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Abstract— In machine learning and data analysis, clustering large amounts of data is one of the most challenging tasks.
In reality, many fields, including research, health, social life, and commerce, rely on the information generated every
second. The significance of this enormous amount of data in all facets of contemporary human existence has prompted
numerous attempts to develop new methods for analyzing large amounts of data. In this research, an Incremental Heap
Self-Organizing Map (IHSOM) is proposed for clustering a vast amount of data that continues to grow. The gradual
nature of IHSOM enables environments to change and evolve. In other words, IHSOM can quickly adapt to the size of
a dataset. The heap binary tree structure of the proposed approach offers several advantages over other structures.
Initially, the topology or neighborhood relationship between data in the input space is maintained in the output space.
The outlier data are then routed to the tree's leaf nodes, where they may be efficiently managed. This capability is
supplied by a probability density function as a threshold for allocating more similar data to a cluster and transferring
less similar data to the following node. The pruning and expanding nodes process renders the algorithm noise-resistant,
more precise in clustering, and memory-efficient. Therefore, heap tree structure accelerates node traversal and
reorganization following the addition or deletion of nodes. IHSOM's simple user-defined parameters make it a practical
unsupervised clustering approach. On both synthetic and real-world datasets, the performance of the proposed
algorithm is evaluated and compared to existing hierarchical self-organizing maps and clustering algorithms. The
outcomes of the investigation demonstrated IHSOM's proficiency in clustering tasks.
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challenge in managing this quantity of data. These

. INTRODUCTION massive datasets are meaningless by necessity. In other

In the era of computer technology and with the  words, many types of data are received from widely
advent of the Internet of Things, the amount of data  diverse devices ranging from personal computers to
generated by humans is rapidly increasing. Data  sensors found in our surroundings, the majority of
analysts and computer engineers face a formidable  which are signals or, at most, figures or strings with no
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"label”. Unsupervised clustering techniques are the
best options for extracting usable information from
this ocean of vast amounts of data. Unsupervised
techniques help to build representations of the input
data without human intervention by discovering
patterns in the observed data that can be used for
decision making, predicting future inputs, and
facilitating interpretation, as it is necessary to assess a
significant volume of heterogeneous, unstructured,
and unlabeled data collected from multiple sources.
Numerous efforts have been made to employ
clustering techniques for large-scale data analysis,
such as K-means [1, 2], Decision Trees [3-5], Support
Vector Machines [6-9], Bayesian Classifiers [10-12],
and Neural Networks [13-17]. Among these methods,
Neural Networks, specifically Self-Organizing Map
(SOM) [18-21], is the preferred clustering technique
due to its fast-learning process and less time-
consuming performance, high accuracy in clustering
complex multi-dimensional data, and its great
visualization ability makes SOM a potent clustering
technique. Although SOMs are popular clustering
algorithms, their predefined, fixed lattice makes them
inappropriate for contexts that are subject to change.
Therefore, numerous researchers have attempted to
enhance the standard SOM by incorporating
dynamism into its structure in order to make it more
adaptable to expanding and changing information.
Among these successful endeavors, incremental
hierarchical SOMs have garnered considerable interest
due to their adaptable and flexible qualities, making
them resilient and accurate in clustering tasks. In this
research, a novel Incremental Heap Self-Organizing
Map (IHSOM) algorithm is presented that inherits the
hierarchical adaptive properties of its predecessors
while incorporating new techniques for outlier
handling, topology preservation, and rapid accurate
clustering. The suggested algorithm provides a number
of advantages over prior approaches, including: 1)
IHSOM maintains the topology or neighborhood
relationship between data in output space as well. 2) It
can handle outlier data efficiently by sending them to
the tree's leaf nodes. A probability density function
offers this capability as a threshold for allocating more
similar data to a cluster node and sending less similar
data to the following node. 3) The proposed
algorithm's pruning and expanding nodes processes
make it noise-resistant, more accurate in clustering
applications, and memory-efficient. 4) The heap tree
structure of the technique accelerates node traversal
and reorganization following the addition or deletion
of nodes. 5) IHSOM's single user-defined parameter
makes it a practical unsupervised approach for
clustering tasks.

The remaining sections of the paper are organized
as follows: Section 2 examines, analyzes, and
compares several prior related research publications.
The third section presents an overview of the Binary
tree time adaptive SOM, a hierarchical tree structure
SOM-based approach from which IHSOM inherits

Volume 14- Number 2 — 2022 (41 -53)

some of its characteristics. In Section 4, the proposed
IHSOM algorithm is thoroughly explored. Section 5
includes experimental findings and analysis of
algorithm performance for both simulated and real-
world datasets. The final section concludes the paper.

Il.  RELATED WORKS

This section reviews a brief history of some of the
previous research works carried out in large-scale data
clustering.

SOTA is an algorithm Javier Herrero and colleagues
developed for grouping gene expression. SOTA is a
hierarchical method that evolves using the topology of
a binary tree. This algorithm employs a top-down
approach to clustering to resolve the highest
hierarchical levels before proceeding to the lowest
level. The tree's growth can be halted at any desired
level using a criterion based on approximation
probability distribution [22].

