
Comparative Analytical Survey on SBST

Challenges from the Perspective of the Test

Techniques

Sepideh Kashefi Gargari
Department of Computer Engineering

Faculty of Engineering

Alzahra University

Tehran, Iran

sepideh.kashefi1994@gmail.com

Mohammad Reza Keyvanpour

Department of Computer Engineering

Faculty of Engineering

Alzahra University

Tehran, Iran

keyvanpour@alzahra.ac.ir

 Received: 2 April 2022 – Revised: 11 May 2022 - Accepted: 27 June 2022

Abstract—Despite several decades of working on software quality assurance methods, they still require further

investigation. It is paramount to detect a process detecting possible software errors with a minimum budget and effort.

Search-based software testing (SBST) is an approach to automated software testing that aims to find a suitable

alternative to manual testing. The SBST is to transform the test problem into an optimization problem and obtain better

solutions by searching the problem space. Search-based testing has some disadvantages and advantages. The novelty of

this paper is that, besides representing the significance and efficiency of SBST in software testing, the search-based test

challenges were detected and described from the perspective of the test techniques. Our work is to extract challenges

from reliable sources and research and their classification based on test techniques. For this purpose, we considered

this framework: 1) A systematic introduction to the most critical metaheuristic optimization algorithms. 2) classifying

the test techniques and explaining their advantages and disadvantages. 3) proposing a suitable classification for the

challenges of the search-based test area based on the technique used. Our motivation to do this research was to provide

complete knowledge about search-based software testing challenges so that new researchers could choose their research

fields with prior knowledge and provide a way to improve existing methods. Finally, the results of this paper can be

used to compare the existing test techniques used in SBST, select the best one, and represent the challenges of each

technique.

Keywords: SBST challenges; problems; test case generation; search-based software testing

Article type: Research Article

© The Author(s).

Publisher: ICT Research Institute

 Corresponding Author

 [
 D

O
I:

 1
0.

52
54

7/
itr

c.
14

.2
.3

2
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 1 / 9

http://dx.doi.org/10.52547/itrc.14.2.32
http://ijict.itrc.ac.ir/article-1-499-en.html

I. INTRODUCTION

In developing a software system, especially

software with high complexity, human mistakes are

unavoidable. When the source code is generated, the

software must be evaluated in terms of errors. Today,

applications are being evidently used in all life aspects.

The latest trends in technology and rapid changes in

society’s demands have led to the introduction of more

complex software systems [1] . This has converted

software testing to one of the most critical stages of the

software development life cycle [2] .

Testing mainly aims to find errors occurring during

the program's execution processes for all possible

inputs. The extensive range of input space makes the

number of test cases infinite [3] . In this regard,

software cannot be entirely tested with a limited budget

and time. Accordingly, we cannot comment on the

completeness of the developed software [4] . As a

result, the software test is required; however, it does

not guarantee the accuracy of the developed software.

Software tests are performed manually and

automatically [5]. A manual test is challenging and

time-consuming, and it is impossible for software with

high complexity. As a result, the test was automated,

and the automation process was transferred to

machines [6] . If the test process is fully automated, the

costs of testing and software development will be

remarkably reduced [7 ,8] . SBST is an attempt to

automate software testing. Moreover, search-based test

data generation is a technique to obtain a test

requirement, as an optimization problem with a

numerical and heuristic function to be solved [9] .

In this paper, after reviewing previous studies,

search-based testing is introduced. Then the general

testing techniques are classified into three categories of

structural testing, functional testing, non-functional

testing, whose ideas, advantages, and disadvantages

are also described. The idea of using search is proved

to provide high potentials in each of the

aforementioned techniques. However, in contrast to

the achieved accomplishments, there are challenges, in

which their expression based on test techniques is the

main objective of this study. In Section 5, the search-

based testing challenges are presented as the

breakdowns of all test techniques.

II. RELATED WORK

Harman and Jones (2001) published an article on

software engineering(SE) [10] . This article stated that

a new area of research, called search-based software

engineering (SBSE), is emerging. SBSE is a branch of

software engineering [11] and has a high capability in

all software areas, especially testing[12]. SBSE

techniques have shown promising results and give us

hope that someday it will be possible to automate the

tedious and, laborious parts of software development,

or at least partially automated software development

[13].

Following Ref. [10] , much research has addressed the

application of searching in testing.

 From the perspective of test techniques, some

researchers [14-18] examined structural testing based

on searching. Ref. is on functional testing[19], and

articles [20, 21] are on non-functional testing.

The first search-based algorithms used to automate the

generation of test data were descending gradients [22]

and algorithms such as hill climbing(HC) [17, 23], tabu

search [24-26], and simulated annealing(SA) [27, 28].

Although these algorithms had advantages, they were

time-consuming and inefficient and would get caught

if there was a local optimization.

