IJICTR

International Journal of Information &

Communication Technology Research Volume 13- Number 4 - 2021 (43 -52)

Optimum Group Pixel Matching Strategies for
Image Steganography

Alireza Shahanaghi*! Mohammad Ali Akhaee? Saeed Sarreshtedari! Ramin Toosi*
1 School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
emails: {a.shahanaghi@ut.ac.ir, akhaee@ut.ac.ir, s.sarreshtedari@ut.ac.ir, r.toosi@ut.ac.ir}

Received: 7 August 2021 - Accepted: 3 October 2021

Abstract— LSB matching techniques are widely applied in the field of image steganography. In such algorithms, pixel
values of each group must be changed in a way that a predefined function of the pixel group matches the secret digit.
The notational system of the secret digits can be every desired number, as well as the size of the pixel groups. In order
to preserve the quality of the stego image, it is desired to limit the changes in the pixel groups as much as possible.
Therefore, optimum strategies must be found to match the function of the pixel group to the secret digit with the least
possible imposed distortion in terms of mean square error. Having been recently found for pixel pairs, such strategies
are found for the larger pixel groups by the proposed method in this paper. Among all the strategies providing the
similar minimum MSE value, the one is chosen that helps to preserve the histogram of the original image. Optimum
strategies found for all notational systems and pixel group sizes makes the algorithm flexible for various application
with different payloads, while it improves the similar techniques in terms of both MSE reduction and histogram
preservation, as is confirmed by the experimental results.
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The simplest algorithm in this category is LSB
. INTRODUCTION

replacement in which the secret bit replaces the LSB of
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Steganography is the art of communicating a secret
message by concealing it into a seemingly normal
signal without raising any suspect [1], [2]. Due to ease
of access and manipulation, digital images have
attracted more interests among all potential carriers. In
steganography terminology, a digital image is known as
cover image and stego image before and after data
embedding respectively. A main category of image
steganography tries to embed the secret message by
manipulating the least significant bit(s) (LSB) of the
cover image.
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the pixel value. LSB replacement results in the pair of
values (PoV) defect in the histogram of the stego image
where the histogram appears in a pairwise format [3]
LSB matching (LSBM) steganography is proposed to
overcome the PoV issue by randomly increasing or
decreasing the pixel value by one if necessary. Later on,
steganalysis techniques were developed by another
defect in the histogram of the characteristic function
(HCF) caused by LSB matching [4], [5]. Recent
steganalysis techniques work on a large set of features
extracted from the image rather than focusing on
specific features or steganographic algorithms [6]-[9].
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The basis of all steganalysis techniques is to detect
the distortion imposed to the original image using
features that efficiently capture it [10], [11]. Therefore,
steganographic algorithms aim at imposing less
distortion to the original image according to different
criteria, without sacrificing the embedding capacity
[12]. For instance, in LSBM every pixel changes with
the probability of one half in capacity of one bit per
pixel. LSB matching revisited (LSBMR) technique
decreases the probability of change per pixel (PCPP) to
0.375 keeping the same embedding capacity [13]. For
this sake, LSBMR functions on the pixel pairs rather
than individuals. The LSB of the first pixel carries the
first secret bit, while a function of both pixels carries
the second bit. In this way, pixels remain more intact
and the total embedding distortion decreases. This
probability is further decreased to one-third, with a
scheme working on a group of three pixels [14]. In this
scheme, three secret bits are carried by three similar
functions of three possible pixel pairs. Li et. al. show
that the probability of change per pixel for LSB
matching criteria (embedding a capacity of one bit per
pixel while pixels change by one or remain unchanged)
finds its lowest boundary of about 0.22 in hypothetical
case of working on the groups of asymptotically infinite
pixels [15].

There have been other efforts as well to reduce the
distortion according to other criteria [16]. For example,
the histogram of pixel values can be used as a
steganalysis feature [4]. In LSB substitution compatible
steganography (LSCS), the increasing/decreasing
randomness of LSBM is exploited to keep the
histogram of the original image as intact as possible
[17]. The one-third probability embedding is also
modified to keep the histogram of the original image as
intact as possible, in addition to keeping the previous
feature of lowering the PCPP to one-third [18]. The
capacity of some other algorithms varies over the entire
image to conceal more bits in edges or textured regions
of the image [19]-[21]. Since the human visual system
(HVS) is less sensitive to the modifications in such area,
these algorithms reduce the visual distortion according
to HVS, while keeping the same embedding capacity.