S-tree refers to a self-organizing tree suggested by
Marcos Campos and Gail Carpenter [23] for data
clustering and online vector quantization. This method
is a hierarchical unsupervised clustering tree that
applies a twofold route search process for clustering
and vector quantization tasks, including a Gauss-
Markov source benchmark and a picture compression
application [23]. Anne Denton et al. developed a
solution related to the density-based clustering
algorithm DENCLUE, but with alternative reasoning.
Their description of a cluster center in their P-trees
defines a natural hierarchy that builds clusters at
various levels [24]. Shen Furao et al. proposed an
incremental self-organizing neural network with
enhanced self-organization for unsupervised online
learning. Their algorithm, ESOINN, is an enhanced
version of their previous SOINN method. This
algorithm replaces SOINN's two-layer network
structure with a single-layer network, separates
clusters with dense overlap, requires fewer parameters,
and is more stable than SOINN [25]. Shen Furao and
Osamu Hasegawa suggested a quick closest neighbor
classifier based on a self-organizing incremental
neural network, which is an improved version of
SOINN. This Adjusted SOINN Classifier (ASC)
automatically learns the number of prototypes
necessary to define the decision boundary and learns
new information without discarding previously
learned information [26-28]. Hamed Shah-Hosseini
created BTASOM, a binary tree time adaptive SOM,
to establish a hierarchical structure of neurons using
TASOM networks.

BTASOM's hierarchical binary tree structure makes
it computationally efficient in static and dynamic
contexts. The novelty of the BTASOM model is
inspired by real trees in that young branches are thin
and flexible, but elderly branches are massive and
unyielding [29]. Bingwei Liu et al. propose a scalable
sentiment categorization approach utilizing a naive
Bayes classifier. Their method provides a
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straightforward and comprehensive solution for
sentiment mining on huge datasets utilizing a Naive
Bayes classifier and the Hadoop framework [30]. Self-
tuned kernel spectral clustering model (KSC) for
large-scale complex networks was created by
Raghvendra Mall et al. The KSC approach functions
by constructing a model on a subgraph of the complex
network. The method automatically determines the
number of clusters by employing projections of
validation nodes in eigenspace to build an affinity
matrix [31, 32]. Amanpreet Kaur Toor and Amarpreet
Singh presented an advanced clustering algorithm
(ACA) to deal with large data sets and high
dimensionality. ACA accelerates the clustering
process by calculating the distance between the current
data input and the new cluster center; if this distance is
less than or equal to the distance to the old center, the
data input remains in the cluster to which it was
previously assigned. Therefore, calculating the
distance between this data input and the remaining k-1
clustering centers is unnecessary. This technique
expedites access to K-1 cluster center locations [33].
Raghavi Chouhan and Abhishek Chauhan suggested a
solution for the K-medoid algorithm that eliminates
the shortcoming of the existing K-medoid for the
clustering of large amounts of data. Their improved
partitioning clustering technique automatically adjusts
the number of clusters by comparing the similarity
value to a predetermined similarity threshold, resulting
in the establishment of stable clusters each time the
procedure is executed [34]. Petra Perner introduced
case-based reasoning as an incremental learning and
knowledge discovery strategy for mining massive
data. The approach finds similarities among a group of
instances that have been previously processed and
saved in a case database, and the closest (most similar)
examples with their corresponding results are picked
and displayed in the output [35, 36]. Rui Maximo
Esteves et al. suggested a novel competitive K-Means
algorithm to overcome the stochastic nature of K-
Means++ and its time-consuming serial processing
mechanism. A new parallel seeding algorithm, CK-
Means, surpasses the K-Means++ serial approach to
data analysis by applying clustering to subsets of the
dataset in parallel and selecting the winner cluster
based on a fitness measure. In addition, they utilized a
MapReduce framework that scaled effectively with
enormous datasets for their innovative CK-Means
[37].

Zhongwei Shi et al. developed a class incremental
learning technique for real-time recognizing frequent
label combinations in a developing data stream. In
their method, the learning process consists of two
parts. In the first step of initializing the learning model,
several samples with common label combinations are
collected. In the second stage, each consecutive
sample's label combination is compared to the set of
frequent label combinations. If the label combination
is not present in the list of label combinations, its
occurrence number will be recorded to update the
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learning model [38]. Hongwei Zhang et al. offer a
load-balancing self-organizing incremental neural
network (LB-SOINN), which is an additional type of
SOINN. LB-SOINN solves the deficiencies of E-
SOINN, such as its dependence on input data order,
instability, and consequent loss of precision as the data
dimension rises. LB-SOINN employs a load-balancing
strategy to improve network stability by utilizing the
learning time of each node as a representation of its
load. Additionally, it applies a smoothing technique
based on Voronoi tessellation to reduce the turbulence
caused by deleting the overlapping zone between
classes. In addition, Hongwei Zhang et al. [39]
presented a novel measure of similarity between two
vectors that is ideal for online incremental high-
dimensional learning tasks.

