
Clustering Large-Scale Data using an

Incremental Heap Self-Organizing Map

Mehdi Fasanghari
Iran Telecommunication Research

Center

Tehran, Iran.

fasanghari@itrc.ac.ir

Helena Bahrami
School of Engineering,

Computer and

Mathematical Sciences,

Auckland University of

Technology, New Zealand.

helena.bahrami@aut.ac.nz

Hamideh Sadat Cheraghchi
Iran Health Insurance Organization

Tehran, Iran.
h.cheraghchi@ihio.gov.ir

 Received: 5 April 2022 – Revised: 29 May 2022 - Accepted: 28 June 2022

Abstract— In machine learning and data analysis, clustering large amounts of data is one of the most challenging tasks.

In reality, many fields, including research, health, social life, and commerce, rely on the information generated every

second. The significance of this enormous amount of data in all facets of contemporary human existence has prompted

numerous attempts to develop new methods for analyzing large amounts of data. In this research, an Incremental Heap

Self-Organizing Map (IHSOM) is proposed for clustering a vast amount of data that continues to grow. The gradual

nature of IHSOM enables environments to change and evolve. In other words, IHSOM can quickly adapt to the size of

a dataset. The heap binary tree structure of the proposed approach offers several advantages over other structures.

Initially, the topology or neighborhood relationship between data in the input space is maintained in the output space.

The outlier data are then routed to the tree's leaf nodes, where they may be efficiently managed. This capability is

supplied by a probability density function as a threshold for allocating more similar data to a cluster and transferring

less similar data to the following node. The pruning and expanding nodes process renders the algorithm noise-resistant,

more precise in clustering, and memory-efficient. Therefore, heap tree structure accelerates node traversal and

reorganization following the addition or deletion of nodes. IHSOM's simple user-defined parameters make it a practical

unsupervised clustering approach. On both synthetic and real-world datasets, the performance of the proposed

algorithm is evaluated and compared to existing hierarchical self-organizing maps and clustering algorithms. The

outcomes of the investigation demonstrated IHSOM's proficiency in clustering tasks.

Keywords: Self-organizing map (SOM); Binary heap tree; Incremental hierarchical structure; Probability density function.

Article type: Research Article

© The Author(s).

Publisher: ICT Research Institute

I. INTRODUCTION

In the era of computer technology and with the

advent of the Internet of Things, the amount of data

generated by humans is rapidly increasing. Data

analysts and computer engineers face a formidable

 Corresponding Author

challenge in managing this quantity of data. These

massive datasets are meaningless by necessity. In other

words, many types of data are received from widely

diverse devices ranging from personal computers to

sensors found in our surroundings, the majority of

which are signals or, at most, figures or strings with no

 [
 D

O
I:

 1
0.

52
54

7/
itr

c.
14

.2
.4

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 1 / 13

http://dx.doi.org/10.52547/itrc.14.2.41
http://ijict.itrc.ac.ir/article-1-503-en.html

"label". Unsupervised clustering techniques are the

best options for extracting usable information from

this ocean of vast amounts of data. Unsupervised

techniques help to build representations of the input

data without human intervention by discovering

patterns in the observed data that can be used for

decision making, predicting future inputs, and

facilitating interpretation, as it is necessary to assess a

significant volume of heterogeneous, unstructured,

and unlabeled data collected from multiple sources.

Numerous efforts have been made to employ

clustering techniques for large-scale data analysis,

such as K-means [1, 2], Decision Trees [3-5], Support

Vector Machines [6-9], Bayesian Classifiers [10-12],

and Neural Networks [13-17]. Among these methods,

Neural Networks, specifically Self-Organizing Map

(SOM) [18-21], is the preferred clustering technique

due to its fast-learning process and less time-

consuming performance, high accuracy in clustering

complex multi-dimensional data, and its great

visualization ability makes SOM a potent clustering

technique. Although SOMs are popular clustering

algorithms, their predefined, fixed lattice makes them

inappropriate for contexts that are subject to change.

Therefore, numerous researchers have attempted to

enhance the standard SOM by incorporating

dynamism into its structure in order to make it more

adaptable to expanding and changing information.

Among these successful endeavors, incremental

hierarchical SOMs have garnered considerable interest

due to their adaptable and flexible qualities, making

them resilient and accurate in clustering tasks. In this

research, a novel Incremental Heap Self-Organizing

Map (IHSOM) algorithm is presented that inherits the

hierarchical adaptive properties of its predecessors

while incorporating new techniques for outlier

handling, topology preservation, and rapid accurate

clustering. The suggested algorithm provides a number

of advantages over prior approaches, including: 1)

IHSOM maintains the topology or neighborhood

relationship between data in output space as well. 2) It

can handle outlier data efficiently by sending them to

the tree's leaf nodes. A probability density function

offers this capability as a threshold for allocating more

similar data to a cluster node and sending less similar

data to the following node. 3) The proposed

algorithm's pruning and expanding nodes processes

make it noise-resistant, more accurate in clustering

applications, and memory-efficient. 4) The heap tree

structure of the technique accelerates node traversal

and reorganization following the addition or deletion

of nodes. 5) IHSOM's single user-defined parameter

makes it a practical unsupervised approach for

clustering tasks.

The remaining sections of the paper are organized

as follows: Section 2 examines, analyzes, and

compares several prior related research publications.

The third section presents an overview of the Binary

tree time adaptive SOM, a hierarchical tree structure

SOM-based approach from which IHSOM inherits

some of its characteristics. In Section 4, the proposed

IHSOM algorithm is thoroughly explored. Section 5

includes experimental findings and analysis of

algorithm performance for both simulated and real-

world datasets. The final section concludes the paper.

II. RELATED WORKS

This section reviews a brief history of some of the

previous research works carried out in large-scale data

clustering.

SOTA is an algorithm Javier Herrero and colleagues

developed for grouping gene expression. SOTA is a

hierarchical method that evolves using the topology of

a binary tree. This algorithm employs a top-down

approach to clustering to resolve the highest

hierarchical levels before proceeding to the lowest

level. The tree's growth can be halted at any desired

level using a criterion based on approximation

probability distribution [22].

S-tree refers to a self-organizing tree suggested by

Marcos Campos and Gail Carpenter [23] for data

clustering and online vector quantization. This method

is a hierarchical unsupervised clustering tree that

applies a twofold route search process for clustering

and vector quantization tasks, including a Gauss-

Markov source benchmark and a picture compression

application [23]. Anne Denton et al. developed a

solution related to the density-based clustering

algorithm DENCLUE, but with alternative reasoning.

Their description of a cluster center in their P-trees

defines a natural hierarchy that builds clusters at

various levels [24]. Shen Furao et al. proposed an

incremental self-organizing neural network with

enhanced self-organization for unsupervised online

learning. Their algorithm, ESOINN, is an enhanced

version of their previous SOINN method. This

algorithm replaces SOINN's two-layer network

structure with a single-layer network, separates

clusters with dense overlap, requires fewer parameters,

and is more stable than SOINN [25]. Shen Furao and

Osamu Hasegawa suggested a quick closest neighbor

classifier based on a self-organizing incremental

neural network, which is an improved version of

SOINN. This Adjusted SOINN Classifier (ASC)

automatically learns the number of prototypes

necessary to define the decision boundary and learns

new information without discarding previously

learned information [26-28]. Hamed Shah-Hosseini

created BTASOM, a binary tree time adaptive SOM,

to establish a hierarchical structure of neurons using

TASOM networks.