There exist arbitrary cases of modification both in
LSBM and LSBMR. While the above-mentioned
schemes exploit this randomness to keep the histogram
intact, exploiting modification direction (EMD) scheme
employs all modification cases for data embedding
[22]. Consider a pair of pixels, where there are a total
number of five cases for changing one of them by one
or keeping them all unchanged. Therefore, a digit in 5-
ary notation (0 to 4) can be embedded in this pair,
resulting in a capacity of log,(5) /2 bit per pixel
(bpp). It can be easily shown that the capacity of EMD
decreases by increasing the size of pixel group. Several
algorithms have been proposed to improve EMD in
terms of its capacity or total distortion. For instance,
diamond encoding (DE) method increases the capacity
of pairwise EMD by allowing the total change of pixel
pair up to a certain value [23]. Leng et. al. improved the
EMD security employing mapping matrix [24].
Exploiting HashedWeightage Array improves EMD
using dynamic weightage array in terms of payload and
security (EEMDHW) [25]. By reformulation the
original EMD embedding algorithm, Ke et. al.,
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introduce parallel EMD, which improves the
embedding efficiency and security [26]. In advanced
EMD (AEMD) edge masking characteristics of human
visual system is exploited to increase the embedding
capacity [27]. Adaptive pixel per matching (APPM)
method [28] shows that the changes offered by DE are
not optimum in terms of mean square error (MSE)
distortion imposed to the original image. Moreover, in
DE embedding, the secret information can be
embedded only using certain notational systems in form
of B = 2k? + 2k + 1for all positive integer values of
k. Therefore, APPM offers optimum modification
strategies for embedding digits for all B-ary notational
systems in pixel pairs.

Although APPM offers the embedding strategies for
all B-ary notational system, its functionality is limited
only to pixel pairs. In this paper, we propose an adaptive
pixel triple matching (APTM) method that offers the
best modification strategies on pixel triples for every
desired notational system. We also show that the
original APPM algorithm can be extended to enjoy
additional capabilities of histogram preserving. We call
this new version of APPM as histogram preserving
APPM (HP-APPM), and extend the similar idea to the
proposed APTM algorithm to develop the histogram
preserving APTM (HP-APTM). Finally, we present the
general concept of adaptive pixel group matching
(APGM) and similarly its histogram preserving version
(HP-APGM). As a result, this paper provides all
optimal strategies for embedding information in all B-
ary notational systems functioning on every desired size
of pixel groups. The results show that extending the
pixel group size helps to reduce the MSE distortion. On
the other hand, more equivalent optimum embedding
strategies are available for larger pixel groups that their
combination helps to preserve the histogram as much as
possible. Moreover, all B-ary notational systems are
available for all pixel groups that means the extreme
payload flexibility of the proposed method.

Il.  ADAPTIVE PIXEL PAIR MATCHING

Functioning on the pixel pairs, adaptive pixel pair
matching (APPM) is introduced to embed the payloads
more than one bit per pixel efficiently in terms of mean
square error (MSE) between the cover and stego image.
The original pixel pair (x,y) is considered as a
coordinate. Digit sz in B-ary notational system is
embedded in this pixel pair by modifying it into a
(x',y") coordinate within a predefined neighborhood
@(x,y) such that f(x',y") =sg. In this design, f
stands for the predefined extraction function in the form
of f(x,y) = (x + cg X y) mod B and cg is a digit in
the range of 0 to B-1.

Every neighborhood ®(x,y) consists of B
coordinates (x;,y;),i =0, ..., B — 1, where

Vsp e {0.1,....B—1}3(ze, 1) € Bz, y) f (21, 15) =35,
i=0,1,...,B—-1 (1)

assuming f(x;,y;) = (x; + cg X y;) mod B = sg
for a certain i, we will have f(x; — mB,y; — kB) =
f(x;,¥;) = sg; m, k € Z that means the neighborhood
d(x, y) is not unique. Here we look for a neighborhood
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that minimizes distortion imposed to the original image
in terms of MSE, defined as:

B-1
1
MSEg(,,y) = 3B E ({:r:, - 3:)2 + (y: — -'_:,1)2)
i=0

for all (i, y:) € ®(x,y) 2)

For each ¢z from 0 to B — 1 the neighborhood with
minimum distortion can be found. The optimum cp
among all is the one that results in the minimum
MSEgx,- Finding the optimum cg, the corresponding
extraction function and neighborhood set are found
consequently, as the solution of the optimization
problem below:

B—1

Minimize : Z{;‘f:.,- —2)% + (y; — y)?
i=0

Subject to : f(x;,y;) € {0,1,...,B—1}

flxiyyi) # f(xy,y;), ifi#j
V0<ij<B-1 3)

Each pixel pair (x,y) and its neighborhood ®(X, Y)
forms a certain shape in the Cartesian coordinates. As a
general rule, optimization results in picking the most
concentrated neighborhoods. For instance, consider two
possible neighborhoods in Fig. 1 for B = 9 and
corresponding values of cz, and cg,. The optimization
process results in picking the cg of the square shape for
the extraction function, as its corresponding
neighborhood is more concentrated than the other. It
can be simply shown that the optimum neighborhood in
Fig. 1 ensures less MSE than the other. In another
example, APPM finds ¢ = 5 and a 5 x 5 square as the
optimum neighborhood for B = 25 as shown in Fig. 2.
It can be inferred from this figure that APPM gives less
MSE distortion compared to the diamond encoding
(DE) method [23] with k = 3 that applies the less
concentrated shape represented by dashed lines in Fig.
2.