Although these valuable studies have shown good
clustering outcomes, there are downsides to employing
the techniques mentioned above. For example, Nearest
Neighbor clustering is an expensive technique whose
cost climbs exponentially as dataset size and
dimension increase.

Widely used K-means-based algorithms are too
static, and the cluster numbers should be supplied at
the outset. Decision-tree models are subject to
instability and overfitting (small variations in the input
data might result in a completely different tree). In
addition, decision tree approaches generate biased
trees when dominating classes already exist. Naive
Bayesian Classifier has strong feature independence
assumptions that lead this method to inaccurate
classification. In other words, it has trouble
understanding the interplay of dataset properties.
Despite the rapid and accurate categorization of SOM,
the output lattice is fixed and cannot adapt to a
changing environment.

Among the clustering approaches mentioned above,
the incremental hierarchical neural network is a
suitable methodology for clustering expanding large-
scale datasets because of its high classification
accuracy, low time consumption, and ability to readily
adapt to a growing dataset size. ACS, BTASOM, and
SOTA are successful instances of this methodology. In
the part that follows, various background knowledge
regarding the suggested model is examined to lay the
foundation for the proposed method.

I1l. BACKGROUND KNOWLEDGE

As stated in the preceding sections, incremental
neural networks are effective methods for
unsupervised clustering tasks that are best suited for
processing vast amounts of data. This section of the
paper introduces a new incremental neural network-
based strategy that can address the drawbacks of the
previous version. IHSOM is the proposed method
based on a SOM and binary heap tree structure. In
reality, IHSOM is an adaptive incremental neural
network that learns based on SOM rules, and its nodes
are organized as a heap binary tree. Before introducing
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IHSOM, a quick review of SOM and binary heap tree
will be presented. In addition, the final subsection
includes an overview of the BTASOM method, which
served as the basis for the proposed IHSOM algorithm.

A. Conventional SOM

Teivo Kohonen [40] introduced the SOM in 1989
as an unsupervised neural network employing a
competitive learning algorithm. The original SOM
algorithm maps a complex multi-dimensional input
space {x;(n):i=1,..,m} into a lattice of output
space {0;:j =1,..,k} by associating each input
vector to every node in the output lattice via a weighted
connection. Adjusting the weight of winning nodes
(nodes that most closely resemble the input vectors)
and their neighboring (neighbor) nodes in the lattice to
make them more similar to the input vectors
constitutes the learning phase of the method. Finally,
similar input vectors will be mapped to nearby winning
nodes on the output map, completing the clustering
task.

As a result of reducing a high-dimensional
environment to a low-dimensional space, one of the
valuable characteristics of the SOM is its capacity to
visualize data. It uses a neighborhood function to
maintain the same topological relationship between
input space data and the mapped output lattice. These
two characteristics of the SOM algorithm and its fast
unsupervised learning algorithm make its output
results more understandable and suitable for
classification tasks. However, SOM has a lattice of a
fixed number of output nodes that cannot adapt to the
growing size dataset. In order to solve this deficiency,
the fixed lattice of SOM is substituted with the
hierarchical binary heap structure.

B. Binary Heap Tree

The Binary heap tree [41-43] is a complete binary
tree data structure that fulfills the heap ordering task.
In the heap tree algorithm, each node is ordered
concerning its parent node value so that the child node
value is either less than (or equal to) its parent in min
heap ordering or greater than (or equal to) its parent in
max ordering. In order to build a heap tree, the first
input data is considered the root node; then, according
to the min-heap or max-heap strategy, when the
following data is added to the tree, it will be compared
with its parent. If the value of the child node is greater
than its parent in min-heap or less than its parent in the
max-heap, their position in the tree will swap. With the
help of the Heap tree technique, SOM fixed size lattice
becomes an incremental tree whose nodes are sorted
and adapted to the changing size of data inputs. By
combining these two methods, the proposed IHSOM
algorithm is created.

C. Areview of the BTASOM algorithm

BTASOM is a hierarchical binary tree structure
SOM based on the time adaptive SOM technique. In
other words, each node in BTASOM is an individual
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TASOM network. Each node in TASOM has a fixed
number of neurons that create a one-dimensional
lattice. To preserve the algorithm's binary tree
structure, each node in the TASOM network of
BTASOM has a maximum of two neurons.