BTASOM's hierarchical binary tree structure makes

it computationally efficient in static and dynamic

contexts. The novelty of the BTASOM model is

inspired by real trees in that young branches are thin

and flexible, but elderly branches are massive and

unyielding [29]. Bingwei Liu et al. propose a scalable

sentiment categorization approach utilizing a naive

Bayes classifier. Their method provides a

Volume 14- Number 2 – 2022 (41 -53)

42

 [
 D

O
I:

 1
0.

52
54

7/
itr

c.
14

.2
.4

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 2 / 13

http://dx.doi.org/10.52547/itrc.14.2.41
http://ijict.itrc.ac.ir/article-1-503-en.html

straightforward and comprehensive solution for

sentiment mining on huge datasets utilizing a Naïve

Bayes classifier and the Hadoop framework [30]. Self-

tuned kernel spectral clustering model (KSC) for

large-scale complex networks was created by

Raghvendra Mall et al. The KSC approach functions

by constructing a model on a subgraph of the complex

network. The method automatically determines the

number of clusters by employing projections of

validation nodes in eigenspace to build an affinity

matrix [31, 32]. Amanpreet Kaur Toor and Amarpreet

Singh presented an advanced clustering algorithm

(ACA) to deal with large data sets and high

dimensionality. ACA accelerates the clustering

process by calculating the distance between the current

data input and the new cluster center; if this distance is

less than or equal to the distance to the old center, the

data input remains in the cluster to which it was

previously assigned. Therefore, calculating the

distance between this data input and the remaining k-1

clustering centers is unnecessary. This technique

expedites access to K-1 cluster center locations [33].

Raghavi Chouhan and Abhishek Chauhan suggested a

solution for the K-medoid algorithm that eliminates

the shortcoming of the existing K-medoid for the

clustering of large amounts of data. Their improved

partitioning clustering technique automatically adjusts

the number of clusters by comparing the similarity

value to a predetermined similarity threshold, resulting

in the establishment of stable clusters each time the

procedure is executed [34]. Petra Perner introduced

case-based reasoning as an incremental learning and

knowledge discovery strategy for mining massive

data. The approach finds similarities among a group of

instances that have been previously processed and

saved in a case database, and the closest (most similar)

examples with their corresponding results are picked

and displayed in the output [35, 36]. Rui Maximo

Esteves et al. suggested a novel competitive K-Means

algorithm to overcome the stochastic nature of K-

Means++ and its time-consuming serial processing

mechanism. A new parallel seeding algorithm, CK-

Means, surpasses the K-Means++ serial approach to

data analysis by applying clustering to subsets of the

dataset in parallel and selecting the winner cluster

based on a fitness measure. In addition, they utilized a

MapReduce framework that scaled effectively with

enormous datasets for their innovative CK-Means

[37].

Zhongwei Shi et al. developed a class incremental

learning technique for real-time recognizing frequent

label combinations in a developing data stream. In

their method, the learning process consists of two

parts. In the first step of initializing the learning model,

several samples with common label combinations are

collected. In the second stage, each consecutive

sample's label combination is compared to the set of

frequent label combinations. If the label combination

is not present in the list of label combinations, its

occurrence number will be recorded to update the

learning model [38]. Hongwei Zhang et al. offer a

load-balancing self-organizing incremental neural

network (LB-SOINN), which is an additional type of

SOINN. LB-SOINN solves the deficiencies of E-

SOINN, such as its dependence on input data order,

instability, and consequent loss of precision as the data

dimension rises. LB-SOINN employs a load-balancing

strategy to improve network stability by utilizing the

learning time of each node as a representation of its

load. Additionally, it applies a smoothing technique

based on Voronoi tessellation to reduce the turbulence

caused by deleting the overlapping zone between

classes. In addition, Hongwei Zhang et al. [39]

presented a novel measure of similarity between two

vectors that is ideal for online incremental high-

dimensional learning tasks.

Although these valuable studies have shown good

clustering outcomes, there are downsides to employing

the techniques mentioned above. For example, Nearest

Neighbor clustering is an expensive technique whose

cost climbs exponentially as dataset size and

dimension increase.

 Widely used K-means-based algorithms are too

static, and the cluster numbers should be supplied at

the outset. Decision-tree models are subject to

instability and overfitting (small variations in the input

data might result in a completely different tree). In

addition, decision tree approaches generate biased

trees when dominating classes already exist. Naïve

Bayesian Classifier has strong feature independence

assumptions that lead this method to inaccurate

classification. In other words, it has trouble

understanding the interplay of dataset properties.

Despite the rapid and accurate categorization of SOM,

the output lattice is fixed and cannot adapt to a

changing environment.

Among the clustering approaches mentioned above,

the incremental hierarchical neural network is a

suitable methodology for clustering expanding large-

scale datasets because of its high classification

accuracy, low time consumption, and ability to readily

adapt to a growing dataset size. ACS, BTASOM, and

SOTA are successful instances of this methodology. In

the part that follows, various background knowledge

regarding the suggested model is examined to lay the

foundation for the proposed method.

III. BACKGROUND KNOWLEDGE

As stated in the preceding sections, incremental

neural networks are effective methods for

unsupervised clustering tasks that are best suited for

processing vast amounts of data. This section of the

paper introduces a new incremental neural network-

based strategy that can address the drawbacks of the

previous version. IHSOM is the proposed method

based on a SOM and binary heap tree structure. In

reality, IHSOM is an adaptive incremental neural

network that learns based on SOM rules, and its nodes

are organized as a heap binary tree. Before introducing

Volume 14- Number 2 – 2022 (41 -53)

43

 [
 D

O
I:

 1
0.

52
54

7/
itr

c.
14

.2
.4

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 3 / 13

http://dx.doi.org/10.52547/itrc.14.2.41
http://ijict.itrc.ac.ir/article-1-503-en.html

IHSOM, a quick review of SOM and binary heap tree

will be presented. In addition, the final subsection

includes an overview of the BTASOM method, which

served as the basis for the proposed IHSOM algorithm.

A. Conventional SOM

Teivo Kohonen [40] introduced the SOM in 1989

as an unsupervised neural network employing a

competitive learning algorithm. The original SOM

algorithm maps a complex multi-dimensional input

space {𝑥𝑖(𝑛): 𝑖 = 1, … , 𝑚 } into a lattice of output

space {𝑂𝑗: 𝑗 = 1, … , 𝑘} by associating each input

vector to every node in the output lattice via a weighted

connection. Adjusting the weight of winning nodes

(nodes that most closely resemble the input vectors)

and their neighboring (neighbor) nodes in the lattice to

make them more similar to the input vectors

constitutes the learning phase of the method. Finally,

similar input vectors will be mapped to nearby winning

nodes on the output map, completing the clustering

task.

 As a result of reducing a high-dimensional

environment to a low-dimensional space, one of the

valuable characteristics of the SOM is its capacity to

visualize data. It uses a neighborhood function to

maintain the same topological relationship between

input space data and the mapped output lattice. These

two characteristics of the SOM algorithm and its fast

unsupervised learning algorithm make its output

results more understandable and suitable for

classification tasks. However, SOM has a lattice of a

fixed number of output nodes that cannot adapt to the

growing size dataset. In order to solve this deficiency,

the fixed lattice of SOM is substituted with the

hierarchical binary heap structure.

B. Binary Heap Tree

The Binary heap tree [41-43] is a complete binary

tree data structure that fulfills the heap ordering task.