Without losing the generality of problem, ®g(x,y)
can be formed around the origin. In this way, (x, y) is
transferred to the (0,0) and its neighbors are shifted
around it consequently.

Fig. 1. Two different ®(x, y) for B =9 and two different cq.

Fig. 2. DE (25) for k = 3 (dashed) and ®,(x,y) (solid).
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Fig. 3. Neighborhood table and ®g (x, y) for B =9 in APPM.

Hereafter, ®3(0,0) means the neighborhood
around the origin. Therefore, (3) can be restated as:

B—1
Minimize : Z (x; — 0)* + (y; — 0)2
i=0
Subject to : f(x;,y:) € {0,1,...,B—1}

f(:“;'i-. Ut) 74_ f{-"ffj._ :Uj)'. Lf"' _T'L J
V0<ij<B-1 (4)

Considering the M x N cover image and the bit-
stream S, the embedding algorithm is explained in the
following steps [28]:

1) Find the minimum B in [M x N/2| = Sg. Sg
represents the S in B-ary notational system and |.|
denotes cardinality.
2) Solve (4) to find the optimum @z (x,y) and Cg.
3) For all values i from 0 to B — 1, record (X, ¥,)
in the neighborhood defined by @5(0,0) such that
f&E,9) =i
4) Take a pixel pair (x, y) of the cover image to
embed a message digit Sz . Find the modulus
distance d = (sp — f(x,¥)) mod B between s
and f(x, y), then replace (x, y) with (x + X4,y +
Va)
5) Repeat step 4 to embed all the message digits.
Etraction process will be implemented simply by
extracting B-ary digits sz = f(x',y") from all pixel
pairs.

2 28(1%3 314 4
SAROS|S1 51011 5101 5101
3|4 4 2 & || 3]

(a) (b)
Fig. 4. Two possible ®¢(x,y) for c =2 (a), and ¢ = 4 (b).
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Fig. 5. Corresponding neighborhood tables for cases in Fig. 4

Since  APPM works on the pixel pairs, the
neighborhoods can be represented as two dimensional
(2D) Cartesian shapes. A hypothetic similar algorithm
working on the pixel triples results in ®p(x,y,z)
which can be presented by 3D shapes. Extending the
algorithm to the pixel groups larger than three, it would
not be possible to visualize the neighborhoods.
Therefore, we introduce a different approach to the
APPM algorithm.

In this approach, the optimum neighborhood found
around the origin is represented by a neighborhood
table consisting of three columns and B rows rather
than a shape. The first and second columns denote Xi
and yi values, and their corresponding f (x;, y;) values
are recorded in the last column. Both neighborhood
shape and table for B = 9 and ¢, = 3 are sketched in
Fig. 3. The table representation will be efficient for
algorithms working on the pixel groups of size three or
more.

I1l.  HISTOGRAM PRESERVING ADAPTIVE PIXEL
PAIR MATCHING

The optimum ¢ and @(x, y) solution is not unique.
As an instance, both shapes in Fig. 4(a) are the
solutions for optimization problem with B = 6 and c6
= 2. Similarly, B = 6 and c6 = 4 gives the solutions
sketched in Fig. 4(b). All of these four shapes yield the
similar MSE distortion. In other words, for each
f(x,y), there is a degree of freedom for choosing the
optimum shape. This issue can be well observed in
neighborhood table representations in Fig. 5.
According to Fig. 5, whenever d = (sgz—
f(x,y);ce =2)mod 6 =3 happens during the
message embedding, both pixels can be alternatively
increased or decreased by one upon our choice. Table
I summarizes the minimum cgs and the number of their
corresponding alternative ®g(x,y,z) for 2 < B < 64.

This degree of freedom can be exploited for the
sake of image histogram preservation. We define
C,s6x1 Change vector that records the number of
alterations for 256 different pixel values during the
embedding procedure. C(u) represents the number of
changes in pixels with value u for u = 0, ...,255 due to
embedding. C is set to O at the beginning. Consider the
pixel pair (x,y) and distance d = sz — f(x,y) mod
B. Assume that (x4,y4;) is found using the
neighborhood table. Two cases are possible for
embedding:
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1) d =0, then (z,y) and consequently C remains intact.
2) d#0, then (2',y') = (x,y) + (x4 + yq) and:
o ifz/ #x, C(z)=C(z) — 1, C(z') = C(z') + 1.
o ify' #y, Cly) =Cly) -1, Cy) =ClH) +1.

