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Abstract—Despite several decades of working on software quality assurance methods, they still require further
investigation. It is paramount to detect a process detecting possible software errors with a minimum budget and effort.
Search-based software testing (SBST) is an approach to automated software testing that aims to find a suitable
alternative to manual testing. The SBST is to transform the test problem into an optimization problem and obtain better
solutions by searching the problem space. Search-based testing has some disadvantages and advantages. The novelty of
this paper is that, besides representing the significance and efficiency of SBST in software testing, the search-based test
challenges were detected and described from the perspective of the test techniques. Our work is to extract challenges
from reliable sources and research and their classification based on test techniques. For this purpose, we considered
this framework: 1) A systematic introduction to the most critical metaheuristic optimization algorithms. 2) classifying
the test techniques and explaining their advantages and disadvantages. 3) proposing a suitable classification for the
challenges of the search-based test area based on the technique used. Our motivation to do this research was to provide
complete knowledge about search-based software testing challenges so that new researchers could choose their research
fields with prior knowledge and provide a way to improve existing methods. Finally, the results of this paper can be
used to compare the existing test techniques used in SBST, select the best one, and represent the challenges of each
technique.
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l. INTRODUCTION

In developing a software system, especially
software with high complexity, human mistakes are
unavoidable. When the source code is generated, the
software must be evaluated in terms of errors. Today,
applications are being evidently used in all life aspects.
The latest trends in technology and rapid changes in
society’s demands have led to the introduction of more
complex software systems [1]. This has converted
software testing to one of the most critical stages of the
software development life cycle [2].

Testing mainly aims to find errors occurring during
the program's execution processes for all possible
inputs. The extensive range of input space makes the
number of test cases infinite [3]. In this regard,
software cannot be entirely tested with a limited budget
and time. Accordingly, we cannot comment on the
completeness of the developed software [4]. As a
result, the software test is required; however, it does
not guarantee the accuracy of the developed software.

Software tests are performed manually and
automatically [5]. A manual test is challenging and
time-consuming, and it is impossible for software with
high complexity. As a result, the test was automated,
and the automation process was transferred to
machines [6]. If the test process is fully automated, the
costs of testing and software development will be
remarkably reduced [8 ,7]. SBST is an attempt to
automate software testing. Moreover, search-based test
data generation is a technique to obtain a test
requirement, as an optimization problem with a
numerical and heuristic function to be solved [9].

In this paper, after reviewing previous studies,
search-based testing is introduced. Then the general
testing techniques are classified into three categories of
structural testing, functional testing, non-functional
testing, whose ideas, advantages, and disadvantages
are also described. The idea of using search is proved
to provide high potentials in each of the
aforementioned techniques. However, in contrast to
the achieved accomplishments, there are challenges, in
which their expression based on test techniques is the
main objective of this study. In Section 5, the search-
based testing challenges are presented as the
breakdowns of all test techniques.

Il.  RELATED WORK

Harman and Jones (2001) published an article on
software engineering(SE) [10]. This article stated that
a new area of research, called search-based software
engineering (SBSE), is emerging. SBSE is a branch of
software engineering [11] and has a high capability in
all software areas, especially testing[12]. SBSE
techniques have shown promising results and give us
hope that someday it will be possible to automate the
tedious and, laborious parts of software development,
or at least partially automated software development
[13].

Following Ref. [10], much research has addressed the
application of searching in testing.
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From the perspective of test techniques, some
researchers [14-18] examined structural testing based
on searching. Ref. is on functional testing[19], and
articles [20, 21] are on non-functional testing.

The first search-based algorithms used to automate the
generation of test data were descending gradients [22]
and algorithms such as hill climbing(HC) [17, 23], tabu
search [24-26], and simulated annealing(SA) [27, 28].
Although these algorithms had advantages, they were
time-consuming and inefficient and would get caught
if there was a local optimization.

Subsequently, other algorithms were introduced
that provided a better position than the original
algorithms. However, they still faced problems, and
there was a possibility of getting caught in the local
optimization.