In the heap tree algorithm, each node is ordered

concerning its parent node value so that the child node

value is either less than (or equal to) its parent in min

heap ordering or greater than (or equal to) its parent in

max ordering. In order to build a heap tree, the first

input data is considered the root node; then, according

to the min-heap or max-heap strategy, when the

following data is added to the tree, it will be compared

with its parent. If the value of the child node is greater

than its parent in min-heap or less than its parent in the

max-heap, their position in the tree will swap. With the

help of the Heap tree technique, SOM fixed size lattice

becomes an incremental tree whose nodes are sorted

and adapted to the changing size of data inputs. By

combining these two methods, the proposed IHSOM

algorithm is created.

C. A review of the BTASOM algorithm

BTASOM is a hierarchical binary tree structure

SOM based on the time adaptive SOM technique. In

other words, each node in BTASOM is an individual

TASOM network. Each node in TASOM has a fixed

number of neurons that create a one-dimensional

lattice. To preserve the algorithm's binary tree

structure, each node in the TASOM network of

BTASOM has a maximum of two neurons.

BTASOM's binary tree topology facilitates

dynamic data input adaptation and accelerates

grouping. The level and nodes of BTASOM are

constructed at the time of data entry. According to their

quantization inaccuracy, the nodes may be added or

removed. The BTASOM algorithm begins with a root

node that generates the tree's initial and highest level.

The root node's TASOM weights are then initialized

with random values. The TASOM learning algorithm

adapts the root node's neuron (or neurons) to the input

data distribution by the time data is fed to the tree. If

the root node contains any child nodes, the input data

will be sent to the relevant child at the subsequent

stage. Until the input vector reaches a leaf node, the

TASOM learning algorithm trains each visited node as

the input vector is propagated through the tree. After

training the last leaf node in the tree with the current

input vector, the next input data are introduced, and the

training procedure is repeated from the root node to a

leaf node until the BTASOM has received the

predetermined number of input data. During the

training phase, the quantization error of each node is

computed; based on its value, an undesired node is

removed from the tree or an intransitive node is

inserted. If a node's quantization error is smaller than

a predefined minimal error, then the node and its

subtree are removed from the BTASOM tree entirely.

A new child node or nodes are added to the BTASOM

tree if the quantization error of a node is greater than a

preset maximum error. The maximum and minimum

quantization error bounds are defined by the intervals

[Minqe × Kmul, Maxqe × Kmul]. Trial-and-error

selection of a positive integer value for the constant

parameter Kmul enables the TASOM network to

accurately approximate the input distribution. The

fixed parameters Maxqe and Minqe provide the

maximum and minimum quantization error values so

that the inequality 0 ≤ 𝑀𝑖𝑛𝑞𝑒 ≤ 𝑀𝑎𝑥𝑞𝑒/2 is

satisfied. In Shah-Hosseini’s paper, Maxqe and Minqe

are set to 0.5 and 0.1, respectively. By selecting

smaller Maxqe and Minqe values, more nodes will

grow on the BTASOM tree, resulting in a more

accurate approximation. Although additional nodes in

a tree result in a more precise categorization, it is

memory-intensive and slows down clustering.

Therefore, the trade-off between clustering precision,

memory usage, and algorithm performance must be

considered.

In BTASOM, the number of child nodes that a

node’s subtree has determines the flexibility of that

node. Similar to a natural tree, as the number of nodes

in a subtree increases, the root node becomes less

flexible. Otherwise, the flexibility of a root node will

be increased in a subtree with fewer child nodes. By

Volume 14- Number 2 – 2022 (41 -53)

44

 [
 D

O
I:

 1
0.

52
54

7/
itr

c.
14

.2
.4

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 4 / 13

http://dx.doi.org/10.52547/itrc.14.2.41
http://ijict.itrc.ac.ir/article-1-503-en.html

this mechanism, the behavior of a real tree branch in

nature is simulated; the heavy old branches of a tree

may shrink, and new branches may grow based on

environmental conditions. BTASOM controls the

flexibility (shrinking-growing) of each node by the

parameter 𝑠𝑓 . Each neuron has its own 𝑠𝑓 . Neurons

with a low 𝑠𝑓 learn more quickly and become more

adaptable to environmental changes, whereas neurons

with a high 𝑠𝑓 become less adaptable.

Although BTASOM is an exciting approach to

clustering with some remarkable properties, there are

some disadvantages to using this algorithm. BTASOM

cannot preserve the topology of input data in output

space due to a lack of specifying the topological

neighborhoods for its output nodes. Changing the

order of sequence of serial input data produces

different results, meaning the resulting tree will be

altered with the different sequence input data in each

run. When a node is deleted, that node's child nodes

will be removed too. The deleted node is an outlier

located in a sparse area of data distribution, and

deleting the whole subtree causes losing potential

clusters. Finally, there are too many parameters in the

BTASOM algorithm to adjust by the user.

 In the following sections, a new Incremental

clustering method will be proposed to solve these

defects using a binary heap tree structure for a self-

organizing map called IHSOM.

IV. PROPOSED MODEL: INCREMENTAL HEAP SELF-

ORGANIZING MAP (IHSOM)

IHSOM is a hierarchical adaptive SOM method

with a binary heap tree topology. IHSOM begins with

a root node so that a random weight vector according

to the size of the training dataset is assigned to it. Since

the serial data input in some previous incremental

methods like BTASOM, SOINN, and its modified

versions causes instability in the output results,

IHSOM uses batch data input to overcome this

difficulty. Thus, each node is trained with the whole

input dataset. Every node in IHSOM has a cost used as

a critical value to build the heap tree. The cost of each

node is determined by the mean value of the weights

designated to it. It is determined for which data inputs

the present node is the winning node by calculating the

Euclidean distance between the input data and the

node's weight vector. Afterward, the most similar data

inputs are selected to assign to the node using the

probability density function. To this end, a threshold is

defined as the mean of probability density function

values, and those data inputs whose Euclidean distance

probability density functions are above the threshold

are chosen to earmark for the current node. The

majority of these selected data (about 70 percent) are

removed from the original dataset so that less similar

data to the current node are passed to the next node for

clustering. By keeping 30 percent of similar data to the

current node in the original data set, there is a chance

for them to assign to another node and the previous

winning node to find the best matching unit. The

strategy of eliminating similar data to the current node

from the training dataset determines the direct outliers

(or data with less resemblance to the others) down to

the tree's leaf nodes. The next node will be treated like

the previous one. A random weight vector according

to the size of the remaining input data is dedicated to

the node, its cost value is determined, the Euclidean

distance of the data presented to the node is calculated,

and similar data to the cluster node are selected based

on their probability density functions. This process is

repeated until the size of the dataset is zero. After

creating all the cluster nodes, the binary heap tree is

built out of them. The next node is added to the tree as

the left child for the root node, considering the first

node as the root node for the binary heap tree. If the

cost of the child node is greater than its parent, their

place is swapped. Otherwise, they will maintain their

positions. The next node is added to the bottom level

of the tree (as the right child), and this routine is

repeated so that the max binary heap tree is built.

Afterward, the weights of each node are updated with

the batch learning of the SOM weight adjustment rule,

and the neighboring function for each node in the heap

tree is calculated. The neighboring radius decreases

through the iterations (like the original SOM

algorithm). Then Heap tree of SOM nodes is re-

ordered according to the new weights. In order to give

more dynamism to the IHSOM tree, new nodes will be

added in dense areas, and nodes in a sparse area of data

distribution removed based on their quantization error.

 According to the above explanation, the IHSOM

algorithm is an adaptive hierarchical network that can

easily adapt to the size of the input training data. The

tree structure of IHSOM speeds up nodes traversing

and restructuring after adding or deleting nodes.