Above rules show how the number of pixels with
intensity value u changes in C during embedding.
Entries in C corresponding to the original and new
pixel values are decreased and increased respectively.
The histogram of the original image is preserved if for
each certain pixel value i, the number of pixels with
value i remain the same before and after embedding.
This situation is equivalent to the C = 0 after
embedding. Therefore, embedding with the lowest
possible value of D = ¥25%|C(u)| equals to the most
preserved possible image histogram. For this sake,
whenever there exists more than one choice for
(x4,¥4), the one is chosen that contributes more in
decreasing the value of D. The detail of minimizing D
is similar to [18]. Modifications on the original image
are divided into two groups: mandatory changes where
only one choice of (x4, y4) is available, and optional
changes with more than one (x4, y4). Mandatory
changes are first accomplished, and C is modified
properly. When more than one (x;,y,) is available,
the optimum is one that compensates the changes
imposed by the mandatory phase.

The histogram preserving APPM (HP-APPM)
algorithm for M x N image and input bit-stream S can
be explained as below:

1) Find the minimum B in |[M X N/2 | = |Sg|. Sp
represents the S in B-ary notational system and |. |
denotes cardinality.
2) Solve (4) to find the optimum @5 (x,y) and cg.
3) Forall values i from 0 to B-1, recoed (X;, y;)
from the neighborhood defined by @5(0,0) in the
neighborhood table such that f(%;, $;) = i. There
might be more than one (%;, ;) for a certain value
of i = f(%;, ).
4) Take a pixel pair (x, y) of the cover image to
embed a message digit sz. Find the modules distance
d = s — f(x,y) mod B between sz and f(x,y).
5) Find (x4, y4) pair in neoghborhood table for
which f(x4,v4) = d. If there is more than one
(x4,v4) pair, take one which decreases D =
25%1C(w)| as much as possible. Replace (x,y)
with (x',y") = (x,y) + (x4,y4) and update C
correspondingly.
6) Repeat steps 4 and 5 until all the message digits
are embedded.

TABLE I. SOME cg VALUES AND THE NUMBER OF THEIR
CORRESPONDING @(X, Y) FOR 2 < B < 64 IN APPM.TABLE |

ey sl | B
13
14
15
2 16
2| 2 |O%
18

Il | B | cx ¢l [ B cp|ldg| B |cy | |dgl | B|ca |¢al
1 |24 s | 2 |[35Y1w0| 1 (46| 7 [ 2 [§F24] 1
2 [3s] s 1 |@6l15] 2 [43 7| 1 [SEY22] 2
4 26| 10 2 3l 6 | 48 | 7 2 28 9 1
2 |37 5 | 1 |38 16] 2 |40 14 60| 8 2
28| 5 | 2 [39) 7| 1 [s0(14] 2 |&1

2 (29| 5 1 |a0| 7| 8 |51| 9| 1 |62|8 2
1 308 12| 2 400 6 | 1 [S2022( 2 |63 14| 1
20 2 |31)12) 1 |43|12| 2 |53 8 | 1 |[64]|14 B
21 1 |32 7 | 8 43012 1 [5412] 2

23| 5 2 |33 6 | 1 |44 8| 2 (85|21 16

23] 5| 1 |34] 6| 2 [@5) 7| 1 [S6f16] 2

(EIFNFN

=

19

RS e ® a4 s
-
AP PR PN SN TS PN

"
b= =
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When an overflow or underflow happened, i.e.,
x' <0,y <0,x" > 2550ry" > 255is replaced by
(x",y") which is the solution of this optimization
problem:

Minimize : (2 — x
="y

In addition to the neighborhood tables for a certain
Cg, there exists a degree of freedom in choosing cg for
a certain B. As a consequence, HP-APPM is
implemented for the cg with more degree of freedom.
In cases such as Figs. 4(a) and 4(b) where both cg
result in the same degree of freedom, the lower value
is chosen. Similar to the APPM, extraction function sB
= f(x",y'") helps the receiver to restore the
embedded bit-stream.

Both APPM and HP-APPM embedding methods
are applied on Lena 512x512 gray-scale image for B =
10. The absolute differences between the histograms of
the cover and stego images for both methods are
demonstrated in Fig. 6. From this figure, it can be
inferred that HP-APPM has managed to efficiently
compensate the modification imposed to the cover
image due to APPM data embedding.

u)2 4 (y _ yu)Z

Subject to "y =sg, 0 < a", y" <255 (5)

IV. ADAPTIVE PIXEL TRIPLE MATCHING

Exploiting the degree of freedom in equivalent 2D
shapes, HP-APPM helps to preserve the original image
histogram. However, this degree of freedom is limited
for some B values. For instance, neighborhood set for
B =9is a3 x 3 square that offers no alternative option.
Extending the size of pixel group to three increases the
degree of freedom. This is the motivation behind the
design of our proposed adaptive pixel triple matching
(APTM) method.

