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Abstract— In machine learning and data analysis, clustering large amounts of data is one of the most challenging tasks. 

In reality, many fields, including research, health, social life, and commerce, rely on the information generated every 

second. The significance of this enormous amount of data in all facets of contemporary human existence has prompted 

numerous attempts to develop new methods for analyzing large amounts of data. In this research, an Incremental Heap 

Self-Organizing Map (IHSOM) is proposed for clustering a vast amount of data that continues to grow. The gradual 

nature of IHSOM enables environments to change and evolve. In other words, IHSOM can quickly adapt to the size of 

a dataset. The heap binary tree structure of the proposed approach offers several advantages over other structures. 

Initially, the topology or neighborhood relationship between data in the input space is maintained in the output space. 

The outlier data are then routed to the tree's leaf nodes, where they may be efficiently managed. This capability is 

supplied by a probability density function as a threshold for allocating more similar data to a cluster and transferring 

less similar data to the following node. The pruning and expanding nodes process renders the algorithm noise-resistant, 

more precise in clustering, and memory-efficient. Therefore, heap tree structure accelerates node traversal and 

reorganization following the addition or deletion of nodes. IHSOM's simple user-defined parameters make it a practical 

unsupervised clustering approach. On both synthetic and real-world datasets, the performance of the proposed 

algorithm is evaluated and compared to existing hierarchical self-organizing maps and clustering algorithms. The 

outcomes of the investigation demonstrated IHSOM's proficiency in clustering tasks. 

Keywords: Self-organizing map (SOM); Binary heap tree; Incremental hierarchical structure; Probability density function. 
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I. INTRODUCTION 

In the era of computer technology and with the 

advent of the Internet of Things, the amount of data 

generated by humans is rapidly increasing. Data 

analysts and computer engineers face a formidable 
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challenge in managing this quantity of data. These 

massive datasets are meaningless by necessity. In other 

words, many types of data are received from widely 

diverse devices ranging from personal computers to 

sensors found in our surroundings, the majority of 

which are signals or, at most, figures or strings with no 
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"label". Unsupervised clustering techniques are the 

best options for extracting usable information from 

this ocean of vast amounts of data. Unsupervised 

techniques help to build representations of the input 

data without human intervention by discovering 

patterns in the observed data that can be used for 

decision making, predicting future inputs, and 

facilitating interpretation, as it is necessary to assess a 

significant volume of heterogeneous, unstructured, 

and unlabeled data collected from multiple sources. 

Numerous efforts have been made to employ 

clustering techniques for large-scale data analysis, 

such as K-means [1, 2], Decision Trees [3-5], Support 

Vector Machines [6-9], Bayesian Classifiers [10-12], 

and Neural Networks [13-17]. Among these methods, 

Neural Networks, specifically Self-Organizing Map 

(SOM) [18-21], is the preferred clustering technique 

due to its fast-learning process and less time-

consuming performance, high accuracy in clustering 

complex multi-dimensional data, and its great 

visualization ability makes SOM a potent clustering 

technique. Although SOMs are popular clustering 

algorithms, their predefined, fixed lattice makes them 

inappropriate for contexts that are subject to change. 

Therefore, numerous researchers have attempted to 

enhance the standard SOM by incorporating 

dynamism into its structure in order to make it more 

adaptable to expanding and changing information. 

Among these successful endeavors, incremental 

hierarchical SOMs have garnered considerable interest 

due to their adaptable and flexible qualities, making 

them resilient and accurate in clustering tasks. In this 

research, a novel Incremental Heap Self-Organizing 

Map (IHSOM) algorithm is presented that inherits the 

hierarchical adaptive properties of its predecessors 

while incorporating new techniques for outlier 

handling, topology preservation, and rapid accurate 

clustering. The suggested algorithm provides a number 

of advantages over prior approaches, including: 1) 

IHSOM maintains the topology or neighborhood 

relationship between data in output space as well. 2) It 

can handle outlier data efficiently by sending them to 

the tree's leaf nodes. A probability density function 

offers this capability as a threshold for allocating more 

similar data to a cluster node and sending less similar 

data to the following node. 3) The proposed 

algorithm's pruning and expanding nodes processes 

make it noise-resistant, more accurate in clustering 

applications, and memory-efficient. 4) The heap tree 

structure of the technique accelerates node traversal 

and reorganization following the addition or deletion 

of nodes. 5) IHSOM's single user-defined parameter 

makes it a practical unsupervised approach for 

clustering tasks.  

The remaining sections of the paper are organized 

as follows: Section 2 examines, analyzes, and 

compares several prior related research publications. 