Adding or deleting nodes mechanism in the proposed

algorithm is attained in place. Thus, unlike BTASOM,

just one node is deleted, and the tree can restructure

quickly. Due to its heap ordering property, the IHSOM

can also preserve the topological relationship between

data input space and the output space. IHSOM has a

few parameters that need to be adjusted by the user,

making the algorithm a perfect choice for

unsupervised clustering tasks. The graphical

explanation of the IHSOM algorithm is illustrated in

Figure 1.

Volume 14- Number 2 – 2022 (41 -53)

45

 [
 D

O
I:

 1
0.

52
54

7/
itr

c.
14

.2
.4

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 5 / 13

http://dx.doi.org/10.52547/itrc.14.2.41
http://ijict.itrc.ac.ir/article-1-503-en.html

Fig. 1. Graphical illustration of proposed IHSOM

Quantization error and topography error are

employed to determine the IHSOM's reliability. These

two measures are outlined in detail below.

A. Quantization Error

The Quantization Error (qe) [44] calculates the

average distance of the data inputs to the cluster

centroids (winner node) by which they are represented

(see Equation 1) in order to evaluate the fitting of

IHSOM to the dataset.

𝑞𝑒 =
1

𝑁
∑‖𝑥̅𝑖 − 𝐵𝑀𝑈𝑥̅𝑖

‖,

(1)

where N represents the number of data inputs and

𝐵𝑀𝑈𝑥̅𝑖
 represents the best matching unit of the

corresponding 𝑥̅𝑖 data inputs.

The least average quantization error means that the

map properly fits the data. A smaller amount of

quantization error indicates that input data are closer to

their cluster centroids or the winner node. By

increasing the number of IHSOM tree nodes,

quantization error can be reduced due to the proper

coverage over data input space on the IHSOM map.

However, the lower quantization error may lead to

distortion of the IHSOM map's topology. Therefore, a

trade-off between vector quantization and projection

properties of the IHSOM should be considered.

B. Topographic Error

Topographic Error (te) [45] evaluates the accuracy

with which IHSOM maintains relative distances

between locations in the input data space. This mistake

takes into account the distance between the IHSOM

map's top and second best-matching units. If the first

and second best-matching units (BMU) are adjacent

vectors, then the topology of input data is preserved by

the IHSOM map. Thus, the lower the topographic

error, the better topology preservation. The

topographic error is calculated as follows:

𝑡𝑒 =
1

𝑁
∑ 𝑢(𝑥̅𝑖)

𝑁

𝑖=1

,

(2)

where the function 𝑢(𝑥̅𝑖) returns 1 if the first and

second BMUs of the 𝑥̅𝑖 data input are not contiguous

and 0 otherwise.

C. IHSOM algorithm in details

In this part of the paper, the IHSOM algorithm is

specified step by step:

1. Set input dataset as the Training Data.

2. Create a node as the root node for the IHSOM.

3. Set the root node as the Current Node.

4. Set a random weight vector for the neurons of the

Current Node. (According to the number of

Training Data, the weight vector grows larger).

5. Calculate the mean of the weight vector as 𝑀𝑤 for

Current Node (𝑀𝑤 is the cost of the current node).

𝑀𝑤 =
∑ 𝑤𝑖

𝑛
𝑖=1

𝑛
,

(3)

where 𝑤𝑖 is the weight vector, n is the weight vector's

size, and i denotes the index of a particular weight in

the vector.

Determine the Euclidean distance (ED-

CurrentNode) between each input data vector and the

weight vector of the node (the node's neurons) as

𝐸𝐷𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒.

𝐸𝐷𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒

= √∑(𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑖 − 𝑊𝑖)2

𝑖=𝑛

𝑖=0

.

(4)

6. Calculate for the current node, the probability

density function of 𝐸𝐷𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒 as 𝐸𝐷𝑝𝑑𝑓.

𝐸𝐷𝑝𝑑𝑓 =
1

√2𝜋𝜎2
× 𝑒

−
(𝐸𝐷𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒𝑖−𝜇)2

2𝜎2 ,

(5)

where 𝜇 and 𝜎 are the mean value and standard

deviation of 𝐸𝐷𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒, respectively.

7. Find the mean of the ED-pdf and set it as the

threshold.

Volume 14- Number 2 – 2022 (41 -53)

46

 [
 D

O
I:

 1
0.

52
54

7/
itr

c.
14

.2
.4

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 6 / 13

http://dx.doi.org/10.52547/itrc.14.2.41
http://ijict.itrc.ac.ir/article-1-503-en.html

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =
∑ (𝐸𝐷𝑝𝑑𝑓)𝑖

𝑛
𝑖=1

𝑛
.

(6)

In this step, the current node is set as a winning node

to those input vectors (𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑤𝑖𝑛𝑛𝑒𝑟) which

their 𝐸𝐷𝑝𝑑𝑓 are more than 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑.

8. Omit 70% of the 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑤𝑖𝑛𝑛𝑒𝑟 from the

original dataset and set it as Training Data. In this

way, 30% of assigning data to the Current

winning node have a chance to assign to another

node and the previous winning node to find Best

Matching Unit.

9. Create the Next node, set it as the current node, and

go to step 4. Repeat until the size of the Training

Data is zero.

10. Call BuildHeap () Function to build a binary heap

tree from the nodes created in the earlier stages.

11. Update weights using the batch learning SOM

weight adjusting rule [35].

𝑤𝑢𝑝𝑑𝑎𝑡𝑒𝑑 =
∑ 𝑁𝑏ℎ𝑒𝑎𝑝𝑁𝑜𝑑𝑒𝑖,𝑗 × 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑖

𝑛
𝑖=1

∑ 𝑁𝑏ℎ𝑒𝑎𝑝𝑁𝑜𝑑𝑒𝑖,𝑗
𝑛
𝑖=1

,

(7)

where, 𝑁𝑏ℎ𝑒𝑎𝑝𝑁𝑜𝑑𝑒𝑖,𝑗 , is the neighborhood function

around each heap tree’s node and is calculated as

follows:

𝑁𝑏ℎ𝑒𝑎𝑝𝑁𝑜𝑑𝑒𝑖,𝑗

= exp (−
‖𝑟𝑗 − 𝑟ℎ𝑒𝑎𝑝𝑁𝑜𝑑𝑒𝑖

‖
2

2𝛿2(𝑡)
),

(8)

where ‖𝑟𝑗 − 𝑟ℎ𝑒𝑎𝑝𝑁𝑜𝑑𝑒𝑖
‖ is the distance between

ℎ𝑒𝑎𝑝𝑁𝑜𝑑𝑒𝑖 and the jth node in the binary heap tree

and 𝛿(𝑡) is the neighborhood width at time t.

12. Decrease the neighborhood width according to the

below equation:

𝛿(𝑡) = 𝛿0 (1 −
𝑡

𝑡𝑚𝑎𝑥
),

(9)

where 𝛿0 is the initial value of the neighborhood width

and will be set as the total number of IHSOM tree’s

nodes at the beginning of the algorithm and decreases

by the time. Moreover, the current iteration is t, and the

maximum iteration for IHSOM's learning phase is

𝑡𝑚𝑎𝑥.

13. Call MaxHeapify() Function to heap sorting the

tree according to the new weight vectors.

 Calculate quantization error for each IHSOM

node:

𝑞𝑒 =
1

𝑛
∑‖𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑖 − 𝑤𝑖‖.

𝑛

𝑖=1

(10)

The average Euclidean distance between the input

vector 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎 and its matching winning

node's weight vector 𝑤𝑖 is the quantization error 𝑞𝑒.