The original image is divided into the groups of
three pixels denoted by (X, y, z) in APTM method. The
general extraction function follows the below form:

flz,y,z) =(x+cp, xy+cp, x z) mod B (6)
For the sake of embedding, the pixel triple (X, y, z)
is modified to (xg, Yo, 2o) Where f(xq,¥0,2Z9) = Sg -
cp, and cg, find their values within the range of 0 and
B — 1. There is a neighborhood set ®B(x, y, z) and a

coefficient pair Cg= (cg,, cg,) for each value of B.
MSE is defined as below:

TABLE Il. SOME cz VALUES AND THEIR CORRESPONDING
(X, Y)FOR2 < B < 64 INAPTM.TABLE |1

B cp, cp, B

B cp, |cp, B cp, cp, | B cp, cp, | B cp, cp, cp,  Cp,
S 1 1 [N 2 S 5l 3 8 136 6 9 47 4 18 58 4 16
4 1 15 S e 3 9 N 3 14 48 4 18 §SS8 5 17
by 1 2 N 2 6 BN 3 9 98l 6 9 N 4 14 60 22 26
6 2 3 B 2 6 28N 3 9 I 12 18 |50 8 12 Bl 4 17
i 2 3 S 2 6 SN 3 9 40 4 14 |51 4 15 E62Y S 18
8 2 3 S 2 6 /30 3 11 (41 S 13 ENSN 18 | 22 §GSN S 25
o 2 3 208 2 7 B8 3 1 42 4 16 (53 4 21 64 7 18

10 2 3 e 3 8 N 4 10 (43 3 17 541 4 20

e 2 3 ERE 3 8 B33l 6 15 (44| 14 20 |55 5 21

e 2 4 BN 3 8 /34 3 13 45 4 17 §S8d S 18

s 2 4 24 3 8 8l 11 16 46 8 12 S8 S 22
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Fig. 7. Some of the APTM Optimum Embedding Shapes.
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— . pe — P 2
MSE@(J:,},I.Z) - 3B Zﬂ ((J'l J)2+ (y-‘- + (“i Z) )
for all (24, yi,2:) € ®(2,y, 2) (@)

®g(x,y,z) and Cg = (cp,, cp,) are found by solving
the optimization problem below:

B-1
Minimize : Z(:L‘.‘;' —o)? + (yi —y)? + (2 —2)°
i=0
Subject to : f(z;,y,2) € {0,1,...,B -1}
f{.‘f"‘_. Yis :'é.} ?é f(:i‘,“.,_. Yy :j]-. "'f"' #J

Yo<ij<B-1 ®)

Similar to APPM, neighborhoods are found around
the origin. Some optimum (cg,, ¢g,) pairs for 3<B <
64 are shown in Table Il. Some of the optimum 3D
neighborhood shapes are sketched in Fig. 7. Having the
optimum neighborhood and cg found, the embedding
and extraction processes will be implemented similar
to the Section II.

The theoretical MSE error of DE, APPM and
APTM under various payloads are compared in Table
I11. Note that DE is applicable only for some specific
notational systems corresponding to DE parameter k
ranging from 1 to 10. Equivalent APPM and APTM
algorithms for these specific payloads are then
implemented and compared. Aside from the case k =
1, it is inferred from Table 11l that APTM exhibits a
better performance comparing to the DE and APTM in
terms of MSE.

TABLE III. MsE COMPARISON OF DE, APPM AND APTM
METHODS FOR PRACTICAL DE PAYLOADS
bpp DE APPM APTM MSE Improvement
k| MSE |cp | MSE |(cg,,cp,) | MSE |t DE| to APPM
1161 | 1 0.4 2 04 (2, 3) 0424 (-0.024 0,024
1B50| 2 | 1077 | 5 L0077 (4, 18) 1.049 | 0.028 0.028
23223 | 2080 | 5 | 2.000 (10, 500 1957 | 0.123 0.043
26794 ) 3415 | 6 | 3341 (7. 46) 3237 [ 0178 0,104
20655 | 5.082 | 8 | 4902 (24, 156) 4.797 | 0285 0.105
3205 6 | 7.082 | 10 | 6.847 (184.295) 6.687 | 0395 0.160
3410 7 ] 9416 | 31 | 9.071 (30,290) 8.883 | 0533 0.188
3500 | 8 | 12083 22 [ 11.890 (13,729) 11.386 | 0.697 0504
3750 | 9 115083 | 39 | 14519 (15,743) 14.219 | 0.864 0.300
3804 [ 10 ) 18416 | 26 [ 17787 | (185,1010) | 17.364 | 1.052 0.423
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TABLE IV. MsE COMPARISON OF ApPPM AND APTM METHODS
FOR PRACTICAL APPM PAYLOADS

bpp APPM APTM
[A3%) MSE B {f.';_gl s Cag ) MSE
1 4 2 0.375 8 (2.3) 0.333
1.292 6 2 0.5 15 2.5 (L4858
1.5 8 3 0.625 23 (3. 8) 0.608
1.729 11 3 0.90% 36 (6, 9) (L858
2 16 i} 1343 64 (7. 18) 1.265
2229 22 5 1.795 103 (5. 40) 1.734
25 32 7 2625 181 (10, 35) 2.530
2745 45 7 3644 302 (74, 89y 3.539
3 64 14 5.203 512 (22, 230) 5.027
3.250 91 27 7318 867 (50,259) 7.114
3.500 128 12 10308 1448 (51.139) 10,065
3.750 181 39 14519 2435 (15.745) 14.219
4 256 60 20.57 4096 (390, 667) 20114

APPM and APTM algorithms for these specific
payloads are then implemented and compared. Aside
from the case k = 1, it is inferred from Table 111 that
APTM exhibits a better performance comparing to the
DE and APTM in terms of MSE.