BTASOM's binary tree topology facilitates
dynamic data input adaptation and accelerates
grouping. The level and nodes of BTASOM are
constructed at the time of data entry. According to their
guantization inaccuracy, the nodes may be added or
removed. The BTASOM algorithm begins with a root
node that generates the tree's initial and highest level.
The root node's TASOM weights are then initialized
with random values. The TASOM learning algorithm
adapts the root node's neuron (or neurons) to the input
data distribution by the time data is fed to the tree. If
the root node contains any child nodes, the input data
will be sent to the relevant child at the subsequent
stage. Until the input vector reaches a leaf node, the
TASOM learning algorithm trains each visited node as
the input vector is propagated through the tree. After
training the last leaf node in the tree with the current
input vector, the next input data are introduced, and the
training procedure is repeated from the root node to a
leaf node until the BTASOM has received the
predetermined number of input data. During the
training phase, the quantization error of each node is
computed; based on its value, an undesired node is
removed from the tree or an intransitive node is
inserted. If a node's quantization error is smaller than
a predefined minimal error, then the node and its
subtree are removed from the BTASOM tree entirely.
A new child node or nodes are added to the BTASOM
tree if the quantization error of a node is greater than a
preset maximum error. The maximum and minimum
guantization error bounds are defined by the intervals
[Minge x Kmul, Maxge x Kmul]. Trial-and-error
selection of a positive integer value for the constant
parameter Kmul enables the TASOM network to
accurately approximate the input distribution. The
fixed parameters Maxge and Minge provide the
maximum and minimum quantization error values so
that the inequality 0 < Minge < Maxqe/2 is
satisfied. In Shah-Hosseini’s paper, Maxge and Minge
are set to 0.5 and 0.1, respectively. By selecting
smaller Maxge and Minge values, more nodes will
grow on the BTASOM tree, resulting in a more
accurate approximation. Although additional nodes in
a tree result in a more precise categorization, it is
memory-intensive and slows down clustering.
Therefore, the trade-off between clustering precision,
memory usage, and algorithm performance must be
considered.

In BTASOM, the number of child nodes that a
node’s subtree has determines the flexibility of that
node. Similar to a natural tree, as the number of nodes
in a subtree increases, the root node becomes less
flexible. Otherwise, the flexibility of a root node will
be increased in a subtree with fewer child nodes. By
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this mechanism, the behavior of a real tree branch in
nature is simulated; the heavy old branches of a tree
may shrink, and new branches may grow based on
environmental conditions. BTASOM controls the
flexibility (shrinking-growing) of each node by the
parameter sy. Each neuron has its own sy. Neurons
with a low s learn more quickly and become more
adaptable to environmental changes, whereas neurons
with a high s, become less adaptable.

Although BTASOM is an exciting approach to
clustering with some remarkable properties, there are
some disadvantages to using this algorithm. BTASOM
cannot preserve the topology of input data in output
space due to a lack of specifying the topological
neighborhoods for its output nodes. Changing the
order of sequence of serial input data produces
different results, meaning the resulting tree will be
altered with the different sequence input data in each
run. When a node is deleted, that node's child nodes
will be removed too. The deleted node is an outlier
located in a sparse area of data distribution, and
deleting the whole subtree causes losing potential
clusters. Finally, there are too many parameters in the
BTASOM algorithm to adjust by the user.

In the following sections, a new Incremental
clustering method will be proposed to solve these
defects using a binary heap tree structure for a self-
organizing map called IHSOM.

IV. PROPOSED MODEL: INCREMENTAL HEAP SELF-
ORGANIZING MAP (IHSOM)

IHSOM is a hierarchical adaptive SOM method
with a binary heap tree topology. IHSOM begins with
a root node so that a random weight vector according
to the size of the training dataset is assigned to it. Since
the serial data input in some previous incremental
methods like BTASOM, SOINN, and its modified
versions causes instability in the output results,
IHSOM uses batch data input to overcome this
difficulty. Thus, each node is trained with the whole
input dataset. Every node in IHSOM has a cost used as
a critical value to build the heap tree. The cost of each
node is determined by the mean value of the weights
designated to it. It is determined for which data inputs
the present node is the winning node by calculating the
Euclidean distance between the input data and the
node's weight vector. Afterward, the most similar data
inputs are selected to assign to the node using the
probability density function. To this end, a threshold is
defined as the mean of probability density function
values, and those data inputs whose Euclidean distance
probability density functions are above the threshold
are chosen to earmark for the current node. The
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majority of these selected data (about 70 percent) are
removed from the original dataset so that less similar
data to the current node are passed to the next node for
clustering. By keeping 30 percent of similar data to the
current node in the original data set, there is a chance
for them to assign to another node and the previous
winning node to find the best matching unit. The
strategy of eliminating similar data to the current node
from the training dataset determines the direct outliers
(or data with less resemblance to the others) down to
the tree's leaf nodes. The next node will be treated like
the previous one. A random weight vector according
to the size of the remaining input data is dedicated to
the node, its cost value is determined, the Euclidean
distance of the data presented to the node is calculated,
and similar data to the cluster node are selected based
on their probability density functions. This process is
repeated until the size of the dataset is zero. After
creating all the cluster nodes, the binary heap tree is
built out of them. The next node is added to the tree as
the left child for the root node, considering the first
node as the root node for the binary heap tree. If the
cost of the child node is greater than its parent, their
place is swapped. Otherwise, they will maintain their
positions. The next node is added to the bottom level
of the tree (as the right child), and this routine is
repeated so that the max binary heap tree is built.
Afterward, the weights of each node are updated with
the batch learning of the SOM weight adjustment rule,
and the neighboring function for each node in the heap
tree is calculated. The neighboring radius decreases
through the iterations (like the original SOM
algorithm). Then Heap tree of SOM nodes is re-
ordered according to the new weights. In order to give
more dynamism to the IHSOM tree, new nodes will be
added in dense areas, and nodes in a sparse area of data
distribution removed based on their quantization error.

