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Abstract—Despite several decades of working on software quality assurance methods, they still require further 

investigation. It is paramount to detect a process detecting possible software errors with a minimum budget and effort. 

Search-based software testing (SBST) is an approach to automated software testing that aims to find a suitable 

alternative to manual testing. The SBST is to transform the test problem into an optimization problem and obtain better 

solutions by searching the problem space. Search-based testing has some disadvantages and advantages. The novelty of 

this paper is that, besides representing the significance and efficiency of SBST in software testing, the search-based test 

challenges were detected and described from the perspective of the test techniques. Our work is to extract challenges 

from reliable sources and research and their classification based on test techniques. For this purpose, we considered 

this framework: 1) A systematic introduction to the most critical metaheuristic optimization algorithms. 2) classifying 

the test techniques and explaining their advantages and disadvantages. 3) proposing a suitable classification for the 

challenges of the search-based test area based on the technique used. Our motivation to do this research was to provide 

complete knowledge about search-based software testing challenges so that new researchers could choose their research 

fields with prior knowledge and provide a way to improve existing methods. Finally, the results of this paper can be 

used to compare the existing test techniques used in SBST, select the best one, and represent the challenges of each 

technique. 
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I. INTRODUCTION  

In developing a software system, especially 

software with high complexity, human mistakes are 

unavoidable. When the source code is generated, the 

software must be evaluated in terms of errors. Today, 

applications are being evidently used in all life aspects. 

The latest trends in technology and rapid changes in 

society’s demands have led to the introduction of more 

complex software systems  [1 ] . This has converted 

software testing to one of the most critical stages of the 

software development life cycle [2] .  

Testing mainly aims to find errors occurring during 

the program's execution processes for all possible 

inputs. The extensive range of input space makes the 

number of test cases infinite [3] . In this regard, 

software cannot be entirely tested with a limited budget 

and time. Accordingly, we cannot comment on the 

completeness of the developed software [4] . As a 

result, the software test is required; however, it does 

not guarantee the accuracy of the developed software.  

Software tests are performed manually and 

automatically [5]. A manual test is challenging and 

time-consuming, and it is impossible for software with 

high complexity. As a result, the test was automated, 

and the automation process was transferred to 

machines  [6] . If the test process is fully automated, the 

costs of testing and software development will be 

remarkably reduced [7 ,8] . SBST is an attempt to 

automate software testing. Moreover, search-based test 

data generation is a technique to obtain a test 

requirement, as an optimization problem with a 

numerical and heuristic function to be solved  [9] .  

In this paper, after reviewing previous studies, 

search-based testing is introduced. Then the general 

testing techniques are classified into three categories of 

structural testing, functional testing, non-functional 

testing, whose ideas, advantages, and disadvantages 

are also described. The idea of using search is proved 

to provide high potentials in each of the 

aforementioned techniques. However, in contrast to 

the achieved accomplishments, there are challenges, in 

which their expression based on test techniques is the 

main objective of this study. In Section 5, the search-

based testing challenges are presented as the 

breakdowns of all test techniques. 

II. RELATED WORK 

Harman and Jones (2001) published an article on 

software engineering(SE) [10] . This article stated that 

a new area of research, called search-based software 

engineering (SBSE), is emerging. SBSE is a branch of 

software engineering [11 ]  and has a high capability in 

all software areas, especially testing[12]. SBSE 

techniques have shown promising results and give us 

hope that someday it will be possible to automate the 

tedious and, laborious parts of software development, 

or at least partially automated software development 

[13]. 

Following Ref. [10] , much research has addressed the 

application of searching in testing.  

     From the perspective of test techniques, some 

researchers [14-18] examined structural testing based 

on searching. Ref. is on functional testing[19], and 

articles [20, 21] are on non-functional testing.  

The first search-based algorithms used to automate the 

generation of test data were descending gradients [22] 

and algorithms such as hill climbing(HC) [17, 23], tabu 

search [24-26], and simulated annealing(SA) [27, 28]. 

Although these algorithms had advantages, they were 

time-consuming and inefficient and would get caught 

if there was a local optimization. 

Subsequently, other algorithms were introduced 

that provided a better position than the original 

algorithms. However, they still faced problems, and 

there was a possibility of getting caught in the local 

optimization. 

Following the research process, other algorithms, such 

as genetic algorithms [29-31], were used to generate 

test data, which provided better conditions. Ref. [32] 

discusses test data generation for structural testing 

using genetic algorithms. In Ref. [33], genetic 

algorithms and reinforcement learning are combined to 

generate the test data.   

As research expanded in later years, algorithms such as 

particle swarm[29, 34, 35], ant colony[15, 36-38], and 

bee colony[11, 39] were used, which yielded better 

results. Some studies have also reviewed previous 

works [3, 16, 40-42].  