Subsequently, other algorithms were introduced

that provided a better position than the original

algorithms. However, they still faced problems, and

there was a possibility of getting caught in the local

optimization.

Following the research process, other algorithms, such

as genetic algorithms [29-31], were used to generate

test data, which provided better conditions. Ref. [32]

discusses test data generation for structural testing

using genetic algorithms. In Ref. [33], genetic

algorithms and reinforcement learning are combined to

generate the test data.

As research expanded in later years, algorithms such as

particle swarm[29, 34, 35], ant colony[15, 36-38], and

bee colony[11, 39] were used, which yielded better

results. Some studies have also reviewed previous

works [3, 16, 40-42].

Furthermore, some papers have also addressed the

challenges in this field [11 ,43 ,44] . In this article, we

further explored the challenges in this field.

III. SEARCH BASED SOFTWARE TESTING

SBST generates test cases/test data guided by

measurements gauging how far tests are from reaching

a coverage target [45]. Search algorithms can gradually

improve tests to achieve high coverage, using the

fitness function as measurement criteria [46, 47]. The

value of the fitness function is a numerical value

expressing the performance of the candidate solutions

according to the current optimal candidate solution for

comparison to satisfy the test criterion [3, 48, 49].

Testing mainly aims to generate an optimal set of test

cases revealing the software errors [50] according to

the test adequacy criterion. The adequacy criteria for

testing are also formulated as a fitness function [51] .

Test adequacy criteria distinguish acceptable test cases

from unacceptable ones, and determining whether or

not a test process is complete [4] .

The rationale behind all test data generation

techniques is that the possible inputs to the program

constitute a search space, and the search for the

solution is carried out in this space. These techniques

have outperformed others in resolving software

problems in complex and large search spaces [52].

Figure 1 shows the general view of the search-based

test case generation steps and their original elements.

Volume 14- Number 2 – 2022 (32 -40)

33

 [
 D

O
I:

 1
0.

52
54

7/
itr

c.
14

.2
.3

2
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 2 / 9

http://dx.doi.org/10.52547/itrc.14.2.32
http://ijict.itrc.ac.ir/article-1-499-en.html

Figure 1. The search-based test input generation scheme [14]

As shown in Figure 1, search-based optimization is one

of the main components of search-based testing. Each

search-based algorithm can be used in this section to

generate new test data according to its logic. The

following section will provide more details on the

search-based algorithms.

IV. METAHEURISTIC OPTIMIZATION ALGORITHMS

In computer science, the problem of finding the

best solution among the possible solutions is called an

optimization problem. All optimization problems have

a purpose. In such cases, the objective function is often

set by the constraints imposed by the nature of the

problem. During the search to find the appropriate

solution, the value of the objective function takes

control of the search.

The objective function is defined so that it must

either have a minimum value or a maximum value. An

answer space is also evaluated during the problem-

solving effort [53 ,54] . So it can be said that

optimization problems have the following three key

elements [51]:

• A set of restrictions

• There is an answer space to search.

• The objective function should be maximized

or minimized during the search depending on

the nature of the problem.

In the introduction section, we enumerated several

optimization algorithms among the most widely used

in test data generation, which we will now describe in

more detail . There are various categories for

optimization algorithms, so we will skip the review of

how to classify them and explain only some of the most

famous algorithms in this field. The optimization

algorithms are placed into two categories: global and

local algorithms. Local algorithms are those algorithms

in which the solution is sought locally, and each time

we search for a better solution from the neighbors, we

may stop at the local optimal point. Nevertheless,

global algorithms are looking for answers among all

possible solutions and are more likely to succeed. The

following section explains the usage and application of

some of the most important algorithms in software

tests.

A. Hill climbing

Hill-climbing is a local search algorithm to

maximize the objective function. The algorithm starts

with an initial solution randomly selected from the

search space. At each iteration, the neighborhood of the

current solution is investigated. It replaces the current

solution if it is a better solution [14]. There are two

choices in the hill-climbing algorithm:

• The current solution is replaced by the first

neighbor who has improved merit.

• In the second case, the current solution is

replaced by a neighbor who gives the greatest

increase in competition among all the

neighbors .

The search continues until no improvement is found in

the neighbors to the current solution. When the search

ends, the maximum (probably local) is found.

Figure 2. Hill climbing algorithm for maximising an objective

function f [14]

Figure 3 shows that the hill climbing algorithm is

caught in the local optimization and does not achieve

global optimization.

Figure 3. Hill climbing and trapping in to local optimal [55]

B. Simulated annealing

Simulated annealing can be considered a variety of

hill climbing that prevents the maximum local problem

by allowing people to move with less fitness [51] . If

the neighbor's answer is better than the current answer,

the algorithm sets it as the current answer and moves

towards it. Otherwise, the algorithm accepts that

answer with an exp (- ΔE / T) probability as the current

answer. In this relation, ΔE is the difference between

the objective function of the current answer and the

neighboring answer. T is the temperature parameter. At

each temperature, several repetitions are performed,

Volume 14- Number 2 – 2022 (32 -40)

34

 [
 D

O
I:

 1
0.