According to the above explanation, the IHSOM
algorithm is an adaptive hierarchical network that can
easily adapt to the size of the input training data. The
tree structure of IHSOM speeds up nodes traversing
and restructuring after adding or deleting nodes.
Adding or deleting nodes mechanism in the proposed
algorithm is attained in place. Thus, unlike BTASOM,
just one node is deleted, and the tree can restructure
quickly. Due to its heap ordering property, the IHSOM
can also preserve the topological relationship between
data input space and the output space. IHSOM has a
few parameters that need to be adjusted by the user,
making the algorithm a perfect choice for
unsupervised clustering tasks. The graphical
explanation of the IHSOM algorithm is illustrated in
Figure 1.
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Fig. 1. Graphical illustration of proposed IHSOM

Quantization error and topography error are
employed to determine the IHSOM's reliability. These
two measures are outlined in detail below.

A. Quantization Error

The Quantization Error (ge) [44] calculates the
average distance of the data inputs to the cluster
centroids (winner node) by which they are represented
(see Equation 1) in order to evaluate the fitting of
IHSOM to the dataset.

1%
ge =~ > |15 - BMUg | M

where N represents the number of data inputs and
BMUy, represents the best matching unit of the

corresponding x; data inputs.

The least average quantization error means that the
map properly fits the data. A smaller amount of
quantization error indicates that input data are closer to
their cluster centroids or the winner node. By
increasing the number of IHSOM tree nodes,
quantization error can be reduced due to the proper
coverage over data input space on the IHSOM map.
However, the lower quantization error may lead to
distortion of the IHSOM map's topology. Therefore, a
trade-off between vector quantization and projection
properties of the IHSOM should be considered.

B. Topographic Error

Topographic Error (te) [45] evaluates the accuracy
with which IHSOM maintains relative distances
between locations in the input data space. This mistake
takes into account the distance between the IHSOM
map's top and second best-matching units. If the first
and second best-matching units (BMU) are adjacent
vectors, then the topology of input data is preserved by
the IHSOM map. Thus, the lower the topographic
error, the better topology preservation. The
topographic error is calculated as follows:

N
1
te = N; u(x;), @)

where the function u(x;) returns 1 if the first and
second BMUs of the x; data input are not contiguous
and 0 otherwise.

C. IHSOM algorithm in details

In this part of the paper, the IHSOM algorithm is
specified step by step:

1.  Setinput dataset as the Training Data.

2. Create a node as the root node for the IHSOM.

3. Set the root node as the Current Node.

4. Set a random weight vector for the neurons of the
Current Node. (According to the number of
Training Data, the weight vector grows larger).

5. Calculate the mean of the weight vector as M,,, for
Current Node (M, is the cost of the current node).

=1 Wi
Mo == 3)

where w; is the weight vector, n is the weight vector's
size, and i denotes the index of a particular weight in
the vector.

Determine  the Euclidean distance (ED-
CurrentNode) between each input data vector and the
weight vector of the node (the node's neurons) as

EDCurrentNode-

EDCurrentNode

i=n

= Z(TrainingDatai - W2, (4)
i=0

6. Calculate for the current node, the probability

density function of EDcyyrentnode @ EDpqy-

1 (EDCu‘rrentNodei‘l’-)2
ED,jr =—=Xe 202 ,
P V2ot ©)

where y and o are the mean value and standard

deviation of ED¢yyrentnvoder FeSpectively.

7. Find the mean of the ED-pdf and set it as the
threshold.
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271 (EDpay);
n ' (6)

In this step, the current node is set as a winning node
to those input vectors (TrainingData,,inner) Which
their ED, 4 are more than Threshold.

8. Omit 70% of the TrainingData,,;ner from the
original dataset and set it as Training Data. In this
way, 30% of assigning data to the Current
winning node have a chance to assign to another
node and the previous winning node to find Best
Matching Unit.

9. Create the Next node, set it as the current node, and
go to step 4. Repeat until the size of the Training
Data is zero.

10. Call BuildHeap () Function to build a binary heap

tree from the nodes created in the earlier stages.

11. Update weights using the batch learning SOM
weight adjusting rule [35].

2ic1 Nbpeapnode,j X TrainingData

Threshold =

Wupdated =

y

2?:1 theapNodei,j (7)

where, Nbpeapnode,j: 1S the neighborhood function

around each heap tree’s node and is calculated as
follows:

theapNodei,j

— expl| — |7 — rheapNodeiHZ (®)
- 26%(0) )

where [|7; — Theapnode;|| i the distance between
heapNode; and the jth node in the binary heap tree
and 6 (t) is the neighborhood width at time t.

12. Decrease the neighborhood width according to the
below equation:

5(t) = 6, <1 -

tmta)’ )

where 9§, is the initial value of the neighborhood width
and will be set as the total number of IHSOM tree’s
nodes at the beginning of the algorithm and decreases
by the time. Moreover, the current iteration is t, and the
maximum iteration for IHSOM's learning phase is
bnax-

13. Call MaxHeapify() Function to heap sorting the
tree according to the new weight vectors.
Calculate quantization error for each IHSOM

node:

n
1
qe = r—lZHTrainingDatai —w;l. (10)

i=1

The average Euclidean distance between the input
vector TrainingData and its matching winning
node's weight vector w; is the quantization error ge.