Furthermore, some papers have also addressed the 

challenges in this field  [11 ,43 ,44] . In this article, we 

further explored the challenges in this field. 

III. SEARCH BASED SOFTWARE TESTING 

SBST generates test cases/test data guided by 

measurements gauging how far tests are from reaching 

a coverage target [45]. Search algorithms can gradually 

improve tests to achieve high coverage, using the 

fitness function as measurement criteria [46, 47]. The 

value of the fitness function is a numerical value 

expressing the performance of the candidate solutions 

according to the current optimal candidate solution for 

comparison to satisfy the test criterion [3, 48, 49]. 

Testing mainly aims to generate an optimal set of test 

cases revealing the software errors [50] according to 

the test adequacy criterion. The adequacy criteria for 

testing are also formulated as a fitness function [51] . 

Test adequacy criteria distinguish acceptable test cases 

from unacceptable ones, and determining whether or 

not a test process is complete [4] . 

The rationale behind all test data generation 

techniques is that the possible inputs to the program 

constitute a search space, and the search for the 

solution is carried out in this space. These techniques 

have outperformed others in resolving software 

problems in complex and large search spaces [52]. 

Figure 1 shows the general view of the search-based 

test case generation steps and their original elements. 
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Figure 1.  The search-based test input generation scheme [14] 

As shown in Figure 1, search-based optimization is one 

of the main components of search-based testing. Each 

search-based algorithm can be used in this section to 

generate new test data according to its logic. The 

following section will provide more details on the 

search-based algorithms. 

IV. METAHEURISTIC OPTIMIZATION ALGORITHMS 

In computer science, the problem of finding the 

best solution among the possible solutions is called an 

optimization problem. All optimization problems have 

a purpose. In such cases, the objective function is often 

set by the constraints imposed by the nature of the 

problem. During the search to find the appropriate 

solution, the value of the objective function takes 

control of the search. 

The objective function is defined so that it must 

either have a minimum value or a maximum value. An 

answer space is also evaluated during the problem-

solving effort  [53 ,54 ] . So it can be said that 

optimization problems have the following three key 

elements [51]: 

• A set of restrictions 

• There is an answer space to search. 

• The objective function should be maximized 

or minimized during the search depending on 

the nature of the problem. 

In the introduction section, we enumerated several 

optimization algorithms among the most widely used 

in test data generation, which we will now describe in 

more detail . There are various categories for 

optimization algorithms, so we will skip the review of 

how to classify them and explain only some of the most 

famous algorithms in this field. The optimization 

algorithms are placed into two categories: global and 

local algorithms. Local algorithms are those algorithms 

in which the solution is sought locally, and each time 

we search for a better solution from the neighbors, we 

may stop at the local optimal point. Nevertheless, 

global algorithms are looking for answers among all 

possible solutions and are more likely to succeed. The 

following section explains the usage and application of 

some of the most important algorithms in software 

tests. 

A. Hill climbing 

Hill-climbing is a local search algorithm to 

maximize the objective function. The algorithm starts 

with an initial solution randomly selected from the 

search space. At each iteration, the neighborhood of the 

current solution is investigated. It replaces the current 

solution if it is a better solution [14]. There are two 

choices in the hill-climbing algorithm: 

• The current solution is replaced by the first 

neighbor who has improved merit. 

• In the second case, the current solution is 

replaced by a neighbor who gives the greatest 

increase in competition among all the 

neighbors . 

The search continues until no improvement is found in 

the neighbors to the current solution. When the search 

ends, the maximum (probably local) is found. 

 

Figure 2.  Hill climbing algorithm for maximising an objective 

function f [14] 

Figure 3 shows that the hill climbing algorithm is 

caught in the local optimization and does not achieve 

global optimization. 

 

Figure 3.  Hill climbing and trapping in to local optimal [55]  

B. Simulated annealing 

Simulated annealing can be considered a variety of 

hill climbing that prevents the maximum local problem 

by allowing people to move with less fitness [51 ] . If 

the neighbor's answer is better than the current answer, 

the algorithm sets it as the current answer and moves 

towards it. Otherwise, the algorithm accepts that 

answer with an exp (- ΔE / T) probability as the current 

answer. In this relation, ΔE is the difference between 

the objective function of the current answer and the 

neighboring answer. T is the temperature parameter. At 

each temperature, several repetitions are performed, 

Volume 14- Number 2 – 2022 (32 -40) 
 

34 

 [
 D

O
I:

 1
0.

52
54

7/
itr

c.
14

.2
.3

2 
] 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n 

20
25

-1
1-

17
 ]

 

                               3 / 9

http://dx.doi.org/10.52547/itrc.14.2.32
http://ijict.itrc.ac.ir/article-1-499-en.html


and then the temperature is slowly reduced. A high 

temperature is set in the initial steps to make it more 

likely to accept worse answers. As the temperature 

gradually decreases in the final steps, the probability of 

accepting worse answers will decrease, and thus the 

algorithm  will converge toward a good answer. 