Following the research process, other algorithms, such
as genetic algorithms [29-31], were used to generate
test data, which provided better conditions. Ref. [32]
discusses test data generation for structural testing
using genetic algorithms. In Ref. [33], genetic
algorithms and reinforcement learning are combined to
generate the test data.

As research expanded in later years, algorithms such as
particle swarm[29, 34, 35], ant colony[15, 36-38], and
bee colony[11, 39] were used, which yielded better
results. Some studies have also reviewed previous
works [3, 16, 40-42].

Furthermore, some papers have also addressed the
challenges in this field [44 ,43 ,11]. In this article, we
further explored the challenges in this field.

IIl.  SEARCH BASED SOFTWARE TESTING

SBST generates test cases/test data guided by
measurements gauging how far tests are from reaching
a coverage target [45]. Search algorithms can gradually
improve tests to achieve high coverage, using the
fitness function as measurement criteria [46, 47]. The
value of the fitness function is a numerical value
expressing the performance of the candidate solutions
according to the current optimal candidate solution for
comparison to satisfy the test criterion [3, 48, 49].
Testing mainly aims to generate an optimal set of test
cases revealing the software errors [50] according to
the test adequacy criterion. The adequacy criteria for
testing are also formulated as a fitness function [51].
Test adequacy criteria distinguish acceptable test cases
from unacceptable ones, and determining whether or
not a test process is complete [4].

The rationale behind all test data generation
techniques is that the possible inputs to the program
constitute a search space, and the search for the
solution is carried out in this space. These techniques
have outperformed others in resolving software
problems in complex and large search spaces [52].
Figure 1 shows the general view of the search-based
test case generation steps and their original elements.
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Figure 1. The search-based test input generation scheme [14]

As shown in Figure 1, search-based optimization is one
of the main components of search-based testing. Each
search-based algorithm can be used in this section to
generate new test data according to its logic. The
following section will provide more details on the
search-based algorithms.

IV.  METAHEURISTIC OPTIMIZATION ALGORITHMS

In computer science, the problem of finding the
best solution among the possible solutions is called an
optimization problem. All optimization problems have
a purpose. In such cases, the objective function is often
set by the constraints imposed by the nature of the
problem. During the search to find the appropriate
solution, the value of the objective function takes
control of the search.

The objective function is defined so that it must
either have a minimum value or a maximum value. An
answer space is also evaluated during the problem-
solving effort [54 ,53]. So it can be said that
optimization problems have the following three key
elements [51]:

A set of restrictions
There is an answer space to search.

e The objective function should be maximized
or minimized during the search depending on
the nature of the problem.

In the introduction section, we enumerated several
optimization algorithms among the most widely used
in test data generation, which we will now describe in
more detail. There are various categories for
optimization algorithms, so we will skip the review of
how to classify them and explain only some of the most
famous algorithms in this field. The optimization
algorithms are placed into two categories: global and
local algorithms. Local algorithms are those algorithms
in which the solution is sought locally, and each time
we search for a better solution from the neighbors, we
may stop at the local optimal point. Nevertheless,
global algorithms are looking for answers among all
possible solutions and are more likely to succeed. The
following section explains the usage and application of
some of the most important algorithms in software
tests.

A. Hill climbing
Hill-climbing is a local search algorithm to
maximize the objective function. The algorithm starts
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with an initial solution randomly selected from the
search space. At each iteration, the neighborhood of the
current solution is investigated. It replaces the current
solution if it is a better solution [14]. There are two
choices in the hill-climbing algorithm:

® The current solution is replaced by the first
neighbor who has improved merit.

® In the second case, the current solution is
replaced by a neighbor who gives the greatest
increase in competition among all the
neighbors.

The search continues until no improvement is found in
the neighbors to the current solution. When the search
ends, the maximum (probably local) is found.