If 𝑞𝑒 < 10−6 , Call HeapDeleteNode (), function.

Else if 𝑞𝑒 > 0.5, create a new node with a node cost

𝑀𝑤 which is a random number between the parent and

its left child’ 𝑀𝑤 of the place that the new node

intended to insert.

14. Call HeapInsertNode() function.

15. Choose 30% of the new inserted node parent’s

training dataset to assign to it (new node).

Set a random weight vector such that the upper

bound and lower bound are between the 𝑀𝑤 of the

inserted node parent and left child, respectively.

Then, go to the step 13, Re-compute 𝑀𝑤 for the

inserted node.

Calculate Topological Error 𝑡𝑒 for the IHSOM tree

using the following equation:

𝑡𝑒 =
1

𝑁
∑ 𝑢(𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑖)

𝑁

𝑖=1

, (11)

where 𝑢(𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖) is 1 if best and second-best

matching units are not adjacent and is 0, otherwise. If

maximum iteration is reached, stop else, go to step 13.

The BuildHeap, MaxHeapify, HeapDeleteNode, and

HeapInsertNode algorithms are defined in the

followings.

1) BuildHeap algorithm

The binary heap tree, as previously stated, is a

complete binary tree that may be built using an array

(list) structure. A heap tree is represented in a level

order from left to right. Thus, it is necessary to know

the parent and its left and right child's location in the

array. In order to build a heap tree from an input array

by assuming the root index at 1, the parent of node i is

located at the index floor (i/2). The left and right child

of node i are respectively at indices (2i) and (2i+1).

According to the above explanation, the following

steps are used to build a max heap tree.

Put all IHSOM nodes in an array; 𝐻[𝑖] =
IHSOM nodes𝑖

.

Set ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝐻).

Set 𝑗 = ⌊
ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒

2
⌋; the last parent in the array.

3-1. Repeat step 4 until 𝑗 = 1.

Call MaxHeapify(H); this function heapifies the

sub tree i and its children in a way that the largest

node is stored at the root.

Decrease j by 1 if the stop condition meets exit

else, go back to step 4.

(12)

𝑗 = ⌊
ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒

2
⌋ − 1

2) MaxHeapify algorithm

The aforementioned MaxHeapify function, which

maintains the heap property of the IHSOM heap tree is

specified as below:

Volume 14- Number 2 – 2022 (41 -53)

47

 [
 D

O
I:

 1
0.

52
54

7/
itr

c.
14

.2
.4

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 7 / 13

http://dx.doi.org/10.52547/itrc.14.2.41
http://ijict.itrc.ac.ir/article-1-503-en.html

Set 𝐿𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥 = 2𝑖.
Set 𝑅𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥 = 2𝑖 + 1.

If 𝐿𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥 <
ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 𝑎𝑛𝑑 𝐻[𝐿𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥] > 𝐻[𝑖].

Then set 𝐿𝑎𝑟𝑔𝑒𝑠𝑡 = 𝐿𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥.

Else set 𝐿𝑎𝑟𝑔𝑒𝑠𝑡 = 𝑖.
If 𝑅𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥 < ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 𝑎𝑛𝑑 𝐻[𝑖] >

𝐻[𝐿𝑎𝑟𝑔𝑒𝑠𝑡].
Then set 𝐿𝑎𝑟𝑔𝑒𝑠𝑡 = 𝑅𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥.

If 𝐿𝑎𝑟𝑔𝑒𝑠𝑡 ≠ 𝑖.
Then exchange 𝐻[𝑖] ↔ 𝐻[𝐿𝑎𝑟𝑔𝑒𝑠𝑡].
Call MaxHeapify().

3) HeapDeleteNode algorithm

The HeapDeleteNode algorithm for removing a

node from the IHSOM heap tree is as follows:

𝐼𝑛𝑑𝑒𝑥 = 𝐹𝑖𝑛𝑑𝐼𝑛𝑑𝑒𝑥(𝐻, 𝑣𝑎𝑙𝑢𝑒) . // Find the

index of the value to delete;

Set 𝐶𝑜𝑢𝑛𝑡 = ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 .
Replace the deleted node with the right most

node on the lowest level of the binary heap tree;

𝐻[𝐼𝑛𝑑𝑒𝑥] = 𝐻[𝐶𝑜𝑢𝑛𝑡].
Set ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 = 𝐶𝑜𝑢𝑛𝑡 − 1.

Call MaxHeapify().

4) HeapInsertNode algorithm

To add a node to the IHSOM tree, the following

algorithm is used:

Set 𝐶𝑜𝑢𝑛𝑡 = ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 .
Add the new node to the right most empty

location at the bottom level of the heap tree:

 𝐻[𝐶𝑜𝑢𝑛𝑡 + 1] = 𝑁𝑜𝑑𝑒𝑛𝑒𝑤.

Set ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 = 𝐶𝑜𝑢𝑛𝑡 + 1.

Call MaxHeapify().

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the empirical results achieved by

applying IHSOM to both synthetic and real-world

datasets are demonstrated. IHSOM reliability and

mapping quality are analyzed based on two criteria;

quantization error and topographic error. In order to

compare the proposed algorithm with other methods,

BTASOM, LB-SOINN, and GHSOM [46] algorithms

are selected, which are incremental hierarchical SOM-

based methods.

A. Artificial Datasets

In order to evaluate IHSOM performance, an

artificial dataset with 5000, 25000, and 200000 input

data instances are generated. Figure 2 illustrates data

distribution in the artificial dataset divided into three

parts; rectangular class, oval class, and ring class.

Fig. 2. The Artificial Dataset with three classes

Different size of datasets is chosen to demonstrate

IHSOM ability to adapt to the growing size of input

datasets appropriately. The proportion of the most

similar data allocated to a node is the single user-

defined parameter in the IHSOM algorithm. This

parameter is empirically set as 70% to gain better

results. Experiment results on the artificial dataset

confirm the efficient performance of IHSOM. As

shown in Table 1, the value of Quantization Error is

very low, and with increasing the number of data

instances decreases. In fact, increasing the volume of

training data improves clustering accuracy and reduces

quantization error.

The number of network nodes grows moderately as

the dimension of training data augments. This

memory-efficient characteristic of IHSOM empowers

it to cluster large-scale data. Another remarkable

property of IHSOM is its ability to preserve

neighborhood topology. As the Topographic Error

column is shown in Table 1, the IHSOM perfectly

preserves data neighborhood topology, and the

average value of topographic error is 0. The execution

Time column also confirms the acceptable run time of

IHSOM. Despite the fact that the suggested

algorithm's execution time grows as the data

dimension increases, IHSOM gives a quick clustering

when the size of the training data is considered. The

hierarchical tree structure of the suggested algorithm

allows fast traversing of the nodes so that data can

easily direct to the next node in the heap tree.

In order to evaluate IHSOM clustering reliability in

the presence of noisy data, different amounts of noise

samples are added to the artificial dataset (i.e., 500,

2000, and 5000 noisy data samples are added). Figure

3 depicts the fabricated dataset with noisy data

(outliers). From the results presented in Table 2, it can

be determined that IHSOM performs well with noisy

data and that its technique for controlling outliers is

effective.

Volume 14- Number 2 – 2022 (41 -53)

48

 [
 D

O
I:

 1
0.