 

Figure 4 shows that the algorithm can exit the local 

optimization 

 

Figure 4.  The transition from local to global optimal in SA [55]  

C. Genetic algorithm 

Genetic algorithms use the concepts of population 

and recombination [56 ] . Among all optimization 

algorithms, genetic algorithms are the most commonly 

applied research technique in SBSE. 
First, the answer to the problem is formulated as a gene 

in this algorithm, and a set of answers is considered 

randomly. Then, depending on their compatibility and 

appropriateness, three types of functions called 

selection, crossover, and mutation are performed, and 

new sets of answers are created. These answers replace 

the worst answers in the initial set. Finally, the answer 

is given by satisfying the condition of stopping, which 

can be a condition of convergence. 

Figure 5.  Generic genetic algorithm [14] 

V. SOFTWARE TESTING TECHNIQUES 

Test case generation is a vital concept used in software 

testing derived from the user requirements 

specifications [57]. However, there are different types 

of tests, and different categories can be imagined. The 

test type affects the test cases generation. In this regard, 

we divide the general software testing techniques into 

three categories, as presented in Figure 6. 
 

 

  

 

 

 

 

Figure 6.  Software test techniques 

Table Ⅰ. presents the ideas, advantages, disadvantages, 

and examples of each test technique. Table Ⅰ is partly 

taken from [4].  

     The main idea of the structural test is to generate test 

data/case for the completion of the execution in the 

prescribed paths. Structural testing plays a 

fundamental role in the miller and Spooner approach, 

an application area that has involved the best attention 

in SBST [20]. In the structural test, the internal 

structure or the source code is considered, and the 

program's behavior with its code execution is 

examined. The test data required to run is derived from 

program logic and applied to the code. This type of test 

considers how to act. The main structural tests are 

statement coverage, branch coverage, path coverage, 

and data flow coverage  [14 ] . The structural test has 

been the main focus of SBST so far.  

In functional testing, all the system's internal 

mechanisms are ignored, and the generated output is 

focused. It is assumed that there is no information 

about the internal details of the software and the focus 

of the tests is on different outputs and inputs  [58] . 

Non-functional testing determines how the system 

or software works and can be performed at all system 

levels. This type of test is to test the non-functional 

features of the system never tested by the functional 

test. Features such as performance, security, 

portability, scalability, usability, efficiency are part of 

this test. 

TABLE I.  THE CLASSIFICATION OF TESTING TECHNIQUES  

-In structural test, the internal structure, or same 
source code, are considered and the application 
behavior is investigated by executing its code. 
The required test data are derived from program 
logic and applied to code  

  

-Easy implementation ability  

-Understandable  

-Comprehensive  

 

Software testing techniques 

Functional testing 
 

Structural testing 
 

Non-functional testing 
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-The generation of test cases is usually done too 
late in the software development cycle. 

-Detected errors are very difficult and costly 
because changes affect a large part of the 
design, implementation and testing procedures 

 [59 ] .  

 

-Statement coverage, branch coverage, path 
coverage  

 

-The test cases are generated using system 
specifications [60]. The purpose of functional 
testing is testing software performance. In the 
functional test it is assumed that there is no 
information on the internal details of the 
software and the test focus is on different output 
from different inputs. 

   

 -The test can begin faster in the software design 
process. 

 -Incompatibilities and ambiguities in the 
specifications by the testers will be identified 
sooner . 

 -Errors are openly detected and correction cost 
is not much 

 

 -There is a need for official system 
specifications that are difficult to identify in the 
actual program . 

 -The specification is complex and difficult to 
understand . 

 -Implementations must exactly match the 
specifications. 

 

 -Input validation and examining the behavior of 
the system against the processing of large and 
heavy queries 

 

 -Non-functional tests indicate how a system 
works and is a test to measure the characteristics 
of systems that can be measured in a variable 
scale. 

   

 -Considering other behaviors in spite of the 
system’s logical behaviors. 

 

-It is highly complex as it is dependent on both 
software and hardware features. 

 

-Scalability, Efficiency, Usability, Quality of 
service, Execution time, Security [21] 

 

VI. CHALLENGES OF SBST 

The general challenge in generating test data is that the 

test data generated must have the potential to detect 

program errors, and the result will be better if it takes 

less time, effort, and cost. 

The easiest way to generate test data is to generate it 

manually. However, manually generating test data is 

practically impossible for large and highly complex 

software. Even if the software has a very high degree 

of expertise in the test, manual production of test data 

for complex software is unreasonable due to the vast 

input area. It will waste the examiner's expense, time, 

and effort. 