If ge < 107°, Call HeapDeleteNode (), function.
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Else if ge > 0.5, create a new node with a node cost
M,, which is a random number between the parent and
its left child’ M,, of the place that the new node
intended to insert.

14. Call HeaplInsertNode() function.
15. Choose 30% of the new inserted node parent’s
training dataset to assign to it (new node).

Set a random weight vector such that the upper

bound and lower bound are between the M,, of the

inserted node parent and left child, respectively.

Then, go to the step 13, Re-compute M,, for the
inserted node.

Calculate Topological Error te for the IHSOM tree

using the following equation:

N

1 R
te = NZ u(TraimingDatay), (11)

i=1

where u(TrainingData;) is 1 if best and second-best

matching units are not adjacent and is 0, otherwise. If

maximum iteration is reached, stop else, go to step 13.

The BuildHeap, MaxHeapify, HeapDeleteNode, and
HeaplnsertNode algorithms are defined in the
followings.

1) BuildHeap algorithm

The binary heap tree, as previously stated, is a
complete binary tree that may be built using an array
(list) structure. A heap tree is represented in a level
order from left to right. Thus, it is necessary to know
the parent and its left and right child's location in the
array. In order to build a heap tree from an input array
by assuming the root index at 1, the parent of node i is
located at the index floor (i/2). The left and right child
of node i are respectively at indices (2i) and (2i+1).
According to the above explanation, the following
steps are used to build a max heap tree.

Put all IHSOM nodes in an array; H[i] =
THSOM podes; -
Set heaps;,. = length(H).
: heapsize|. P
Set j = lTJ the last parent in the array.

3-1. Repeat step 4 until j = 1.

Call MaxHeapify(H); this function heapifies the
sub tree i and its children in a way that the largest
node is stored at the root.

Decrease j by 1 if the stop condition meets exit
else, go back to step 4.

(12)

. heapsize
B [ 2 J !

2) MaxHeapify algorithm

The aforementioned MaxHeapify function, which
maintains the heap property of the IHSOM heap tree is
specified as below:


http://dx.doi.org/10.52547/itrc.14.2.41
http://ijict.itrc.ac.ir/article-1-503-en.html

~
.
—
L
T
N
S
5N
c
S}
=
%
g
=
B
S
2
=
3
B
=}
E
3
o

[ DOI: 10.52547/itrc.14.2.41]

IJICTR

Set LeftChildindex = 2i.

Set RightChildIndex = 2i + 1.

If LeftChildIndex <
heapg;,. and H[LeftChildIndex] > H[i].

Then set Largest = LeftChildIndex.

Else set Largest = i.

If RightChildIndex < heaps;,, and H[i] >
H[Largest].

Then set Largest = RightChildIndex.

If Largest # i.

Then exchange H[i] & H[Largest].

Call MaxHeapify().

3) HeapDeleteNode algorithm
The HeapDeleteNode algorithm for removing a
node from the IHSOM heap tree is as follows:

Index = FindIndex(H,value) . // Find the
index of the value to delete;

Set Count = heaps;y, -

Replace the deleted node with the right most
node on the lowest level of the binary heap tree;
H[Index] = H[Count].

Set heapgi,, = Count — 1.

Call MaxHeapify().

4) HeaplnsertNode algorithm

To add a node to the IHSOM tree, the following
algorithm is used:

Set Count = heapy;,, -

Add the new node to the right most empty
location at the bottom level of the heap tree:

H[Count + 1] = Node,,,,.

Set heapgi,, = Count + 1.

Call MaxHeapify().

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the empirical results achieved by
applying IHSOM to both synthetic and real-world
datasets are demonstrated. IHSOM reliability and
mapping quality are analyzed based on two criteria;
quantization error and topographic error. In order to
compare the proposed algorithm with other methods,
BTASOM, LB-SOINN, and GHSOM [46] algorithms
are selected, which are incremental hierarchical SOM-
based methods.

A. Artificial Datasets

In order to evaluate IHSOM performance, an
artificial dataset with 5000, 25000, and 200000 input
data instances are generated. Figure 2 illustrates data
distribution in the artificial dataset divided into three

parts; rectangular class, oval class, and ring class.
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Fig. 2. The Artificial Dataset with three classes

Different size of datasets is chosen to demonstrate
IHSOM ability to adapt to the growing size of input
datasets appropriately. The proportion of the most
similar data allocated to a node is the single user-
defined parameter in the IHSOM algorithm. This
parameter is empirically set as 70% to gain better
results. Experiment results on the artificial dataset
confirm the efficient performance of IHSOM. As
shown in Table 1, the value of Quantization Error is
very low, and with increasing the number of data
instances decreases. In fact, increasing the volume of
training data improves clustering accuracy and reduces
guantization error.