52
54

7/
itr

c.
14

.2
.3

2
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 3 / 9

http://dx.doi.org/10.52547/itrc.14.2.32
http://ijict.itrc.ac.ir/article-1-499-en.html

and then the temperature is slowly reduced. A high

temperature is set in the initial steps to make it more

likely to accept worse answers. As the temperature

gradually decreases in the final steps, the probability of

accepting worse answers will decrease, and thus the

algorithm will converge toward a good answer.

Figure 4 shows that the algorithm can exit the local

optimization

Figure 4. The transition from local to global optimal in SA [55]

C. Genetic algorithm

Genetic algorithms use the concepts of population

and recombination [56] . Among all optimization

algorithms, genetic algorithms are the most commonly

applied research technique in SBSE.
First, the answer to the problem is formulated as a gene

in this algorithm, and a set of answers is considered

randomly. Then, depending on their compatibility and

appropriateness, three types of functions called

selection, crossover, and mutation are performed, and

new sets of answers are created. These answers replace

the worst answers in the initial set. Finally, the answer

is given by satisfying the condition of stopping, which

can be a condition of convergence.

Figure 5. Generic genetic algorithm [14]

V. SOFTWARE TESTING TECHNIQUES

Test case generation is a vital concept used in software

testing derived from the user requirements

specifications [57]. However, there are different types

of tests, and different categories can be imagined. The

test type affects the test cases generation. In this regard,

we divide the general software testing techniques into

three categories, as presented in Figure 6.

Figure 6. Software test techniques

Table Ⅰ. presents the ideas, advantages, disadvantages,

and examples of each test technique. Table Ⅰ is partly

taken from [4].

 The main idea of the structural test is to generate test

data/case for the completion of the execution in the

prescribed paths. Structural testing plays a

fundamental role in the miller and Spooner approach,

an application area that has involved the best attention

in SBST [20]. In the structural test, the internal

structure or the source code is considered, and the

program's behavior with its code execution is

examined. The test data required to run is derived from

program logic and applied to the code. This type of test

considers how to act. The main structural tests are

statement coverage, branch coverage, path coverage,

and data flow coverage [14] . The structural test has

been the main focus of SBST so far.

In functional testing, all the system's internal

mechanisms are ignored, and the generated output is

focused. It is assumed that there is no information

about the internal details of the software and the focus

of the tests is on different outputs and inputs [58] .

Non-functional testing determines how the system

or software works and can be performed at all system

levels. This type of test is to test the non-functional

features of the system never tested by the functional

test. Features such as performance, security,

portability, scalability, usability, efficiency are part of

this test.

TABLE I. THE CLASSIFICATION OF TESTING TECHNIQUES

-In structural test, the internal structure, or same
source code, are considered and the application
behavior is investigated by executing its code.
The required test data are derived from program
logic and applied to code

-Easy implementation ability

-Understandable

-Comprehensive

Software testing techniques

Functional testing

Structural testing

Non-functional testing

S
tr

u
ct

u
ra

l
te

st
in

g

Id
ea

A

d
v
an

ta
g
e

Volume 14- Number 2 – 2022 (32 -40)

35

 [
 D

O
I:

 1
0.

52
54

7/
itr

c.
14

.2
.3

2
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 4 / 9

http://dx.doi.org/10.52547/itrc.14.2.32
http://ijict.itrc.ac.ir/article-1-499-en.html

-The generation of test cases is usually done too
late in the software development cycle.

-Detected errors are very difficult and costly
because changes affect a large part of the
design, implementation and testing procedures

 [59] .

-Statement coverage, branch coverage, path
coverage

-The test cases are generated using system
specifications [60]. The purpose of functional
testing is testing software performance. In the
functional test it is assumed that there is no
information on the internal details of the
software and the test focus is on different output
from different inputs.

 -The test can begin faster in the software design
process.

 -Incompatibilities and ambiguities in the
specifications by the testers will be identified
sooner .

 -Errors are openly detected and correction cost
is not much

 -There is a need for official system
specifications that are difficult to identify in the
actual program .

 -The specification is complex and difficult to
understand .

 -Implementations must exactly match the
specifications.

 -Input validation and examining the behavior of
the system against the processing of large and
heavy queries

 -Non-functional tests indicate how a system
works and is a test to measure the characteristics
of systems that can be measured in a variable
scale.

 -Considering other behaviors in spite of the
system’s logical behaviors.

-It is highly complex as it is dependent on both
software and hardware features.