52
54

7/
itr

c.
14

.2
.4

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 8 / 13

http://dx.doi.org/10.52547/itrc.14.2.41
http://ijict.itrc.ac.ir/article-1-503-en.html

TABLE I. EXPERIMENTAL RESULTS WERE OBTAINED BY APPLYING IHSOM TO THE ARTIFICIAL DATASET

Artificial

Dataset

Number of

Instances

Number of

Classes

Maximum

Iteration

Number of

Nodes

Quantizatio

n Error

Topographic

Error

Execution

Time (s)

IH
S

O
M

1 5000 3 1000 10 0.03787 0 3.182× 10

2 25000 3 1000 13 0.02009 0 3.979× 102

3 200000 3 1000 14 0.00333 0 1.144× 103

Fig. 3. The Noisy Artificial Dataset with three classes

TABLE II. EXPERIMENTAL RESULTS OBTAINED BY APPLYING IHSOM ON THE NOISY ARTIFICIAL DATASET

Noisy

Artificial

Dataset

Number of

Instances

Noise

Percentage

Number of

Classes

Maximum

Iteration

Number of

Nodes

Quantization

Error

Topographic

Error

Execution Time

(s)

IH
S

O
M

0 10000 0 3 1000 11 0.0814 0 7.156× 10

1 10000+500 5% 3 1000 11 0.12124 0 8.216× 10

2 10000+2000 20% 3 1000 14 0.20361 0 8.731× 102

3 10000+5000 50% 3 1000 16 0.6734 0 1.012× 103

a. Wisconsin Breast Cancer Database containing two

classes (Malignant-Benign) according to radius,

texture, and perimeter features.

b. Wisconsin Breast Cancer Database containing two

classes (Malignant-Benign) according to area,

smoothness, and compactness features.

-10 0 10 20 30 40

-5

0

5

10

15

20

25

30

35

Noisy Artificial Dataset

X

Y

Volume 14- Number 2 – 2022 (41 -53)

49

 [
 D

O
I:

 1
0.

52
54

7/
itr

c.
14

.2
.4

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 9 / 13

http://dx.doi.org/10.52547/itrc.14.2.41
http://ijict.itrc.ac.ir/article-1-503-en.html

c. Wisconsin Breast Cancer Database containing two classes (Malignant-Benign) according to concavity, concave points, and

symmetry features.

Fig. 4. Wisconsin Breast Cancer Dataset with two classes

Although increasing the number of noisy samples

decreases, the quantization error is acceptable.

However, due to the increase in the learning rate of the

noisy data, the execution time of the IHSOM grows

rapidly with the size of outliers. This phenomenon can

affect the clustering task time when the outlier’s

sample is very high, but the execution time for a

normal noise distribution is tolerable For a more

comprehensive evaluation of IHSOM's performance,

two real-world datasets are employed, and the

proposed algorithm's efficacy is compared to that of

hierarchical incremental SOM techniques such as

BTASOM, LB-SOINN, and GHSOM.

A. Real-world datasets

In real-world examinations, two Iris and Wisconsin

breast cancer datasets are used to analyze and compare

IHSOM performance versus BTASOM, LB-SOINN,

and GHSOM algorithms. Madison and the Wisconsin

breast cancer dataset (WDBC) were acquired from the

University of Wisconsin Hospitals and Dr. William H.

Wolberg, respectively [47]. WDBC has 569 instances

with 32 attributes distributed in two classes: malignant

and benign. Each sample in the WDBC characteristics

includes an ID number, a diagnosis (M = malignant, B

= benign), and ten real-valued features computed for

each cell nucleus, including Radius, Texture,

Perimeter, Area, Smoothness, Compactness,

Concavity, Concave points, Symmetry, and Fractal

dimension. These characteristics are extracted from

the digital photographs of a fine needle aspirate of a

breast lump. Figure 3 provides a visual demonstration

of two types of breast cells, malignant and benign,

according to the real-valued features. The Iris dataset

is another notable multivariate data set given as an

example of discriminant analysis by R. A. Fisher [48].

The Iris dataset included four iris flower

characteristics: sepal length, sepal width, petal length,

and petal width. This data set contains 150 samples, or

50 samples for each of the three species (classes)

Setosa, Virginica, and Versicolor. Figure 4 illustrates

the classes of Iris flowering trees. Table 3 shows

WDBC and Iris datasets' characteristic.

TABLE III. REAL-WORLD DATASETS

Dataset
Number of

Instances

Number of

Attributes

Number of

Classes

Iris 150 4

3 (Setosa,

Virginica,

Versicolor)

Wisconsin

Breast

Cancer

569 32
2 (Benign,

Malignant)

For IHSOM performance assessment, four

hierarchical and incremental algorithms are used to

compare the results obtained from deploying real-

world datasets; BTASOM, LB-SOINN, and GHSOM

algorithms. Each of these algorithms has some

parameters that are set according to their reference

papers’ values in the following implementations.

Table 4, illustrates the results of applying these

algorithms to the Iris dataset and Wisconsin Breast

Cancer dataset. From the obtained results, IHSOM

proposed algorithm outreaches almost the other three

clustering algorithms both in accuracy (quantization

error) and execution time. The great disadvantage of

BTASOM is that it cannot preserve the topology

neighborhoods, and the quantization error grows

drastically with the increasing dataset dimension,

which can be checked with the Wisconsin breast

cancer dataset with 569 samples and 32 features.

However, the BTASOM execution time in the Iris

dataset is better than the proposed IHSOM and other

compared algorithms. In fact, the BTASOM shows

faster clustering performance in lower dimensions due

to its binary hierarchical structure, but its performance

is not necessarily accurate. LB-SOINN and GHSOM

algorithms both show better results than BTASOM in

the quantization error, but both are defeated in

competition with IHSOM clustering speed and

accuracy. Due to the k-means approach that LB-

SOINN uses to perform a local search in the input

space and the hierarchical multi-layered structure of

GHSOM, in which each layer is composed of several

independent SOMs, they both have lengthy execution

times despite their excellent quantization error

performance.

Volume 14- Number 2 – 2022 (41 -53)

50

 [
 D

O
I:

 1
0.

52
54

7/
itr

c.
14

.2
.4

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 10 / 13

http://dx.doi.org/10.52547/itrc.14.2.41
http://ijict.itrc.ac.ir/article-1-503-en.html

a. Iris Dataset including three classes (Setosa, Versicolor,

and Virginica) according to sepal length, sepal width, and

petal length.

b. Iris Dataset including three classes (Setosa, Versicolor,

and Virginica) according to sepal length, sepal width, and

petal width.

c. Iris Dataset including three classes (Setosa,

Versicolor, and Virginica) according to petal

length, petal width, and sepal width.

d. Iris Dataset including three classes (Setosa,

Versicolor, and Virginica) according to petal

length, petal width, and sepal length.

Fig. 5. Iris Dataset with three classes

TABLE IV. COMPARED RESULTS OBTAINED BY IHSOM

Datasets Clustering Methods Quantization Error Topographic Error Execution Time (s)

Iris

IHSOM 0.04093 0 1.5228

BTASOM 0.5877 ------ 1.0661

LB-SOINN 0.1018 0.0538 24.7617

GHSOM 0.8092 0.0007 17.0159

Wisconsin Breast

Cancer

IHSOM 1.2380 0 2.6349

BTASOM 20.8091 ----- 26.3878

LB-SOINN 5.1641 0.1733 121.7058

GHSOM 7.9160 0.0013 53.4190

As previously mentioned, both BTASOM and LB-

SOINN algorithm structure depends on the sequence

of input data meaning that if the sequence of the same

training data changes during one run, the entire tree

structure will differ. Since the IHSOM algorithm is a

batch learning algorithm, it resolves the problem

mentioned earlier and demonstrates a robust

performance on various datasets with different sizes.