The number of network nodes grows moderately as
the dimension of training data augments. This
memory-efficient characteristic of IHSOM empowers
it to cluster large-scale data. Another remarkable
property of IHSOM is its ability to preserve
neighborhood topology. As the Topographic Error
column is shown in Table 1, the IHSOM perfectly
preserves data neighborhood topology, and the
average value of topographic error is 0. The execution
Time column also confirms the acceptable run time of
IHSOM. Despite the fact that the suggested
algorithm's execution time grows as the data
dimension increases, IHSOM gives a quick clustering
when the size of the training data is considered. The
hierarchical tree structure of the suggested algorithm
allows fast traversing of the nodes so that data can
easily direct to the next node in the heap tree.

In order to evaluate IHSOM clustering reliability in
the presence of noisy data, different amounts of noise
samples are added to the artificial dataset (i.e., 500,
2000, and 5000 noisy data samples are added). Figure
3 depicts the fabricated dataset with noisy data
(outliers). From the results presented in Table 2, it can
be determined that IHSOM performs well with noisy
data and that its technique for controlling outliers is
effective.
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TABLE I. EXPERIMENTAL RESULTS WERE OBTAINED BY APPLYING IHSOM TO THE ARTIFICIAL DATASET
Artificial Number of Number of Maximum Number of | Quantizatio | Topographic Execution
Dataset Instances Classes Iteration Nodes n Error Error Time (s)
s 1 5000 3 1000 10 0.03787 0 3.182x 10
8 2 25000 3 1000 13 0.02009 0 3.979% 102
I 3 200000 3 1000 14 0.00333 0 1.144x 103
Noisy Artificial Dataset
35r
30
251
20|
> 15F
10+
5k
ok
5l
m
Fig. 3. The Noisy Atrtificial Dataset with three classes
TABLE II. EXPERIMENTAL RESULTS OBTAINED BY APPLYING IHSOM ON THE NOISY ARTIFICIAL DATASET
N(.)'.SY Number of Noise Number of |Maximum|Number of |Quantization| Topographic | Execution Time
Artificial .
Instances Percentage | Classes | Iteration Nodes Error Error (s)
Dataset
s 0 10000 0 3 1000 11 0.0814 0 7.156x 10
% 1 10000+500 5% 3 1000 11 0.12124 0 8.216x 10
- 2 10000+2000 20% 3 1000 14 0.20361 0 8.731x 102
3 10000+5000 50% 3 1000 16 0.6734 0 1.012x 103

Real-World Wisconsin Breast Cancer Dataset
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a. Wisconsin Breast Cancer Database containing two
classes (Malignant-Benign) according to

texture, and perimeter features.
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Real-World Wisconsin Breast Cancer Dataset
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b. Wisconsin Breast Cancer Database containing two

classes

(Malignant-Benign) according

to area,

smoothness, and compactness features.
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Real-World Wisconsin Breast Cancer Dataset
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C.  Wisconsin Breast Cancer Database containing two classes (Malignant-Benign) according to concavity, concave points, and

symmetry features.

Fig. 4. Wisconsin Breast Cancer Dataset with two classes

Although increasing the number of noisy samples
decreases, the quantization error is acceptable.
However, due to the increase in the learning rate of the
noisy data, the execution time of the IHSOM grows
rapidly with the size of outliers. This phenomenon can
affect the clustering task time when the outlier’s
sample is very high, but the execution time for a
normal noise distribution is tolerable For a more
comprehensive evaluation of IHSOM's performance,
two real-world datasets are employed, and the
proposed algorithm's efficacy is compared to that of
hierarchical incremental SOM techniques such as
BTASOM, LB-SOINN, and GHSOM.

A.  Real-world datasets

In real-world examinations, two Iris and Wisconsin
breast cancer datasets are used to analyze and compare
IHSOM performance versus BTASOM, LB-SOINN,
and GHSOM algorithms. Madison and the Wisconsin
breast cancer dataset (WDBC) were acquired from the
University of Wisconsin Hospitals and Dr. William H.
Wolberg, respectively [47]. WDBC has 569 instances
with 32 attributes distributed in two classes: malignant
and benign. Each sample in the WDBC characteristics
includes an ID number, a diagnosis (M = malignant, B
= benign), and ten real-valued features computed for
each cell nucleus, including Radius, Texture,
Perimeter,  Area,  Smoothness, = Compactness,
Concavity, Concave points, Symmetry, and Fractal
dimension. These characteristics are extracted from
the digital photographs of a fine needle aspirate of a
breast lump. Figure 3 provides a visual demonstration
of two types of breast cells, malignant and benign,
according to the real-valued features. The Iris dataset
is another notable multivariate data set given as an
example of discriminant analysis by R. A. Fisher [48].
The Iris dataset included four iris flower
characteristics: sepal length, sepal width, petal length,
and petal width. This data set contains 150 samples, or
50 samples for each of the three species (classes)
Setosa, Virginica, and Versicolor. Figure 4 illustrates
the classes of Iris flowering trees. Table 3 shows
WDBC and Iris datasets' characteristic.