Also, if we look at the issue from a human resources 

perspective, the test costs and the nature of the software 

tests are such that they require a high concentration of 

the examiner. Most programmers and software 

engineers are reluctant to test and generate manual test 

data. For this reason, software quality managers seek 

to use automatic methods to reduce the cost and time 

of the test. 
Automated testing has its challenges  .In this section, 

the challenges of SBST are explained for each 
technique. 

A. Challenges of structural test 

1) Selection of test criteria 
 There are many criteria for structural testing (e.g., 

path coverage, branch coverage, statement coverage, 
and edge coverage). Path coverage is the strongest 
structural cover criteria, and branch coverage is the 
standard structural test [36]. The first challenge is 
choosing the test criteria meeting our requirements with 
a minimum cost. Selecting a stronger criterion requires 
higher computational resources and, considering it as a 
target criterion should be a justification. 

2) Nested loops 
The presence of nested loops in the program code is 

directly associated with an increase in the number of 
targets. As the number of target paths generated for the 
search increases, finding a solution representing the 
complete set becomes more difficult. In this case, we 
may need a better search guide, or we may need to 

change the algorithm or its fitness function  [61 ] .  

3) Uncoverd targets 
Uncovered targets cannot be easily located in the 

category of infeasible routes because the source of 

uncovered targets may be an incomplete search and 

may be covered by continuing the search. To find out 

whether or not a target is impractical, more analysis is 

required  [61 ] . 

4) Uncertainty after the testing 
Automatic test case generation is used to detect 

errors. The most common characteristic of the correct 
behavior of a program is that the program does not 
encounter errors during execution. 
If an exception is detected, it indicates an error; 
however, if the application is executed without errors, 

the following questions arise  [44 ] : 

• Does the program have the proper 
performance? 

• What test cases should be taken to ensure that 
the next versions of the program preserve 
current behavior? 

5) Insufficient coverage 
SBST is suitable for structural coverage and has 

been studied more frequently  [11 ] . However, the 
resulting structural coverage is not always as high as 
expected  [62 ] . Therefore, we may need to rely on 
insufficient test sets, and all tests require the use of 
existing tools [63]. 
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6) Bloat phenomenon 
An innovation in some of the SBSE tools, such as 

evosuite, is to develop all test sets in one place instead 
of creating a test case in a single time to cover a distinct 
target so that all cover targets are targeted at the same 
time. Before addressing the challenges, the technique 
has several advantages:  

• Impractical coverage targets do not spoil the 
search. 

• There is no limit to target selection. 

• There is no incidental coverage. 

This method can be better than the classical 
approach (focusing on individual coverage targets); 
however, as it seems, it is with problems. During the 
search, the number of test cases in a test set and the 
length of individual test cases can vary and create 
additional challenges such as bloat    [64 ]   [44 ] . Bloat is a 
complex phenomenon in evolutionary computation, in 
which length grows abnormally over time to the point 
where search becomes impossible  [65 ]  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.   Proposed classification for SBST challenges based on 

test techniques 

B. Challenges of functional testing 

In the previous section, we discussed the challenges 

of structural testing. According to our studies, there is 

less activity in search-based functional testing than in 

structural testing.  

In this section, we will explain its relevant challenges. 

 

 

 

1) Complex nature of system specification 
The functional procedures should be taken from the 

different types of system specifications [3] . However, 
the system specifications are complex  and thereby hard 
to understand. Not understanding the nature of the 
problem, its complexity, and the difficulty of 
formulating the functional issues should be one of the 
reasons for not addressing the search-based functional 
testing. 

2) Implementation challenge 
An implementation must follow the system 

specifications; however, it is difficult to accurately 
identify the system specifications in real usage  [4 ] . An 
existing obstacle to full automation is the fact that 
mapping must be presented from the abstract model of 
specifications to the real model to be implemented  [3]. 

C. Challenges of non-functional testing 

1) Insufficient research in this area 
The lack of studies on non-functional characteristics 

is surprising due to the increasing importance of non-
functional properties. The SBST techniques have a 
significant advantage and theoretically can be applied 
to any test problem, in which adequacy criteria can be 
applied as the work of the fitness function. In essence, 
testing for execution time, service quality, and energy 
consumption should not be more severe than the branch 
coverage, and only a different fit function is required. 
However, measuring the fitness function for any non-
functional feature may be associated with specific 

challenges    [11 ] . 

2) Negative effect on multiobjective optimization  
One of the reasons indicating why multi-objective 

techniques have not attracted attention is the lack of 
field development for non-functional features. Many of 
the additional goals testers pursue are associated with 
non-operational features. For example, a tester may be 
interested in getting more coverage; however, it may 
also target unusual execution times, security features, 
or power consumption (or all of these). Because society 
seems slow to understand the non-functional 
characteristics, this may significantly affect the 

application of multi-objective methods  [11 ] . 