1. Select an initial solution s that belongs to solution space S
2. Repeat

3. Select s” that belongs to neighbourhood N of s such
that £(s”) > f{s)

4. s=¢

5. Until f(s) > f(s"), for all s* that belongs to neighbourhood of s

Figure 2. Hill climbing algorithm for maximising an objective
function f [14]

Figure 3 shows that the hill climbing algorithm is
caught in the local optimization and does not achieve
global optimization.

3

Figure 3. Hill climbing and trapping in to local optimal [55]

B. Simulated annealing

Simulated annealing can be considered a variety of
hill climbing that prevents the maximum local problem
by allowing people to move with less fitness [51]. If
the neighbor's answer is better than the current answer,
the algorithm sets it as the current answer and moves
towards it. Otherwise, the algorithm accepts that
answer with an exp (- AE / T) probability as the current
answer. In this relation, AE is the difference between
the objective function of the current answer and the
neighboring answer. T is the temperature parameter. At
each temperature, several repetitions are performed,
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and then the temperature is slowly reduced. A high
temperature is set in the initial steps to make it more
likely to accept worse answers. As the temperature
gradually decreases in the final steps, the probability of
accepting worse answers will decrease, and thus the
algorithm will converge toward a good answer.

Figure 4 shows that the algorithm can exit the local
optimization

[

f‘\-/ |

@

l

Figure 4. The transition from local to global optimal in SA [55]

C. Genetic algorithm

Genetic algorithms use the concepts of population
and recombination [56]. Among all optimization
algorithms, genetic algorithms are the most commonly
applied research technique in SBSE.
First, the answer to the problem is formulated as a gene
in this algorithm, and a set of answers is considered
randomly. Then, depending on their compatibility and
appropriateness, three types of functions called
selection, crossover, and mutation are performed, and
new sets of answers are created. These answers replace
the worst answers in the initial set. Finally, the answer
is given by satisfying the condition of stopping, which
can be a condition of convergence.

1. Randomly generate or seed nitial population P

2. Repeat

3. Evaluate fitness of each individual in P

4. Select parents from P according to selection
mechanism

3. Recombine parents to form new offspring

6. Construct new population P* from parents and
offspring

7. Mutate P’

8. pP=F

9. Until Stopping Condition Reached

Figure 5. Generic genetic algorithm [14]

V. SOFTWARE TESTING TECHNIQUES

Test case generation is a vital concept used in software
testing derived from the wuser requirements
specifications [57]. However, there are different types
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of tests, and different categories can be imagined. The
test type affects the test cases generation. In this regard,
we divide the general software testing techniques into
three categories, as presented in Figure 6.

| Software testing techniques I

—b[ Structural testing ]

—b[ Functional testing ]
—b[ Non-functional testing ]

Figure 6. Software test techniques

Table I. presents the ideas, advantages, disadvantages,
and examples of each test technique. Table I is partly
taken from [4].

The main idea of the structural test is to generate test
data/case for the completion of the execution in the
prescribed paths.  Structural testing plays a
fundamental role in the miller and Spooner approach,
an application area that has involved the best attention
in SBST [20]. In the structural test, the internal
structure or the source code is considered, and the
program's behavior with its code execution is
examined. The test data required to run is derived from
program logic and applied to the code. This type of test
considers how to act. The main structural tests are
statement coverage, branch coverage, path coverage,
and data flow coverage [14]. The structural test has
been the main focus of SBST so far.

In functional testing, all the system's internal
mechanisms are ignored, and the generated output is
focused. It is assumed that there is no information
about the internal details of the software and the focus
of the tests is on different outputs and inputs [58].

Non-functional testing determines how the system
or software works and can be performed at all system
levels. This type of test is to test the non-functional
features of the system never tested by the functional
test. Features such as performance, security,
portability, scalability, usability, efficiency are part of
this test.

TABLE I. THE CLASSIFICATION OF TESTING TECHNIQUES

-In structural test, the internal structure, or same
source code, are considered and the application
behavior is investigated by executing its code.
The required test data are derived from program
logic and applied to code

Idea

-Easy implementation ability
-Understandable
-Comprehensive

Structural testing

Advantage
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-The generation of test cases is usually done too
late in the software development cycle.