Furthermore, the binary heap tree structure can also

preserve the input space topology ideally in output

space. The Topographic Error results shown in Table 4

verify this allegation. Another remarkable property of

the IHSOM algorithm is that, unlike BTASOM, LB-

SOINN, and GHSOM, it has a few (just one)

parameters to adjust by a user. This makes IHSOM

more desirable for unsupervised clustering tasks. In

Volume 14- Number 2 – 2022 (41 -53)

51

 [
 D

O
I:

 1
0.

52
54

7/
itr

c.
14

.2
.4

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 11 / 13

http://dx.doi.org/10.52547/itrc.14.2.41
http://ijict.itrc.ac.ir/article-1-503-en.html

other words, to gain a better result from BTASOM,

LB-SOINN, and GHSOM algorithm, there are too

many parameters that need to be adjusted empirically.

According to the results provided in Table 1, Table

2, and Table 4, the IHSOM algorithm has an excellent

capability for unsupervised clustering of a large

amount of data. The proposed algorithm demonstrates

its efficiency concerning BTASOM, LB-SOINN, and

GHSOM, which are incremental SOM-based

algorithms like IHSOM.

VI. CONCLUSION

This paper proposes an Incremental Heap Self-

Organizing Algorithm (IHSOM) for large-scale data

clustering. IHSOM is an adaptive hierarchical SOM

algorithm with a binary heap tree structure that

overcomes the disadvantages of the previous methods

like BTASOM, SOINN, and its modified versions such

as the LB-SOINN algorithm. IHSOM proposed

algorithm preserves the topology of input data by its

heap structure and efficiently handles outlier data by

forwarding them down to the tree’s leaf nodes using a

probability density function as a threshold for

assigning more similar data to a cluster node. The

proposed algorithm pruning and growing nodes

mechanisms make it robust to noises and more accurate

in clustering tasks as well as memory efficient. The

heap tree structure of the algorithm speeds up nodes

traversing and restructuring after adding or deleting

nodes. Furthermore, IHSOM has one user-defined

parameter, making it a powerful unsupervised method

for clustering tasks, and due to its properties, it can be

used for clustering “Big Data”. For future work, the

capability of IHSOM for clustering big data will be

tested.

VII. REFERENCES

[1] X. Cui, P. Zhu, X. Yang, K. Li, and C. Ji, "Optimized big data

K-means clustering using MapReduce," The Journal of

Supercomputing, vol. 70, no. 3, pp. 1249-1259, 2014.

[2] R. M. Alguliyev, R. M. Aliguliyev, and L. V. Sukhostat,

"Parallel batch k-means for Big data clustering," Computers &

Industrial Engineering, vol. 152, p. 107023, 2021.

[3] Y. Zhang and Y.-M. Cheung, "Discretizing numerical

attributes in decision tree for big data analysis," in 2014 IEEE

International Conference on Data Mining Workshop, 2014:

IEEE, pp. 1150-1157.

[4] S. K. Punia, M. Kumar, T. Stephan, G. G. Deverajan, and R.

Patan, "Performance analysis of machine learning algorithms

for big data classification: Ml and ai-based algorithms for big

data analysis," International Journal of E-Health and Medical

Communications (IJEHMC), vol. 12, no. 4, pp. 60-75, 2021.

[5] G. Li, Z. Liu, J. Lu, H. Zhou, and L. Sun, "Big data-oriented

wheel position and geometry calculation for cutting tool

groove manufacturing based on AI algorithms," The

International Journal of Advanced Manufacturing Technology,

pp. 1-12, 2022.

[6] P. Rebentrost, M. Mohseni, and S. Lloyd, "Quantum support

vector machine for big data classification," Physical review

letters, vol. 113, no. 13, p. 130503, 2014.

[7] [7] M. Tanveer, T. Rajani, R. Rastogi, Y. Shao, and M.

Ganaie, "Comprehensive review on twin support vector

machines," Annals of Operations Research, pp. 1-46, 2022.

[8] S. Lu, Y. Chen, X. Zhu, Z. Wang, Y. Ou, and Y. Xie,

"Exploring Support Vector Machines for Big Data Analyses,"

in 2021 4th International Conference on Computer Science

and Software Engineering (CSSE 2021), 2021, pp. 31-37.

[9] G. Teles, J. J. Rodrigues, R. A. Rabêlo, and S. A. Kozlov,

"Comparative study of support vector machines and random

forests machine learning algorithms on credit operation,"

Software: Practice and Experience, vol. 51, no. 12, pp. 2492-

2500, 2021.

[10] V. D. Katkar and S. V. Kulkarni, "A novel parallel

implementation of Naive Bayesian classifier for Big Data," in

2013 International Conference on Green Computing,

Communication and Conservation of Energy (ICGCE), 2013:

IEEE, pp. 847-852.

[11] L. Wang, X. Zhang, K. Li, and S. Zhang, "Semi-supervised

learning for k-dependence Bayesian classifiers," Applied

Intelligence, vol. 52, no. 4, pp. 3604-3622, 2022.

[12] R. Rahmadi and R. A. Rajagede, "Analisis Sentimen Politik

Berdasarkan Big Data dari Media Sosial Youtube: Sebuah

Tinjauan Literatur," AUTOMATA, vol. 2, no. 1, 2021.

[13] B. Liang and J. Austin, "A neural network for mining large

volumes of time series data," in 2005 IEEE International

Conference on Industrial Technology, 2005: IEEE, pp. 688-

693.

[14] D. Aberdeen, J. Baxter, and R. Edwards, "92¢/mflops/s, ultra-

large-scale neural-network training on a piii cluster," in SC'00:

Proceedings of the 2000 ACM/IEEE Conference on

Supercomputing, 2000: IEEE, pp. 44-44.

[15] W. Höpken, T. Eberle, M. Fuchs, and M. Lexhagen,

"Improving tourist arrival prediction: a big data and artificial

neural network approach," Journal of Travel Research, vol. 60,

no. 5, pp. 998-1017, 2021.

[16] I. K. Nti, J. A. Quarcoo, J. Aning, and G. K. Fosu, "A mini-

review of machine learning in big data analytics: Applications,

challenges, and prospects," Big Data Mining and Analytics,

vol. 5, no. 2, pp. 81-97, 2022.

[17] M. Dabbu, L. Karuppusamy, D. Pulugu, S. R. Vootla, and V.

R. Reddyvari, "Water atom search algorithm-based deep

recurrent neural network for the big data classification based

on spark architecture," International Journal of Machine

Learning and Cybernetics, pp. 1-16, 2022.

[18] T. Kohonen, "Self-organized formation of topologically

correct feature maps," Biological cybernetics, vol. 43, no. 1,

pp. 59-69, 1982.

[19] B. Sara and A. Otman, "New Learning Approach for

Unsupervised Neural Networks Model with Application to

Agriculture Field," International Journal of Advanced

Computer Science and Applications, vol. 11, no. 5, 2020.

[20] S. Jovanović and H. Hikawa, "A Survey of Hardware Self-

Organizing Maps," IEEE Transactions on Neural Networks

and Learning Systems, 2022.

[21] G. A. Angulo-Saucedo, J. X. Leon-Medina, W. A. Pineda-

Muñoz, M. A. Torres-Arredondo, and D. A. Tibaduiza,

"Damage Classification Using Supervised Self-Organizing

Maps in Structural Health Monitoring," Sensors, vol. 22, no. 4,

p. 1484, 2022.

[22] J. Herrero, A. Valencia, and J. Dopazo, "A hierarchical

unsupervised growing neural network for clustering gene

expression patterns," Bioinformatics, vol. 17, no. 2, pp. 126-

136, 2001.