D. Conclusion 

In this article, after providing general explanations 
and the introduction of software testing, some relevant 
studies were presented. Then we explained the 
generalities of search-based testing and described how 
to apply the search-based approach in generating test 
data. Next, we described the test techniques and 
classified them into three general categories (namely 
structural, functional and non-functional tests). 
According to Table 1, we described the main features 

Functional testing 

Structural testing 

Non-functional 

testing 

Selection of test criteria 

Uncovered targets 

Uncertainty after the test 

Complex specification 

Insufficient coverage 

Implementation challenge 

Insufficient research 

 

Negative effect on multi -

objective optimization 

Nested loops 

Bloat phenomenon 

Challenges of SBST 
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of each technique. In the last section, which is the most 
important part of the article, we were to describe the 
challenges of search-based testing for each of the 
aforementioned techniques separately. 

Given the above, we conducted a study on search-
based tests and test case generation in this article and 
faced a series of challenges expressed in the categories. 

 

All the challenges mentioned in this article have been 
extracted from credible sources and research and can be 
cited. Our innovation is the proposed classification for 
these challenges .The challenges are arranged so that 
researchers can find complete information about the 
problems of the field before entering it. 

For example, search-based structural testing has its 
own problems that are different from the search-based 
functional test, and knowing these issues before 
conducting further research can benefit researchers. 

Also, the search-based test outside the classification 
based on the test technique has common challenges, 
which we examined in Ref. [66] and referred to as the 
general challenges of the search-based test. The study 
of this paper and Ref. [66] can provide researchers with 
a good understanding of the general and related 
challenges related to the search-based test method. 

This article can be useful for those interested in the 
field of software testing, particularly SBST. 

 

REFERENCES 

[1] S. Ul Haq and U. Qamar, "Ontology Based Test Case 

Generation for Black Box Testing," in Proceedings of the 

2019 8th International Conference on Educational and 

Information Technology, 2019: ACM, pp. 236-241.  

[2] A. P. Mathur, Foundations of Software Testing: 

Fundamental Algorithms and Techniques. Pearson 

Education, 2008. 

[3] P. McMinn, "Search ‐ based software test data 

generation: a survey," Software testing, Verification and 

reliability, vol. 14, no. 2, pp. 105-156, 2004. 

[4] M. R. Keyvanpour, H. Homayouni, and H. Shirazee, 

"Automatic software test case generation: An analytical 

classification framework," International Journal of 

Software Engineering and Its Applications, vol. 6, no. 4, 

pp. 1-16, 2012. 

[5] A. M. Bidgoli, H. Haghighi, T. Z. Nasab, and H. Sabouri, 

"Using swarm intelligence to generate test data for 

covering prime paths," in International Conference on 

Fundamentals of Software Engineering, 2017: Springer, 

pp. 132-147.  

[6] G. Candea and P. Godefroid, "Automated software test 

generation: some challenges, solutions, and recent 

advances," in Computing and Software Science: 

Springer, 2019, pp. 505-531. 

[7] S. U. Farooq and S. Quadri, "Identifying some problems 

with selection of software testing techniques," Oriental 

Journal of Computer Science & Technology, vol. 3, no. 

2, pp. 266-269, 2010. 

[8] A. Bertolino, "Software testing research: Achievements, 

challenges, dreams," in 2007 Future of Software 

Engineering, 2007: IEEE Computer Society, pp. 85-103.  

[9] K. Ghani and J. A. Clark, "Automatic test data generation 

for multiple condition and MCDC coverage," in 2009 

Fourth International Conference on Software 

Engineering Advances, 2009: IEEE, pp. 152-157.  

[10] M. Harman and B. F. Jones, "Search-based software 

engineering," Information and software Technology, vol. 

43, no. 14, pp. 833-839, 2001. 

[11] M. Harman, Y. Jia, and Y. Zhang, "Achievements, open 

problems and challenges for search based software 

testing," in 2015 IEEE 8th International Conference on 

Software Testing, Verification and Validation (ICST), 

2015: IEEE, pp. 1-12.  

[12] A. Arcuri and J. P. Galeotti, "Enhancing search-based 

testing with testability transformations for existing 

APIs," ACM Transactions on Software Engineering and 

Methodology (TOSEM), vol. 31, no. 1, pp. 1-34, 2021. 

[13] A. Aleti, "On the Effectiveness of SBSE Techniques," in 

International Symposium on Search Based Software 

Engineering, 2021: Springer, pp. 3-6.  

[14] S. Varshney and M. Mehrotra, "Search based software 

test data generation for structural testing: a perspective," 

ACM SIGSOFT Software Engineering Notes, vol. 38, no. 

4, pp. 1-6, 2013. 