-Scalability, Efficiency, Usability, Quality of
service, Execution time, Security [21]

VI. CHALLENGES OF SBST

The general challenge in generating test data is that the

test data generated must have the potential to detect

program errors, and the result will be better if it takes

less time, effort, and cost.

The easiest way to generate test data is to generate it

manually. However, manually generating test data is

practically impossible for large and highly complex

software. Even if the software has a very high degree

of expertise in the test, manual production of test data

for complex software is unreasonable due to the vast

input area. It will waste the examiner's expense, time,

and effort.

Also, if we look at the issue from a human resources

perspective, the test costs and the nature of the software

tests are such that they require a high concentration of

the examiner. Most programmers and software

engineers are reluctant to test and generate manual test

data. For this reason, software quality managers seek

to use automatic methods to reduce the cost and time

of the test.
Automated testing has its challenges .In this section,

the challenges of SBST are explained for each
technique.

A. Challenges of structural test

1) Selection of test criteria
 There are many criteria for structural testing (e.g.,

path coverage, branch coverage, statement coverage,
and edge coverage). Path coverage is the strongest
structural cover criteria, and branch coverage is the
standard structural test [36]. The first challenge is
choosing the test criteria meeting our requirements with
a minimum cost. Selecting a stronger criterion requires
higher computational resources and, considering it as a
target criterion should be a justification.

2) Nested loops
The presence of nested loops in the program code is

directly associated with an increase in the number of
targets. As the number of target paths generated for the
search increases, finding a solution representing the
complete set becomes more difficult. In this case, we
may need a better search guide, or we may need to

change the algorithm or its fitness function [61] .

3) Uncoverd targets
Uncovered targets cannot be easily located in the

category of infeasible routes because the source of

uncovered targets may be an incomplete search and

may be covered by continuing the search. To find out

whether or not a target is impractical, more analysis is

required [61] .

4) Uncertainty after the testing
Automatic test case generation is used to detect

errors. The most common characteristic of the correct
behavior of a program is that the program does not
encounter errors during execution.
If an exception is detected, it indicates an error;
however, if the application is executed without errors,

the following questions arise [44] :

• Does the program have the proper
performance?

• What test cases should be taken to ensure that
the next versions of the program preserve
current behavior?

5) Insufficient coverage
SBST is suitable for structural coverage and has

been studied more frequently [11] . However, the
resulting structural coverage is not always as high as
expected [62] . Therefore, we may need to rely on
insufficient test sets, and all tests require the use of
existing tools [63].

F
u
n
ct

io
n
al

 t
es

ti
n
g

N

o
n
-f

u
n
ct

io
n
al

 t
es

ti
n
g

Id
ea

Id

ea

A
d
v
an

ta
g
e

D
is

ad
v
an

ta
g
e

E
x
am

p
le

E

x
am

p
le

E

x
am

p
le

D

is
ad

v
an

ta
g
e

A
d
v
an

ta
g
e

D
is

ad
v
an

ta
g
e

Volume 14- Number 2 – 2022 (32 -40)

36

 [
 D

O
I:

 1
0.

52
54

7/
itr

c.
14

.2
.3

2
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 5 / 9

http://dx.doi.org/10.52547/itrc.14.2.32
http://ijict.itrc.ac.ir/article-1-499-en.html

6) Bloat phenomenon
An innovation in some of the SBSE tools, such as

evosuite, is to develop all test sets in one place instead
of creating a test case in a single time to cover a distinct
target so that all cover targets are targeted at the same
time. Before addressing the challenges, the technique
has several advantages:

• Impractical coverage targets do not spoil the
search.

• There is no limit to target selection.

• There is no incidental coverage.

This method can be better than the classical
approach (focusing on individual coverage targets);
however, as it seems, it is with problems. During the
search, the number of test cases in a test set and the
length of individual test cases can vary and create
additional challenges such as bloat [64] [44] . Bloat is a
complex phenomenon in evolutionary computation, in
which length grows abnormally over time to the point
where search becomes impossible [65] .

Figure 7. Proposed classification for SBST challenges based on

test techniques

B. Challenges of functional testing

In the previous section, we discussed the challenges

of structural testing. According to our studies, there is

less activity in search-based functional testing than in

structural testing.

In this section, we will explain its relevant challenges.

1) Complex nature of system specification
The functional procedures should be taken from the

different types of system specifications [3] . However,
the system specifications are complex and thereby hard
to understand. Not understanding the nature of the
problem, its complexity, and the difficulty of
formulating the functional issues should be one of the
reasons for not addressing the search-based functional
testing.

2) Implementation challenge
An implementation must follow the system

specifications; however, it is difficult to accurately
identify the system specifications in real usage [4] . An
existing obstacle to full automation is the fact that
mapping must be presented from the abstract model of
specifications to the real model to be implemented [3].

