
estimation error of the methods increases with the 
common support size. This increasing trend is due to 

the fact that for larger values of 
cS , the channel sparsity 

is reduced (the channel becomes denser). Therefore, the 
performance of the sparsity-based schemes 
deteriorates. Furthermore, owing to the usage of tensor 
sparsity property of the channel in the proposed 
algorithm, this scheme still works better than the other 
methods and coincides with the exact LS method. 

In the last scenario, we study the effect of the 

individual support size, 
iS . The average NMSE curves 

of the methods versus different values of 
iS  have been 

shown in Figure 6. In this test, we have set 

12SNR dB= ,  90N = , 5T =  and 1cS = . 

 

Figure 6.  Comparison of the methods for 12SNR dB= , 

90N = , 1cS =  and different values of 
iS . 

The results of this figure also validates that the 
suggested method has better performance. In addition, 
similar to the previous figure, increasing the support 
size deteriorates the estimation accuracy of all of the 
methods. 

As a general conclusion, the performance of the 
proposed method in all of the simulated scenarios is 
much better than those of the benchmarks and coincides 
with the exact LS algorithm. It should be emphasized 
that the exact LS algorithm has the ideal prior 
information of the channel support.  Therefore, this 
indicates that the proposed method has achieved 
accurate channel support estimation. This advantage is 
due to the fact that the proposed method exploits the 
tensor sparsity property which leads to high accuracy in 
channel estimation. 

 

V. CONCLUSION 

This paper considers the challenge of channel 
estimation in slow- varying massive MIMO systems. At 
first, the channel of the consecutive time slots has been 
modeled as a tensor with a few non-zero 3D blocks 
which we called tensor sparsity pattern.  In the next 
step, a tensor sparse recovery algorithm called TOMP 
has been proposed to estimate the channel. The 
simulation results have confirmed the outperformance 
of the suggested TOMP scheme in comparison with its 
rivals. 
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