-Detected errors are very difficult and costly
because changes affect a large part of the
design, implementation and testing procedures
[59].

Disadvantage

-Statement coverage, branch coverage, path
coverage

Example

-The test cases are generated using system
specifications [60]. The purpose of functional
testing is testing software performance. In the
functional test it is assumed that there is no
information on the internal details of the
software and the test focus is on different output
from different inputs.

Idea

-The test can begin faster in the software design
process.

-Incompatibilities and ambiguities in the
specifications by the testers will be identified
sooner .

Advantage

-Errors are openly detected and correction cost
is not much

Functional testing

-There is a need for official system
specifications that are difficult to identify in the
actual program.

-The specification is complex and difficult to
understand .

Disadvantage

-Implementations must exactly match the
specifications.

-Input validation and examining the behavior of
the system against the processing of large and
heavy queries

Example

-Non-functional tests indicate how a system
works and is a test to measure the characteristics
of systems that can be measured in a variable
scale.

Idea

-Considering other behaviors in spite of the
system’s logical behaviors.

-It is highly complex as it is dependent on both
software and hardware features.

Disadvantage | Advantage
Non-functional testing

-Scalability, Efficiency, Usability, Quality of
service, Execution time, Security [21]

Example

VI. CHALLENGES OF SBST

The general challenge in generating test data is that the
test data generated must have the potential to detect
program errors, and the result will be better if it takes
less time, effort, and cost.

The easiest way to generate test data is to generate it
manually. However, manually generating test data is
practically impossible for large and highly complex
software. Even if the software has a very high degree
of expertise in the test, manual production of test data
for complex software is unreasonable due to the vast
input area. It will waste the examiner's expense, time,
and effort.

Volume 14- Number 2 — 2022 (32 -40)

Also, if we look at the issue from a human resources
perspective, the test costs and the nature of the software
tests are such that they require a high concentration of
the examiner. Most programmers and software
engineers are reluctant to test and generate manual test
data. For this reason, software quality managers seek
to use automatic methods to reduce the cost and time
of the test.

Automated testing has its challenges .In this section,
the challenges of SBST are explained for each
technique.

A. Challenges of structural test

1) Selection of test criteria

There are many criteria for structural testing (e.g.,
path coverage, branch coverage, statement coverage,
and edge coverage). Path coverage is the strongest
structural cover criteria, and branch coverage is the
standard structural test [36]. The first challenge is
choosing the test criteria meeting our requirements with
a minimum cost. Selecting a stronger criterion requires
higher computational resources and, considering it as a
target criterion should be a justification.

2) Nested loops

The presence of nested loops in the program code is
directly associated with an increase in the number of
targets. As the number of target paths generated for the
search increases, finding a solution representing the
complete set becomes more difficult. In this case, we
may need a better search guide, or we may need to
change the algorithm or its fitness function [61].

3) Uncoverd targets
Uncovered targets cannot be easily located in the
category of infeasible routes because the source of
uncovered targets may be an incomplete search and
may be covered by continuing the search. To find out
whether or not a target is impractical, more analysis is
required [61].

4) Uncertainty after the testing
Automatic test case generation is used to detect
errors. The most common characteristic of the correct
behavior of a program is that the program does not
encounter errors during execution.
If an exception is detected, it indicates an error;
however, if the application is executed without errors,
the following questions arise [44]:

® Does the program have the proper
performance?

® \What test cases should be taken to ensure that
the next versions of the program preserve
current behavior?

5) Insufficient coverage
SBST is suitable for structural coverage and has
been studied more frequently [11]. However, the
resulting structural coverage is not always as high as
expected [62]. Therefore, we may need to rely on
insufficient test sets, and all tests require the use of
existing tools [63].
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6) Bloat phenomenon
An innovation in some of the SBSE tools, such as
evosuite, is to develop all test sets in one place instead
of creating a test case in a single time to cover a distinct
target so that all cover targets are targeted at the same
time. Before addressing the challenges, the technique
has several advantages:

® |mpractical coverage targets do not spoil the
search.