Although APPM is not as limited as DE in practical
bpp payloads, yet it can input only specific bpp values
with considerable gap among them. Table IV compares
the MSE performance of APPM and APTM for some
practical APPM payloads and their equivalent APTM
systems. However, it can be shown in Section V that
APTM is much more flexible in terms of input payload
comparing to APPM.

In order to experimentally investigate this
superiority, APPM and APTM are implemented on six
famous images. 512x512 gray-scale images Lena, Jet,
Boat, Elaine, Couple and Baboon are used for data
embedding under the payloads of 426000, 757000 and
1048000 bits. Message bits are randomly generated
and embedded via both methods. The MSE between
the cover and stego images of this test are reported in
Table V. It can be perceived from this Table that MSE
improvements up to 0.5 in the APPM method are
achievable by implementing the APTM embedding
technique. Like the 2D case, the optimization problem
in (8) does not have a unique solution. For example,
there are 24 coefficient pairs for B = 9. Moreover, for
a certain coefficient pair such as (cg,, cg,) = (2, 3),
there will be four neighborhood set shown in Fig. 8.
Therefore, there is more degree of freedom comparing
to the APPM optimization for B = 9.

X Vi flxg yozg)
=(x; + 2y, + 32;)
mad9

0|0 0 0

=1 00 5
0/=1 0 7
-] [

10 -1 S
|11

0)-1 -1 4

1o 1

0|0 1 3

(L 2
1100 1

Fig. 8. Neighborhood table for B =9 in APTM.
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Again, this degree of freedom will be exploited for
the sake of histogram preserving. The change vector C
is defined and modified similar to Section Ill. When
there is more than one option to change a pixel triple,
the one is chosen that helps in decreasing the value of
D. Our histogram preserving algorithm which works
on pixel triples is called histogram preserving APTM
(HP-APTM). Extending the concepts from 2D to 3D,
the embedding and extraction processes are very
similar to those in Section Il1.

Histogram preserving improvement of HP-APTM
to APTM is theoretically evident. APPM, HP-APPM
and HP-APTM embedding methods are applied on
Lena 512x512 gray-scale image. HP-APTM is
implemented for B = 42, while the other two are
implemented for B = 12 that yields the equivalent bpp
payload. The absolute differences between the
histograms of the cover and stego images for all
methods are demonstrated in Fig. 9. From this figure it
can be perceived that both histogram preserving
techniques outperforms APPM. However, histogram
preserving can be performed more successfully in HP-
APTM comparing to HP-APPM, based on Fig. 9.

The histogram improvement achieved by HP-
APTM and HP-APPM to APPM can be well presented
by KullbackLeibler (KL) divergence, as a metric for
histogram similarity.

Consider G = {0, 1, . .. 255} as the set of possible
pixel intensity values. The KL divergence of the cover
and stego images is calculated as:

Dells) = S elioss (55 ) ©

1EG
Where c(i) and s(i) represent the frequency of the
pixel wvalue i in the cover and stego images

respectively. The less value of the KL divergence
means the more similar histograms for the cover and
stego images and thus; the more secure algorithm. The
KL divergence is compared for APPM, HP-APPM and
HP-APTM data embedded 512x512 gray-scale
images, and the payload of 470000 bits (1.79 bpp) in
Table VI. The results confirm that HP-APTM has been
the most successful in histogram preservation in terms
of KL divergence. The Lena cover image and stego
image due to APPM, HP-APPM and HP-APTM data
embedding. B = 42 in HP-APTM and B = 12 for the other
two. Images generated in this experiment are shown in
Fig. 10, in which no visible trace of data embedding is
perceivable.

Histogram Change in APPM, HP-APPM and HP-APTM Methods

o
=}

——HP-APTM|
HP-APPM
APPM

100

Histogram Defference Before and After Embedding

1} 50 200 250

100 150
Pixel Value

Fig. 9. Differences in the cover and stego image histograms for
Lena 512x512 grey scale
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V. ADAPTIVE PIXEL GROUP MATCHING

Based on the concepts used to extend APPM to
APTM, adaptive pixel group matching is proposed that
works on groups of k pixels. This algorithm is called
adaptive pixel group matching (APGM). More degree
of freedom and thus, better preserved histogram is
expected with this approach. Moreover, neighborhood
table is still applicable for k > 4 where the
neighborhood shapes are not feasible anymore.