C. Challenges of non-functional testing

1) Insufficient research in this area
The lack of studies on non-functional characteristics

is surprising due to the increasing importance of non-
functional properties. The SBST techniques have a
significant advantage and theoretically can be applied
to any test problem, in which adequacy criteria can be
applied as the work of the fitness function. In essence,
testing for execution time, service quality, and energy
consumption should not be more severe than the branch
coverage, and only a different fit function is required.
However, measuring the fitness function for any non-
functional feature may be associated with specific

challenges [11] .

2) Negative effect on multiobjective optimization
One of the reasons indicating why multi-objective

techniques have not attracted attention is the lack of
field development for non-functional features. Many of
the additional goals testers pursue are associated with
non-operational features. For example, a tester may be
interested in getting more coverage; however, it may
also target unusual execution times, security features,
or power consumption (or all of these). Because society
seems slow to understand the non-functional
characteristics, this may significantly affect the

application of multi-objective methods [11] .

D. Conclusion

In this article, after providing general explanations
and the introduction of software testing, some relevant
studies were presented. Then we explained the
generalities of search-based testing and described how
to apply the search-based approach in generating test
data. Next, we described the test techniques and
classified them into three general categories (namely
structural, functional and non-functional tests).
According to Table 1, we described the main features

Functional testing

Structural testing

Non-functional

testing

Selection of test criteria

Uncovered targets

Uncertainty after the test

Complex specification

Insufficient coverage

Implementation challenge

Insufficient research

Negative effect on multi -

objective optimization

Nested loops

Bloat phenomenon

Challenges of SBST

Volume 14- Number 2 – 2022 (32 -40)

37

 [
 D

O
I:

 1
0.

52
54

7/
itr

c.
14

.2
.3

2
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 6 / 9

http://dx.doi.org/10.52547/itrc.14.2.32
http://ijict.itrc.ac.ir/article-1-499-en.html

of each technique. In the last section, which is the most
important part of the article, we were to describe the
challenges of search-based testing for each of the
aforementioned techniques separately.

Given the above, we conducted a study on search-
based tests and test case generation in this article and
faced a series of challenges expressed in the categories.

All the challenges mentioned in this article have been
extracted from credible sources and research and can be
cited. Our innovation is the proposed classification for
these challenges .The challenges are arranged so that
researchers can find complete information about the
problems of the field before entering it.

For example, search-based structural testing has its
own problems that are different from the search-based
functional test, and knowing these issues before
conducting further research can benefit researchers.

Also, the search-based test outside the classification
based on the test technique has common challenges,
which we examined in Ref. [66] and referred to as the
general challenges of the search-based test. The study
of this paper and Ref. [66] can provide researchers with
a good understanding of the general and related
challenges related to the search-based test method.

This article can be useful for those interested in the
field of software testing, particularly SBST.

REFERENCES

[1] S. Ul Haq and U. Qamar, "Ontology Based Test Case

Generation for Black Box Testing," in Proceedings of the

2019 8th International Conference on Educational and

Information Technology, 2019: ACM, pp. 236-241.

[2] A. P. Mathur, Foundations of Software Testing:

Fundamental Algorithms and Techniques. Pearson

Education, 2008.

[3] P. McMinn, "Search ‐ based software test data

generation: a survey," Software testing, Verification and

reliability, vol. 14, no. 2, pp. 105-156, 2004.

[4] M. R. Keyvanpour, H. Homayouni, and H. Shirazee,

"Automatic software test case generation: An analytical

classification framework," International Journal of

Software Engineering and Its Applications, vol. 6, no. 4,

pp. 1-16, 2012.

[5] A. M. Bidgoli, H. Haghighi, T. Z. Nasab, and H. Sabouri,

"Using swarm intelligence to generate test data for

covering prime paths," in International Conference on

Fundamentals of Software Engineering, 2017: Springer,

pp. 132-147.

[6] G. Candea and P. Godefroid, "Automated software test

generation: some challenges, solutions, and recent

advances," in Computing and Software Science:

Springer, 2019, pp. 505-531.

[7] S. U. Farooq and S. Quadri, "Identifying some problems

with selection of software testing techniques," Oriental

Journal of Computer Science & Technology, vol. 3, no.

2, pp. 266-269, 2010.

[8] A. Bertolino, "Software testing research: Achievements,

challenges, dreams," in 2007 Future of Software

Engineering, 2007: IEEE Computer Society, pp. 85-103.

[9] K. Ghani and J. A. Clark, "Automatic test data generation

for multiple condition and MCDC coverage," in 2009

Fourth International Conference on Software

Engineering Advances, 2009: IEEE, pp. 152-157.

[10] M. Harman and B. F. Jones, "Search-based software

engineering," Information and software Technology, vol.

43, no. 14, pp. 833-839, 2001.