[15] C. Mao, X. Yu, J. Chen, and J. Chen, "Generating test 

data for structural testing based on ant colony 

optimization," in 2012 12th International Conference on 

Quality Software, 2012: IEEE, pp. 98-101.  

[16] P. McMinn, "Search-based software testing: Past, present 

and future," in 2011 IEEE Fourth International 

Conference on Software Testing, Verification and 

Validation Workshops, 2011: IEEE, pp. 153-163.  

[17] M. Harman and P. McMinn, "A theoretical & empirical 

analysis of evolutionary testing and hill climbing for 

structural test data generation," in Proceedings of the 

2007 international symposium on Software testing and 

analysis, 2007, pp. 73-83.  

[18] C. Mao, "Harmony search-based test data generation for 

branch coverage in software structural testing," Neural 

Computing and Applications, vol. 25, no. 1, pp. 199-216, 

2014. 

[19] R. Lefticaru and F. Ipate, "Functional search-based 

testing from state machines," in 2008 1st International 

Conference on Software Testing, Verification, and 

Validation, 2008: IEEE, pp. 525-528.  

[20] N. Bala and S. Suhailan, "Effective Search-Based 

Approach for Testing Non-Functional Properties in 

Software System: an Empirical Review," International 

Journal of Engineering & Technology, vol. 7, no. 4.28, 

pp. 368-391, 2018. 

[21] W. Afzal, R. Torkar, and R. Feldt, "A systematic review 

of search-based testing for non-functional system 

properties," Information and Software Technology, vol. 

51, no. 6, pp. 957-976, 2009. 

[22] C. C. Michael, G. E. McGraw, M. A. Schatz, and C. C. 

Walton, "Genetic algorithms for dynamic test data 

generation," in Proceedings 12th IEEE International 

Conference Automated Software Engineering, 1997: 

IEEE, pp. 307-308.  

[23] F. C. M. Souza, M. Papadakis, Y. Le Traon, and M. E. 

Delamaro, "Strong mutation-based test data generation 

using hill climbing," in Proceedings of the 9th 

International Workshop on Search-Based Software 

Testing, 2016, pp. 45-54.  

[24] P. R. Srivastava, R. Khandelwal, S. Khandelwal, S. 

Kumar, and S. S. Ranganatha, "Automated test data 

generation using cuckoo search and tabu search (CSTS) 

algorithm," Journal of Intelligent Systems, vol. 21, no. 2, 

pp. 195-224, 2012. 

[25] K. Perumal, J. M. Ungati, G. Kumar, N. Jain, R. Gaurav, 

and P. R. Srivastava, "Test data generation: a hybrid 

approach using cuckoo and tabu search," in International 

Conference on Swarm, Evolutionary, and Memetic 

Computing, 2011: Springer, pp. 46-54.  

[26] E. Díaz, J. Tuya, and R. Blanco, "Automated software 

testing using a metaheuristic technique based on tabu 

search," in 18th IEEE International Conference on 

Automated Software Engineering, 2003. Proceedings., 

2003: IEEE, pp. 310-313.  

[27] L.-s. LI, X. CAO, and F. WANG, "Test Data Generation 

Using Simulated Annealing Genetic Algorithm," 

COMPUTER TECHNOLOGY AND DEVEI PMENT, vol. 

4, no. 21, p. 4, 2011. 

[28] M. Mann, O. P. Sangwan, P. Tomar, and S. Singh, 

"Automatic goal-oriented test data generation using a 

genetic algorithm and simulated annealing," in 2016 6th 

Volume 14- Number 2 – 2022 (32 -40) 
 

38 

 [
 D

O
I:

 1
0.

52
54

7/
itr

c.
14

.2
.3

2 
] 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n 

20
25

-1
1-

17
 ]

 

                               7 / 9

http://dx.doi.org/10.52547/itrc.14.2.32
http://ijict.itrc.ac.ir/article-1-499-en.html


International Conference-Cloud System and Big Data 

Engineering (Confluence), 2016: IEEE, pp. 83-87.  

[29] S. Zhang, Y. Zhang, H. Zhou, and Q. He, "Automatic 

path test data generation based on GA-PSO," in 2010 

IEEE International Conference on intelligent computing 

and intelligent systems, 2010, vol. 1: IEEE, pp. 142-146.  

[30] [30] A. Rathore, A. Bohara, R. G. Prashil, T. L. 

Prashanth, and P. R. Srivastava, "Application of genetic 

algorithm and tabu search in software testing," in 

Proceedings of the Fourth Annual ACM Bangalore 

Conference, 2011, pp. 1-4.  

[31] R. P. Pargas, M. J. Harrold, and R. R. Peck, "Test‐data 

generation using genetic algorithms," Software testing, 

verification and reliability, vol. 9, no. 4, pp. 263-282, 

1999. 