TABLE III. REAL-WORLD DATASETS
Dataset Number of Num_ber of Number of
Instances Attributes Classes

3 (Setosa,

Iris 150 4 Virginica,
Versicolor)

Wisconsin 2 (Benign
Breast 569 32 . .
Malignant)

Cancer

For IHSOM performance assessment, four
hierarchical and incremental algorithms are used to
compare the results obtained from deploying real-
world datasets; BTASOM, LB-SOINN, and GHSOM
algorithms. Each of these algorithms has some
parameters that are set according to their reference
papers’ values in the following implementations.
Table 4, illustrates the results of applying these
algorithms to the Iris dataset and Wisconsin Breast
Cancer dataset. From the obtained results, IHSOM
proposed algorithm outreaches almost the other three
clustering algorithms both in accuracy (quantization
error) and execution time. The great disadvantage of
BTASOM is that it cannot preserve the topology
neighborhoods, and the quantization error grows
drastically with the increasing dataset dimension,
which can be checked with the Wisconsin breast
cancer dataset with 569 samples and 32 features.
However, the BTASOM execution time in the Iris
dataset is better than the proposed IHSOM and other
compared algorithms. In fact, the BTASOM shows
faster clustering performance in lower dimensions due
to its binary hierarchical structure, but its performance
is not necessarily accurate. LB-SOINN and GHSOM
algorithms both show better results than BTASOM in
the quantization error, but both are defeated in
competition with IHSOM clustering speed and
accuracy. Due to the k-means approach that LB-
SOINN uses to perform a local search in the input
space and the hierarchical multi-layered structure of
GHSOM, in which each layer is composed of several
independent SOMs, they both have lengthy execution
times despite their excellent quantization error
performance.
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Real-World Iris Dataset
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a. Iris Dataset including three classes (Setosa, Versicolor,
and Virginica) according to sepal length, sepal width, and
petal length.

Real-World Iris Dataset
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c. Iris Dataset including three classes (Setosa,
Versicolor, and Virginica) according to petal
length, petal width, and sepal width.
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b. Iris Dataset including three classes (Setosa, Versicolor,

and Virginica) according to sepal length, sepal width, and
petal width.

Real-World Iris Dataset
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d. Iris Dataset including three classes (Setosa,
Versicolor, and Virginica) according to petal
length, petal width, and sepal length.

Fig. 5. Iris Dataset with three classes
TABLE IV. COMPARED RESULTS OBTAINED BY IHSOM
Datasets Clustering Methods Quantization Error Topographic Error Execution Time (s)

IHSOM 0.04093 0 1.5228

Iris BTASOM 05877 | e 1.0661
LB-SOINN 0.1018 0.0538 24.7617

GHSOM 0.8092 0.0007 17.0159

IHSOM 1.2380 0 2.6349

Wisconsin Breast BTASOM 208091 | e 26.3878
Cancer LB-SOINN 5.1641 0.1733 121.7058
GHSOM 7.9160 0.0013 53.4190

As previously mentioned, both BTASOM and LB-
SOINN algorithm structure depends on the sequence
of input data meaning that if the sequence of the same
training data changes during one run, the entire tree
structure will differ. Since the IHSOM algorithm is a
batch learning algorithm, it resolves the problem
mentioned earlier and demonstrates a robust
performance on various datasets with different sizes.
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Furthermore, the binary heap tree structure can also
preserve the input space topology ideally in output
space. The Topographic Error results shown in Table 4
verify this allegation. Another remarkable property of
the IHSOM algorithm is that, unlike BTASOM, LB-
SOINN, and GHSOM, it has a few (just one)
parameters to adjust by a user. This makes IHSOM
more desirable for unsupervised clustering tasks. In
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other words, to gain a better result from BTASOM,
LB-SOINN, and GHSOM algorithm, there are too
many parameters that need to be adjusted empirically.

According to the results provided in Table 1, Table
2, and Table 4, the IHSOM algorithm has an excellent
capability for unsupervised clustering of a large
amount of data. The proposed algorithm demonstrates
its efficiency concerning BTASOM, LB-SOINN, and
GHSOM, which are incremental SOM-based
algorithms like IHSOM.

VI. CONCLUSION

This paper proposes an Incremental Heap Self-
Organizing Algorithm (IHSOM) for large-scale data
clustering. IHSOM s an adaptive hierarchical SOM
algorithm with a binary heap tree structure that
overcomes the disadvantages of the previous methods
like BTASOM, SOINN, and its modified versions such
as the LB-SOINN algorithm. IHSOM proposed
algorithm preserves the topology of input data by its
heap structure and efficiently handles outlier data by
forwarding them down to the tree’s leaf nodes using a
probability density function as a threshold for
assigning more similar data to a cluster node. The
proposed algorithm pruning and growing nodes
mechanisms make it robust to noises and more accurate
in clustering tasks as well as memory efficient. The
heap tree structure of the algorithm speeds up nodes
traversing and restructuring after adding or deleting
nodes. Furthermore, IHSOM has one user-defined
parameter, making it a powerful unsupervised method
for clustering tasks, and due to its properties, it can be
used for clustering “Big Data”. For future work, the
capability of IHSOM for clustering big data will be
tested.
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