[11] M. Harman, Y. Jia, and Y. Zhang, "Achievements, open

problems and challenges for search based software

testing," in 2015 IEEE 8th International Conference on

Software Testing, Verification and Validation (ICST),

2015: IEEE, pp. 1-12.

[12] A. Arcuri and J. P. Galeotti, "Enhancing search-based

testing with testability transformations for existing

APIs," ACM Transactions on Software Engineering and

Methodology (TOSEM), vol. 31, no. 1, pp. 1-34, 2021.

[13] A. Aleti, "On the Effectiveness of SBSE Techniques," in

International Symposium on Search Based Software

Engineering, 2021: Springer, pp. 3-6.

[14] S. Varshney and M. Mehrotra, "Search based software

test data generation for structural testing: a perspective,"

ACM SIGSOFT Software Engineering Notes, vol. 38, no.

4, pp. 1-6, 2013.

[15] C. Mao, X. Yu, J. Chen, and J. Chen, "Generating test

data for structural testing based on ant colony

optimization," in 2012 12th International Conference on

Quality Software, 2012: IEEE, pp. 98-101.

[16] P. McMinn, "Search-based software testing: Past, present

and future," in 2011 IEEE Fourth International

Conference on Software Testing, Verification and

Validation Workshops, 2011: IEEE, pp. 153-163.

[17] M. Harman and P. McMinn, "A theoretical & empirical

analysis of evolutionary testing and hill climbing for

structural test data generation," in Proceedings of the

2007 international symposium on Software testing and

analysis, 2007, pp. 73-83.

[18] C. Mao, "Harmony search-based test data generation for

branch coverage in software structural testing," Neural

Computing and Applications, vol. 25, no. 1, pp. 199-216,

2014.

[19] R. Lefticaru and F. Ipate, "Functional search-based

testing from state machines," in 2008 1st International

Conference on Software Testing, Verification, and

Validation, 2008: IEEE, pp. 525-528.

[20] N. Bala and S. Suhailan, "Effective Search-Based

Approach for Testing Non-Functional Properties in

Software System: an Empirical Review," International

Journal of Engineering & Technology, vol. 7, no. 4.28,

pp. 368-391, 2018.

[21] W. Afzal, R. Torkar, and R. Feldt, "A systematic review

of search-based testing for non-functional system

properties," Information and Software Technology, vol.

51, no. 6, pp. 957-976, 2009.

[22] C. C. Michael, G. E. McGraw, M. A. Schatz, and C. C.

Walton, "Genetic algorithms for dynamic test data

generation," in Proceedings 12th IEEE International

Conference Automated Software Engineering, 1997:

IEEE, pp. 307-308.

[23] F. C. M. Souza, M. Papadakis, Y. Le Traon, and M. E.

Delamaro, "Strong mutation-based test data generation

using hill climbing," in Proceedings of the 9th

International Workshop on Search-Based Software

Testing, 2016, pp. 45-54.

[24] P. R. Srivastava, R. Khandelwal, S. Khandelwal, S.

Kumar, and S. S. Ranganatha, "Automated test data

generation using cuckoo search and tabu search (CSTS)

algorithm," Journal of Intelligent Systems, vol. 21, no. 2,

pp. 195-224, 2012.

[25] K. Perumal, J. M. Ungati, G. Kumar, N. Jain, R. Gaurav,

and P. R. Srivastava, "Test data generation: a hybrid

approach using cuckoo and tabu search," in International

Conference on Swarm, Evolutionary, and Memetic

Computing, 2011: Springer, pp. 46-54.

[26] E. Díaz, J. Tuya, and R. Blanco, "Automated software

testing using a metaheuristic technique based on tabu

search," in 18th IEEE International Conference on

Automated Software Engineering, 2003. Proceedings.,

2003: IEEE, pp. 310-313.

[27] L.-s. LI, X. CAO, and F. WANG, "Test Data Generation

Using Simulated Annealing Genetic Algorithm,"

COMPUTER TECHNOLOGY AND DEVEI PMENT, vol.

4, no. 21, p. 4, 2011.

[28] M. Mann, O. P. Sangwan, P. Tomar, and S. Singh,

"Automatic goal-oriented test data generation using a

genetic algorithm and simulated annealing," in 2016 6th

Volume 14- Number 2 – 2022 (32 -40)

38

 [
 D

O
I:

 1
0.

52
54

7/
itr

c.
14

.2
.3

2
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 7 / 9

http://dx.doi.org/10.52547/itrc.14.2.32
http://ijict.itrc.ac.ir/article-1-499-en.html

International Conference-Cloud System and Big Data

Engineering (Confluence), 2016: IEEE, pp. 83-87.

[29] S. Zhang, Y. Zhang, H. Zhou, and Q. He, "Automatic

path test data generation based on GA-PSO," in 2010

IEEE International Conference on intelligent computing

and intelligent systems, 2010, vol. 1: IEEE, pp. 142-146.