[23] M. M. Campos and G. A. Carpenter, "S-TREE: self-organizing

trees for data clustering and online vector quantization,"

Neural Networks, vol. 14, no. 4-5, pp. 505-525, 2001.

[24] A. Denton, Q. Ding, W. Perrizo, and Q. Ding, "Efficient

Hierarchical Clustering of Large Data Sets Using P-trees," in

CAINE, 2002, pp. 138-141.

[25] S. Furao, T. Ogura, and O. Hasegawa, "An enhanced self-

organizing incremental neural network for online unsupervised

learning," Neural Networks, vol. 20, no. 8, pp. 893-903, 2007.

[26] F. Shen and O. Hasegawa, "A fast nearest neighbor classifier

based on self-organizing incremental neural network," Neural

networks, vol. 21, no. 10, pp. 1537-1547, 2008.

[27] F. Carpine, C. Mazzariello, and C. Sansone, "Online IRC

botnet detection using a SOINN classifier," in 2013 IEEE

International Conference on Communications Workshops

(ICC), 2013: IEEE, pp. 1351-1356.

[28] N. Masuyama, I. Tsubota, Y. Nojima, and H. Ishibuchi, "Class-

wise Classifier Design Capable of Continual Learning using

Adaptive Resonance Theory-based Topological Clustering,"

arXiv preprint arXiv:2203.09879, 2022.

[29] H. Shah-Hosseini, "Binary tree time adaptive self-organizing

map," Neurocomputing, vol. 74, no. 11, pp. 1823-1839, 2011.

[30] B. Liu, E. Blasch, Y. Chen, D. Shen, and G. Chen, "Scalable

sentiment classification for big data analysis using naive bayes

Volume 14- Number 2 – 2022 (41 -53)

52

 [
 D

O
I:

 1
0.

52
54

7/
itr

c.
14

.2
.4

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 12 / 13

http://dx.doi.org/10.52547/itrc.14.2.41
http://ijict.itrc.ac.ir/article-1-503-en.html

classifier," in 2013 IEEE international conference on big data,

2013: IEEE, pp. 99-104.

[31] R. Mall, R. Langone, and J. A. Suykens, "Self-tuned kernel

spectral clustering for large scale networks," in 2013 IEEE

International Conference on Big Data, 2013: IEEE, pp. 385-

393.

[32] R. Mall, R. Langone, and J. A. Suykens, "Ranking Overlap and

Outlier Points in Data using Soft Kernel Spectral Clustering."

[33] A. Toor, "An Advanced Clustering Algorithm (ACA) for

Clustering Large Data Set to Achieve High Dimensionality,"

Global Journal of Computer Science and Technology, 2014-

05-15 2014. [Online]. Available:

https://computerresearch.org/index.php/computer/article/view

/77.

[34] R. Chouhan and A. Chauhan, "An Ameliorated Partitioning

Clustering Algorithm for Large Data Sets," International

Journal of Advanced Research in Computer and

Communication Engineering, vol. 3, no. 7, 2014.

[35] P. Perner, "Mining sparse and big data by case-based

reasoning," Procedia Computer Science, vol. 35, pp. 19-33,

2014.

[36] Z. Nenova and J. Shang, "Chronic disease progression

prediction: Leveraging case‐based reasoning and big data

analytics," Production and Operations Management, vol. 31,

no. 1, pp. 259-280, 2022.

[37] [37] R. M. Esteves, T. Hacker, and C. Rong, "A new approach

for accurate distributed cluster analysis for Big Data:

competitive K-Means," International Journal of Big Data

Intelligence 5, vol. 1, no. 1-2, pp. 50-64, 2014.

[38] Z. Shi, Y. Xue, Y. Wen, and G. Cai, "Efficient class

incremental learning for multi-label classification of evolving

data streams," in 2014 international joint conference on neural

networks (IJCNN), 2014: IEEE, pp. 2093-2099.

[39] H. Zhang, X. Xiao, and O. Hasegawa, "A load-balancing self-

organizing incremental neural network," IEEE Transactions on

Neural Networks and Learning Systems, vol. 25, no. 6, pp.

1096-1105, 2013.

[40] T. Kohonen, Self-organization and associative memory.

Springer Science & Business Media, 2012.

[41] M. A. Weiss, "Data Structures and Algorithm Analysis in C++,

2007," Data Structures and Algorithm Analysis in Java, 2007.

[42] R. L. Villacarlos, J. M. Samaniego, A. J. Jacildo, and M. A. A.

D. Clariño, "A Tale of Two Trees: New Analysis for AVL Tree

and Binary Heap," arXiv preprint arXiv:2010.04752, 2020.

[43] S. Bae, JavaScript Data Structures and Algorithms: An

Introduction to Understanding and Implementing Core Data

Structure and Algorithm Fundamentals. Apress, 2019.

[44] E. A. Uriarte and F. D. Martín, "Topology preservation in

SOM," International journal of applied mathematics and

computer sciences, vol. 1, no. 1, pp. 19-22, 2005.

[45] H. Matsushita and Y. Nishio, "Batch-learning self-organizing

map with false-neighbor degree between neurons," in 2008

IEEE International Joint Conference on Neural Networks

(IEEE World Congress on Computational Intelligence), 2008:

IEEE, pp. 2259-2266.

[46] A. Rauber, D. Merkl, and M. Dittenbach, "The growing

hierarchical self-organizing map: exploratory analysis of high-

dimensional data," IEEE Transactions on Neural Networks,

vol. 13, no. 6, pp. 1331-1341, 2002.

[47] W. H. Wolberg and O. L. Mangasarian, "Multisurface method

of pattern separation for medical diagnosis applied to breast

cytology," Proceedings of the national academy of sciences,

vol. 87, no. 23, pp. 9193-9196, 1990.

[48] R. A. Fisher, "The use of multiple measurements in taxonomic

problems," Annals of eugenics, vol. 7, no. 2, pp. 179-188, 1936.

Mehdi Fasanghari received

his Ph.D. in Industrial

Engineering at the University of

Tehran. He received his B.Sc.

degree from Tarbiat Modarres

University. National

Broadband Network, 5th

generation of Mobile Network,

Large Scale System Development, Soft Computing,

and Advanced Multi-Criteria Decision Analysis are

his current research interests.

Hamideh Sadat Cheraghchi

received her Ph.D. in the

Department of Computer

Engineering at Shahid Beheshti

University (2018). She received

the B.Sc degree from Azad

University, South Tehran branch

(2006); M.Sc. from Azad

University, Qazvin branch (2009). Her current

research interests focuses on Data Mining in Social

Network, and Soft Methods and Health Care

Systems.

Helena Bahrami is a Ph.D.

graduate from AUT Knowledge

Engineering & Discovery

Research Institute (KEDRI). She

Obtained an M.Sc. degree in

Artificial Intelligence from

Qazvin Azad University, Iran in

2011 and B.Sc. degree in

Computer Software Engineering from Iran in 2006.

Her current research interests are Artificial

Intelligence, Machine Learning, Deep Learning,

Quantum Computing.

Volume 14- Number 2 – 2022 (41 -53)

53

 [
 D

O
I:

 1
0.

52
54

7/
itr

c.
14

.2
.4

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

Powered by TCPDF (www.tcpdf.org)

 13 / 13

https://computerresearch.org/index.php/computer/article/view/77
https://computerresearch.org/index.php/computer/article/view/77
http://dx.doi.org/10.52547/itrc.14.2.41
http://ijict.itrc.ac.ir/article-1-503-en.html
http://www.tcpdf.org