[32] A. Damia, M. Esnaashari, and M. Parvizimosaed, 

"Software Testing using an Adaptive Genetic 

Algorithm," Journal of AI and Data Mining, 2021. 

[33] M. Esnaashari and A. H. Damia, "Automation of 

Software Test Data Generation Using Genetic Algorithm 

and Reinforcement Learning," Expert Systems with 

Applications, p. 115446, 2021. 

[34] A. Li and Y. Zhang, "Automatic generating all-path test 

data of a program based on PSO," in 2009 WRI World 

Congress on software engineering, 2009, vol. 4: IEEE, 

pp. 189-193.  

[35] S. Kumar, D. K. Yadav, and D. A. Khan, "A novel 

approach to automate test data generation for data flow 

testing based on hybrid adaptive PSO-GA algorithm," 

International Journal of Advanced Intelligence 

Paradigms, vol. 9, no. 2-3, pp. 278-312, 2017. 

[36] A. M. Bidgoli and H. Haghighi, "Augmenting ant colony 

optimization with adaptive random testing to cover prime 

paths," Journal of Systems and Software, vol. 161, p. 

110495, 2020. 

[37] H. Sharifipour, M. Shakeri, and H. Haghighi, "Structural 

test data generation using a memetic ant colony 

optimization based on evolution strategies," Swarm and 

Evolutionary Computation, vol. 40, pp. 76-91, 2018. 

[38] C. Mao, L. Xiao, X. Yu, and J. Chen, "Adapting ant 

colony optimization to generate test data for software 

structural testing," Swarm and Evolutionary 

Computation, vol. 20, pp. 23-36, 2015. 

[39] S. S. Dahiya, J. K. Chhabra, and S. Kumar, "Application 

of artificial bee colony algorithm to software testing," in 

2010 21st Australian software engineering conference, 

2010: IEEE, pp. 149-154.  

[40] A. Ouni, "Search based software engineering: challenges, 

opportunities and recent applications," in Proceedings of 

the 2020 Genetic and Evolutionary Computation 

Conference Companion, 2020, pp. 1114-1146.  

[41] M. Harman, "Automated test data generation using 

search based software engineering," in Second 

International Workshop on Automation of Software Test 

(AST'07), 2007: IEEE, pp. 2-2.  

[42] M. Khari and P. Kumar, "An extensive evaluation of 

search-based software testing: a review," Soft 

Computing, vol. 23, no. 6, pp. 1933-1946, 2019. 

[43] K. Lakhotia, M. Harman, and P. McMinn, "A multi-

objective approach to search-based test data generation," 

in Proceedings of the 9th annual conference on Genetic 

and evolutionary computation, 2007, pp. 1098-1105.  

[44] S. A. Abdallah, "Challenges and Proposed Solutions of 

Coverage Based Testing Tools," 2015. 

[45] A. Perera, A. Aleti, B. Turhan, and M. Boehme, "An 

Experimental Assessment of Using Theoretical Defect 

Predictors to Guide Search-Based Software Testing," 

IEEE Transactions on Software Engineering, 2022. 

[46] Y. Lin, Y. S. Ong, J. Sun, G. Fraser, and J. S. Dong, 

"Graph-Based Seed Object Synthesis for Search-Based 

Unit Testing," 2021. 

[47] M. Harman and P. McMinn, "A theoretical and empirical 

study of search-based testing: Local, global, and hybrid 

search," IEEE Transactions on Software Engineering, 

vol. 36, no. 2, pp. 226-247, 2009. 

[48] [A. Baughan, N. Hatch, V. Ranganeni, and B. Yang, 

"Search-Based Test Generation for Robotic Motion 

Planning Algorithms," 2021. 

[49] A. Baresel, H. Sthamer, and M. Schmidt, "Fitness 

function design to improve evolutionary structural 

testing," in Proceedings of the 4th Annual Conference on 

Genetic and Evolutionary Computation, 2002, pp. 1329-

1336.  

[50] A. Perera, B. Turhan, A. Aleti, and M. Böhme, "How 

good does a Defect Predictor need to be to guide Search-

Based Software Testing?," arXiv preprint 

arXiv:2110.02682, 2021. 

[51] M. Harman, "The current state and future of search based 

software engineering," in Future of Software Engineering 

(FOSE'07), 2007: IEEE, pp. 342-357.  

[52] M. Harman, P. McMinn, J. T. De Souza, and S. Yoo, 

"Search based software engineering: Techniques, 

taxonomy, tutorial," in Empirical software engineering 

and verification: Springer, 2010, pp. 1-59. 

[53] S. Muthuraman and V. P. Venkatesan, "A comprehensive 

study on hybrid meta-heuristic approaches used for 

solving combinatorial optimization problems," in 2017 

World Congress on Computing and Communication 

Technologies (WCCCT), 2017: Ieee, pp. 185-190.  