[30] [30] A. Rathore, A. Bohara, R. G. Prashil, T. L.

Prashanth, and P. R. Srivastava, "Application of genetic

algorithm and tabu search in software testing," in

Proceedings of the Fourth Annual ACM Bangalore

Conference, 2011, pp. 1-4.

[31] R. P. Pargas, M. J. Harrold, and R. R. Peck, "Test‐data

generation using genetic algorithms," Software testing,

verification and reliability, vol. 9, no. 4, pp. 263-282,

1999.

[32] A. Damia, M. Esnaashari, and M. Parvizimosaed,

"Software Testing using an Adaptive Genetic

Algorithm," Journal of AI and Data Mining, 2021.

[33] M. Esnaashari and A. H. Damia, "Automation of

Software Test Data Generation Using Genetic Algorithm

and Reinforcement Learning," Expert Systems with

Applications, p. 115446, 2021.

[34] A. Li and Y. Zhang, "Automatic generating all-path test

data of a program based on PSO," in 2009 WRI World

Congress on software engineering, 2009, vol. 4: IEEE,

pp. 189-193.

[35] S. Kumar, D. K. Yadav, and D. A. Khan, "A novel

approach to automate test data generation for data flow

testing based on hybrid adaptive PSO-GA algorithm,"

International Journal of Advanced Intelligence

Paradigms, vol. 9, no. 2-3, pp. 278-312, 2017.

[36] A. M. Bidgoli and H. Haghighi, "Augmenting ant colony

optimization with adaptive random testing to cover prime

paths," Journal of Systems and Software, vol. 161, p.

110495, 2020.

[37] H. Sharifipour, M. Shakeri, and H. Haghighi, "Structural

test data generation using a memetic ant colony

optimization based on evolution strategies," Swarm and

Evolutionary Computation, vol. 40, pp. 76-91, 2018.

[38] C. Mao, L. Xiao, X. Yu, and J. Chen, "Adapting ant

colony optimization to generate test data for software

structural testing," Swarm and Evolutionary

Computation, vol. 20, pp. 23-36, 2015.

[39] S. S. Dahiya, J. K. Chhabra, and S. Kumar, "Application

of artificial bee colony algorithm to software testing," in

2010 21st Australian software engineering conference,

2010: IEEE, pp. 149-154.

[40] A. Ouni, "Search based software engineering: challenges,

opportunities and recent applications," in Proceedings of

the 2020 Genetic and Evolutionary Computation

Conference Companion, 2020, pp. 1114-1146.

[41] M. Harman, "Automated test data generation using

search based software engineering," in Second

International Workshop on Automation of Software Test

(AST'07), 2007: IEEE, pp. 2-2.

[42] M. Khari and P. Kumar, "An extensive evaluation of

search-based software testing: a review," Soft

Computing, vol. 23, no. 6, pp. 1933-1946, 2019.

[43] K. Lakhotia, M. Harman, and P. McMinn, "A multi-

objective approach to search-based test data generation,"

in Proceedings of the 9th annual conference on Genetic

and evolutionary computation, 2007, pp. 1098-1105.

[44] S. A. Abdallah, "Challenges and Proposed Solutions of

Coverage Based Testing Tools," 2015.

[45] A. Perera, A. Aleti, B. Turhan, and M. Boehme, "An

Experimental Assessment of Using Theoretical Defect

Predictors to Guide Search-Based Software Testing,"

IEEE Transactions on Software Engineering, 2022.

[46] Y. Lin, Y. S. Ong, J. Sun, G. Fraser, and J. S. Dong,

"Graph-Based Seed Object Synthesis for Search-Based

Unit Testing," 2021.

[47] M. Harman and P. McMinn, "A theoretical and empirical

study of search-based testing: Local, global, and hybrid

search," IEEE Transactions on Software Engineering,

vol. 36, no. 2, pp. 226-247, 2009.

[48] [A. Baughan, N. Hatch, V. Ranganeni, and B. Yang,

"Search-Based Test Generation for Robotic Motion

Planning Algorithms," 2021.

[49] A. Baresel, H. Sthamer, and M. Schmidt, "Fitness

function design to improve evolutionary structural

testing," in Proceedings of the 4th Annual Conference on

Genetic and Evolutionary Computation, 2002, pp. 1329-

1336.

[50] A. Perera, B. Turhan, A. Aleti, and M. Böhme, "How

good does a Defect Predictor need to be to guide Search-

Based Software Testing?," arXiv preprint

arXiv:2110.02682, 2021.

[51] M. Harman, "The current state and future of search based

software engineering," in Future of Software Engineering

(FOSE'07), 2007: IEEE, pp. 342-357.

[52] M. Harman, P. McMinn, J. T. De Souza, and S. Yoo,

"Search based software engineering: Techniques,

taxonomy, tutorial," in Empirical software engineering

and verification: Springer, 2010, pp. 1-59.