The original image is divided into the groups of k
pixels in APGM. P = [p;,py, ..., pr]” represents a
group of k pixels. The extraction function follows the
general form of f(py, py, ..., Pk) =1 + Cp02 + - +
Cpj,_,Px Mod B. The pixel group P is modified to PO
that satisfies f(P') = sg. P’ denotes the pixel group
after data embedding. cg,, . . ., cg,_, find their values
within the range of 0 to B — 1. In this case, MSE for a
certain B, neighborhood set @z (P), and coefficient
vector Cg = (Cg,, Cpy) s Cpy_y ) 15 defined as:

1 .
MSEgyp) = B < |[P—P,|* P, € ®(P) (10

TABLE VI. KL DIVERGENCE COMPARISON OF APPM, HP-
APPM AND HP-APTM FOR THE PAYLOAD OF 470000 BITS

Image APPM HP-APPM HP-APTM

B=12.c=4 | B=12,c=4 | B =42, (c1,c2) = (5.13)
Baboon 0.0009 0.0005 0.0002
Boat 0.0102 0.0090 0.0064
Couple 03357 0.3141 02597
Elaine 0.0039 0.0024 0.0006
Jet 0.0024 0.0016 0.0011
Lena 0.0009 0.0004 0.0002

L4

[ 4

(c) (d)
Fig. 10. Lena 512x512 gray-scale cover image (a) and its
corresponding stego images generated by APPM, HP-APPM and
HP-APTM at the rate of 1.79 bpp (b)-(d).

Where ||. || denotes the Euclidean norm. Therefore,
®B(P) and Cg will be found by solving the
optimization problem below:
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Minimize : ||P|?

Subject to : f(P) € {0,1,...,B—1}

f(P;) # f(P;)

V0<ij<B-1 (11)

B(P) is defined around the origin. (11) does not
necessarily yield a unique solution. Therefore, there
might be a set of optimum Cg vectors, with a set of
optimum neighborhoods for each one of them. As a
result, a degree of freedom is offered by APGM
algorithm that can be exploited to propose histogram
preserving APGM (HP-APGM). Among all possible
modifications for a pixel group in HP-APGM, the one
is picked that helps to decrease D = ¥25%|C(w)] .
Therefore, the APGM embedding method can be
summarized as below:

1) Find the minimum B in [M X N/2 | = |Sg|. Sg
represents the S in B-ary notational system and |. |
denotes cardinality.

2) Solve (11) to find the optimum @5 (P) and cg.
3) For all values i from 0 to B-1, recoed P;

from the neighborhood defined by @5(0) in the
neighborhood table such that f(P;) =i. There
might be more than one P; for a certain value of i =
f(P,).

4) Take a pixel group P = [py, ..., pi]” of the
cover image to embed a message digit sz. Find the
modules distance d = sz — f(P) mod B between sg
and f(P).

5) Find P, pair in neoghborhood table for

which f(P;) = d. If there is more than one P, pair,
take one which decreases D = Y.25%|C(w)| as much
as possible. Replace P with P’ = P + P; and update
C correspondingly.

6) Repeat steps 4 and 5 until all the message digits
are embedded.

In case of overflow or underflow during the
embedding process, P* 0 is found such that f(P" 0 ) =
sB and MSE is minimized. In other words, the below
optimization is solved:

Minimize : |P — P’||?
Subject to : f(P') = s, P’ = [§{],0 < pl < 255
(12)

Similar to the HP-APTM, the Cg that offers more
degree of freedom is picked among the optimized Cg
vectors found for a certain B. When there are more than
such optimum vectors with the most degree of
freedom, the vector with the lower norm is chosen. The
extraction process is simply implemented by applying
the extraction function f(p") to the pixel groups of the
stego image.
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TABLE V
MSE CoMPARISON OF APPM AND APTM METHODS FOR VARIOUS PAYLOADS AND IMAGES

Image Payload=426000 bits, 1.625bpp Payload=757000 bits, 2.887bpp Payload=1048000 bits, 4bpp
APPM APTM APPM APTM APPM APTM
B=10c=3 | B=29c, =33 =9 | B=55c=21 | B=405.c; =3l.cy =54 | B = 256,c=60 | B = 4096.c; = 390,c; = 667

Baboon 0.8505 0.7341 4.5182 4.2973 20.5750 20.0843
Boat 0.8502 0.7339 4.5053 4.3023 20.5796 20.0868
Couple 0.8474 0.7341 4.5064 4.3108 20.6149 20.1373
Elaine 0.8488 0.7357 4.5058 4.3006 20.5792 20.1426
Jet 0.8505 0.7344 4.5082 4.2967 20.5654 20.1595
Lena 0.8477 0.7357 4.5031 4.3000 20.5904 20.0937

1_6_ ...........................
s APPM
1.47 APTM H
APGM (G=4) :
m 1.2F
%)
=
c
o
5 08F
R7
0 0.6F
0.4ﬁ a
0.2 1 | | | ]
1 1.2 1.4 1.6 1.8 2
Payload (bpp)

Fig. 11. MSE comparison of different methods. Adaptive pixel group matching is implemented for groups of size four pixels.