® There is no limit to target selection.
® There is no incidental coverage.

This method can be better than the classical
approach (focusing on individual coverage targets);
however, as it seems, it is with problems. During the
search, the number of test cases in a test set and the
length of individual test cases can vary and create
additional challenges such as bloat [44] [64] . Bloat is a
complex phenomenon in evolutionary computation, in
which length grows abnormally over time to the point
where search becomes impossible [65].

Challenges of SBST I

—»[ Structural testing ]

—>[ Selection of test criteria

4>[ Nested loops ]
4>[ Uncovered targets ]

4>[ Uncertainty after the test
4’[ Insufficient coverage
—»[ Bloat phenomenon

4>[ Functional testing I

—P[ Complex specification ]

—>| Implementation challenge I

Non-functional
testing

—>| Insufficient research I

—|  objective optimization

Negative effect on multi - ’

Figure 7. Proposed classification for SBST challenges based on
test techniques
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B. Challenges of functional testing

In the previous section, we discussed the challenges
of structural testing. According to our studies, there is
less activity in search-based functional testing than in
structural testing.

In this section, we will explain its relevant challenges.

1) Complex nature of system specification

The functional procedures should be taken from the
different types of system specifications [3]. However,
the system specifications are complex and thereby hard
to understand. Not understanding the nature of the
problem, its complexity, and the difficulty of
formulating the functional issues should be one of the
reasons for not addressing the search-based functional
testing.

2) Implementation challenge

An implementation must follow the system
specifications; however, it is difficult to accurately
identify the system specifications in real usage [4]. An
existing obstacle to full automation is the fact that
mapping must be presented from the abstract model of
specifications to the real model to be implemented [3].

C. Challenges of non-functional testing

1) Insufficient research in this area

The lack of studies on non-functional characteristics
is surprising due to the increasing importance of non-
functional properties. The SBST techniques have a
significant advantage and theoretically can be applied
to any test problem, in which adequacy criteria can be
applied as the work of the fitness function. In essence,
testing for execution time, service quality, and energy
consumption should not be more severe than the branch
coverage, and only a different fit function is required.
However, measuring the fitness function for any non-
functional feature may be associated with specific
challenges [11].

2) Negative effect on multiobjective optimization

One of the reasons indicating why multi-objective
techniques have not attracted attention is the lack of
field development for non-functional features. Many of
the additional goals testers pursue are associated with
non-operational features. For example, a tester may be
interested in getting more coverage; however, it may
also target unusual execution times, security features,
or power consumption (or all of these). Because society
seems slow to understand the non-functional
characteristics, this may significantly affect the
application of multi-objective methods [11].

D. Conclusion

In this article, after providing general explanations
and the introduction of software testing, some relevant
studies were presented. Then we explained the
generalities of search-based testing and described how
to apply the search-based approach in generating test
data. Next, we described the test techniques and
classified them into three general categories (namely
structural, functional and non-functional tests).
According to Table 1, we described the main features
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of each technique. In the last section, which is the most
important part of the article, we were to describe the
challenges of search-based testing for each of the
aforementioned techniques separately.

Given the above, we conducted a study on search-
based tests and test case generation in this article and
faced a series of challenges expressed in the categories.

All the challenges mentioned in this article have been
extracted from credible sources and research and can be
cited. Our innovation is the proposed classification for
these challenges .The challenges are arranged so that
researchers can find complete information about the
problems of the field before entering it.

For example, search-based structural testing has its
own problems that are different from the search-based
functional test, and knowing these issues before
conducting further research can benefit researchers.

Also, the search-based test outside the classification
based on the test technique has common challenges,
which we examined in Ref. [66] and referred to as the
general challenges of the search-based test. The study
of this paper and Ref. [66] can provide researchers with
a good understanding of the general and related
challenges related to the search-based test method.

This article can be useful for those interested in the
field of software testing, particularly SBST.
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