[54] "Heuristics in optimisation." 

homes.ieu.edu.tr/~agokce/Courses/Lecture%201%20intr

otoOP.pdf (accessed. 

[55] Y. Zhu, G. Yang, C. Zhuang, C. Li, and D. Hu, "Oral 

cavity flow distribution and pressure drop in balaenid 

whales feeding: A theoretical analysis," (in eng), 

Bioinspir Biomim, Jan 24 2020, doi: 10.1088/1748-

3190/ab6fb8. 

[56] J. Holland, "Adaptation in natural and artificial systems: 

an introductory analysis with application to biology," 

Control and artificial intelligence, 1975. 

[57] P. Lakshminarayana and T. SureshKumar, "Automatic 

generation and optimization of test case using hybrid 

cuckoo search and bee colony algorithm," Journal of 

Intelligent Systems, vol. 30, no. 1, pp. 59-72, 2021. 

[58] A. Pachauri and G. Srivastava, "Automated test data 

generation for branch testing using genetic algorithm: An 

improved approach using branch ordering, memory and 

elitism," Journal of Systems and Software, vol. 86, no. 5, 

pp. 1191-1208, 2013. 

[59] W.-T. Tsai, D. Volovik, T. F. Keefe, and M. E. Fayad, 

"Automatic test case generation from relational algebra 

queries," in Proceedings COMPSAC 88: The Twelfth 

Annual International Computer Software & Applications 

Conference, 1988: IEEE, pp. 252-258.  

[60] M. Alenezi, M. Akour, and H. A. Basit, "Exploring 

Software Security Test Generation Techniques: 

Challenges and Opportunities." 

[61] I. Hermadi, C. Lokan, and R. Sarker, "Genetic algorithm 

based path testing: challenges and key parameters," in 

2010 Second World Congress on Software Engineering, 

2010, vol. 2: IEEE, pp. 241-244.  

[62] K. Lakhotia, P. McMinn, and M. Harman, "Automated 

test data generation for coverage: Haven't we solved this 

problem yet?," in 2009 Testing: Academic and Industrial 

Conference-Practice and Research Techniques, 2009: 

IEEE, pp. 95-104.  

[63] M. Gligoric, A. Groce, C. Zhang, R. Sharma, M. A. 

Alipour, and D. Marinov, "Comparing non-adequate test 

suites using coverage criteria," in Proceedings of the 

2013 International Symposium on Software Testing and 

Analysis, 2013, pp. 302-313.  

[64] G. Fraser and A. Arcuri, "Evosuite: automatic test suite 

generation for object-oriented software," in Proceedings 

of the 19th ACM SIGSOFT symposium and the 13th 

European conference on Foundations of software 

engineering, 2011, pp. 416-419.  

[65] G. Fraser and A. Arcuri, "It is not the length that matters, 

it is how you control it," in 2011 Fourth IEEE 

International Conference on Software Testing, 

Verification and Validation, 2011: IEEE, pp. 150-159.  

[66] M. R. K. Sepideh Kashefi Gargari, "General and 

technique-independent challenges of search-based 

software testing," presented at the The Second 

International Conference on Distributed Computing and 

High Performance Computing (DCHPC 2022), Qom, 

Iran, 2022. 

 

Volume 14- Number 2 – 2022 (32 -40) 
 

39 

 [
 D

O
I:

 1
0.

52
54

7/
itr

c.
14

.2
.3

2 
] 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n 

20
25

-1
1-

17
 ]

 

                               8 / 9

http://dx.doi.org/10.52547/itrc.14.2.32
http://ijict.itrc.ac.ir/article-1-499-en.html


 

 

Sepideh Kashefi Gargari received her 

B.Sc. degree in Information 

Technology from the Urmia University 

of Technology. She is currently 

pursuing the M.Sc. degree in Software 

Engineering at the Alzahra University, 

Tehran, Iran. Her research interests 

include Evolutionary Computation and 

Software Testing. 

 

 

Mohammad Reza Keyvanpour is an 

Associate Professor at Alzahra 

University, Tehran, Iran. He received 

his B.Sc. degree in Software 

Engineering from Iran University of 

Science and Technology, Tehran, Iran. 

He received his M.Sc. and Ph.D. 

degrees in Software Engineering from 

Tarbiat Modares University, Tehran, 

Iran. His research interests include 

Image Retrieval and Data Mining.  

 

 

 
 

Volume 14- Number 2 – 2022 (32 -40) 
 

40 

 [
 D

O
I:

 1
0.

52
54

7/
itr

c.
14

.2
.3

2 
] 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n 

20
25

-1
1-

17
 ]

 

Powered by TCPDF (www.tcpdf.org)

                               9 / 9

http://dx.doi.org/10.52547/itrc.14.2.32
http://ijict.itrc.ac.ir/article-1-499-en.html
http://www.tcpdf.org