[53] S. Muthuraman and V. P. Venkatesan, "A comprehensive

study on hybrid meta-heuristic approaches used for

solving combinatorial optimization problems," in 2017

World Congress on Computing and Communication

Technologies (WCCCT), 2017: Ieee, pp. 185-190.

[54] "Heuristics in optimisation."

homes.ieu.edu.tr/~agokce/Courses/Lecture%201%20intr

otoOP.pdf (accessed.

[55] Y. Zhu, G. Yang, C. Zhuang, C. Li, and D. Hu, "Oral

cavity flow distribution and pressure drop in balaenid

whales feeding: A theoretical analysis," (in eng),

Bioinspir Biomim, Jan 24 2020, doi: 10.1088/1748-

3190/ab6fb8.

[56] J. Holland, "Adaptation in natural and artificial systems:

an introductory analysis with application to biology,"

Control and artificial intelligence, 1975.

[57] P. Lakshminarayana and T. SureshKumar, "Automatic

generation and optimization of test case using hybrid

cuckoo search and bee colony algorithm," Journal of

Intelligent Systems, vol. 30, no. 1, pp. 59-72, 2021.

[58] A. Pachauri and G. Srivastava, "Automated test data

generation for branch testing using genetic algorithm: An

improved approach using branch ordering, memory and

elitism," Journal of Systems and Software, vol. 86, no. 5,

pp. 1191-1208, 2013.

[59] W.-T. Tsai, D. Volovik, T. F. Keefe, and M. E. Fayad,

"Automatic test case generation from relational algebra

queries," in Proceedings COMPSAC 88: The Twelfth

Annual International Computer Software & Applications

Conference, 1988: IEEE, pp. 252-258.

[60] M. Alenezi, M. Akour, and H. A. Basit, "Exploring

Software Security Test Generation Techniques:

Challenges and Opportunities."

[61] I. Hermadi, C. Lokan, and R. Sarker, "Genetic algorithm

based path testing: challenges and key parameters," in

2010 Second World Congress on Software Engineering,

2010, vol. 2: IEEE, pp. 241-244.

[62] K. Lakhotia, P. McMinn, and M. Harman, "Automated

test data generation for coverage: Haven't we solved this

problem yet?," in 2009 Testing: Academic and Industrial

Conference-Practice and Research Techniques, 2009:

IEEE, pp. 95-104.

[63] M. Gligoric, A. Groce, C. Zhang, R. Sharma, M. A.

Alipour, and D. Marinov, "Comparing non-adequate test

suites using coverage criteria," in Proceedings of the

2013 International Symposium on Software Testing and

Analysis, 2013, pp. 302-313.

[64] G. Fraser and A. Arcuri, "Evosuite: automatic test suite

generation for object-oriented software," in Proceedings

of the 19th ACM SIGSOFT symposium and the 13th

European conference on Foundations of software

engineering, 2011, pp. 416-419.

[65] G. Fraser and A. Arcuri, "It is not the length that matters,

it is how you control it," in 2011 Fourth IEEE

International Conference on Software Testing,

Verification and Validation, 2011: IEEE, pp. 150-159.

[66] M. R. K. Sepideh Kashefi Gargari, "General and

technique-independent challenges of search-based

software testing," presented at the The Second

International Conference on Distributed Computing and

High Performance Computing (DCHPC 2022), Qom,

Iran, 2022.

Volume 14- Number 2 – 2022 (32 -40)

39

 [
 D

O
I:

 1
0.

52
54

7/
itr

c.
14

.2
.3

2
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 8 / 9

http://dx.doi.org/10.52547/itrc.14.2.32
http://ijict.itrc.ac.ir/article-1-499-en.html

Sepideh Kashefi Gargari received her

B.Sc. degree in Information

Technology from the Urmia University

of Technology. She is currently

pursuing the M.Sc. degree in Software

Engineering at the Alzahra University,

Tehran, Iran. Her research interests

include Evolutionary Computation and

Software Testing.

Mohammad Reza Keyvanpour is an

Associate Professor at Alzahra

University, Tehran, Iran. He received

his B.Sc. degree in Software

Engineering from Iran University of

Science and Technology, Tehran, Iran.

He received his M.Sc. and Ph.D.

degrees in Software Engineering from

Tarbiat Modares University, Tehran,

Iran. His research interests include

Image Retrieval and Data Mining.

Volume 14- Number 2 – 2022 (32 -40)

40

 [
 D

O
I:

 1
0.

52
54

7/
itr

c.
14

.2
.3

2
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

Powered by TCPDF (www.tcpdf.org)

 9 / 9

http://dx.doi.org/10.52547/itrc.14.2.32
http://ijict.itrc.ac.ir/article-1-499-en.html
http://www.tcpdf.org