The theoretical results for an MSE comparison
among different methods are given in Fig. 11. From
this figure it can be observed that the embedding
distortion decreases by extending the pixel groups.
APTM improves the MSE performance of APPM by
about 0.1 for higher payloads, while its own
performance is boosted by APGM working on groups
of four pixels. Another important conclusion about the
flexibility of the algorithms can be drawn from this
figure. While the APPM is applicable only for limited
number of bpp payloads shown by squares, much more
flexibility for input payload is achievable by APTM
presented in circles. However, the payload flexibility
is significantly improved for APGM technique where
almost all bpp payloads are available, that makes the
dots in Fig. 11 to look like a continuous line.

VI. SECURITY ANALYSIS

A security analysis of the proposed method is
performed using SPAM [8] and SRM [29] stegnlyzers.
The results are compared for APPM, HP-APPM and
HP-APTM techniques. Six thousand 512x512 gray-
scale images from BOWS2 image database [30] are
used as the training set. All algorithms are
implemented for 0.1, 0.2 and 0.4 bpp payloads. For
each pair of applied method and payload, three
different B values are used for implementation. Since
the SPAM is originally designed to analyze the £1 LSB
techniques, B values above 9 in APPM and 27 in
APTM that result in more than +1 modifications are

avoided. The second order SPAM feature set that is
based on second order markov features is applied in
this analysis [8]. The other steganalyzer applied in our
experiments is the recently proposed and efficient
SRM stegnalyzer that is based on a rich model
including numerous diverse sub models [29].

The training set consists of 6000 cover images and
6000 stego images divided uniformly among nine
different embedding profiles. Thereafter, in order to
investigate the performance of the trained
steganalyzer, 1000 cover and 1000 stego images other
than the training images are used for each embedding
profile. The ensemble classifier [9] is used to separate
the cover and stego images according to the SPAM and
SRM features. The results of the SPAM security
analysis are summarized in Table VII. Pe =1 2 (PF P
+PF N ) represents the error performance of the
steganalyzer, where PF P and PF N stand for the
probability of false positive and false negative
respectively. From this Table, it can be observed that
SPAM detection is deteriorated about two percent for
both proposed HP-APPM and HP-APTM methods
compared to the rival APPM technique. This
observation confirms the security superiority of the
proposed method to APPM.

This superior performance is confirmed through
SRM steganalysis too. Similar results for the SRM are
reported in Table VIII. Note that the performance of
the APPM and the proposed method are almost the
same at 0.4 bpp payload due to the sophisticated and
efficient design of the rich model. Normally, data
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embedding at such high r ates is avoided due to the high
probability of the detection. From Table VIII it can be
seen that the differences between the performance of
the APPM an d the proposed method are meaningful
for the lower embedding rates.

TABLE VII.  SPAM ERROR RATE FOR DIFFERENT METHODS
AND PAYLOADS

Payload APPM HP-APPM HP-APTM
(bpp) B P, B P, B P,

4 0.2255 4 0.2820 11 0.3690

0.1 6 0.2195 6 0.2815 13 | 0.3970

8 0.2105 8 0.3635 15 | 03910

4 0.1450 4 0.1755 11 0.2275

0.2 6 0.1385 6 0.1720 13 | 0.2215

8 0.1410 8 0.1665 15 | 0.1985

4 0.1240 4 0.1480 11 0.1650

0.4 6 0.1155 6 0.1420 13 | 0.1605

8 0.1225 8 0.1460 15 | 0.1675

TABLE VIIl.  SRM ERROR RATE FOR DIFFERENT

METHODS AND PAYLOADS

Payload APPM HP-APPM HP-APTM

(bpp) | B P, B P, B P,
4 | o186s | 4 | 02235 | 11 | 02570
0.1 6 | 01705 | 6 | 02075 | 13 | 02430
8 | 01590 | 8 | 0.1860 | 15 | 0.2455
4 | oosas | 4 | 01125 [ 11 | 01315
02 6 | 00820 | 6 | 01110 | 13 | 0.1095
8 | 00725 | 8 | 01020 | 15 | 01110
4 [omes | a4 [ oosis [ 11 | oosso
04 6 | 00335 | 6 | 00460 | 13 | 00475
8 | 00350 | 8 | 00395 | 15 | 0.0425

VII. CONCLUSION

In this paper, adaptive pixel group matching
method was proposed for data embedding. In this
method, a group of pixels is optimally modified such
that its extraction function matches the embedding
message. Therefore, the best embedding strategies are
found for different values of embedding rates and pixel
group sizes. Whenever there exists more than one
optimal solution, a combination of them is applied for
the sake of histogram preservation. The theoretical and
experimental results confirm that extending the size of
pixel groups helps to achieve less value for the
imposed distortion. On the other hand, more equivalent
optimum embedding strategies are achieved as a result
of this extension which proper selection among them
allows us to keep the histogram of the original image
as intact as possible.
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