The third section presents an overview of the Binary 

tree time adaptive SOM, a hierarchical tree structure 

SOM-based approach from which IHSOM inherits 

some of its characteristics. In Section 4, the proposed 

IHSOM algorithm is thoroughly explored. Section 5 

includes experimental findings and analysis of 

algorithm performance for both simulated and real-

world datasets. The final section concludes the paper. 

II. RELATED WORKS 

This section reviews a brief history of some of the 

previous research works carried out in large-scale data 

clustering.  

SOTA is an algorithm Javier Herrero and colleagues 

developed for grouping gene expression. SOTA is a 

hierarchical method that evolves using the topology of 

a binary tree. This algorithm employs a top-down 

approach to clustering to resolve the highest 

hierarchical levels before proceeding to the lowest 

level. The tree's growth can be halted at any desired 

level using a criterion based on approximation 

probability distribution [22]. 

S-tree refers to a self-organizing tree suggested by 

Marcos Campos and Gail Carpenter  [23] for data 

clustering and online vector quantization. This method 

is a hierarchical unsupervised clustering tree that 

applies a twofold route search process for clustering 

and vector quantization tasks, including a Gauss-

Markov source benchmark and a picture compression 

application [23]. Anne Denton et al. developed a 

solution related to the density-based clustering 

algorithm DENCLUE, but with alternative reasoning. 

Their description of a cluster center in their P-trees 

defines a natural hierarchy that builds clusters at 

various levels [24]. Shen Furao et al. proposed an 

incremental self-organizing neural network with 

enhanced self-organization for unsupervised online 

learning. Their algorithm, ESOINN, is an enhanced 

version of their previous SOINN method. This 

algorithm replaces SOINN's two-layer network 

structure with a single-layer network, separates 

clusters with dense overlap, requires fewer parameters, 

and is more stable than SOINN [25]. Shen Furao and 

Osamu Hasegawa suggested a quick closest neighbor 

classifier based on a self-organizing incremental 

neural network, which is an improved version of 

SOINN. This Adjusted SOINN Classifier (ASC) 

automatically learns the number of prototypes 

necessary to define the decision boundary and learns 

new information without discarding previously 

learned information [26-28]. Hamed Shah-Hosseini 

created BTASOM, a binary tree time adaptive SOM, 

to establish a hierarchical structure of neurons using 

TASOM networks. 

BTASOM's hierarchical binary tree structure makes 

it computationally efficient in static and dynamic 

contexts. The novelty of the BTASOM model is 

inspired by real trees in that young branches are thin 

and flexible, but elderly branches are massive and 

unyielding [29]. Bingwei Liu et al. propose a scalable 

sentiment categorization approach utilizing a naive 

Bayes classifier. Their method provides a 
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straightforward and comprehensive solution for 

sentiment mining on huge datasets utilizing a Naïve 

Bayes classifier and the Hadoop framework [30]. Self-

tuned kernel spectral clustering model (KSC) for 

large-scale complex networks was created by 

Raghvendra Mall et al. The KSC approach functions 

by constructing a model on a subgraph of the complex 

network. The method automatically determines the 

number of clusters by employing projections of 

validation nodes in eigenspace to build an affinity 

matrix [31, 32]. Amanpreet Kaur Toor and Amarpreet 

Singh presented an advanced clustering algorithm 

(ACA) to deal with large data sets and high 

dimensionality. ACA accelerates the clustering 

process by calculating the distance between the current 

data input and the new cluster center; if this distance is 

less than or equal to the distance to the old center, the 

data input remains in the cluster to which it was 

previously assigned. Therefore, calculating the 

distance between this data input and the remaining k-1 

clustering centers is unnecessary. This technique 

expedites access to K-1 cluster center locations [33]. 

Raghavi Chouhan and Abhishek Chauhan suggested a 

solution for the K-medoid algorithm that eliminates 

the shortcoming of the existing K-medoid for the 

clustering of large amounts of data. Their improved 

partitioning clustering technique automatically adjusts 

the number of clusters by comparing the similarity 

value to a predetermined similarity threshold, resulting 

in the establishment of stable clusters each time the 

procedure is executed [34]. Petra Perner introduced 

case-based reasoning as an incremental learning and 

knowledge discovery strategy for mining massive 

data. The approach finds similarities among a group of 

instances that have been previously processed and 

saved in a case database, and the closest (most similar) 

examples with their corresponding results are picked 

and displayed in the output [35, 36]. Rui Maximo 

Esteves et al. suggested a novel competitive K-Means 

algorithm to overcome the stochastic nature of K-

Means++ and its time-consuming serial processing 

mechanism. A new parallel seeding algorithm, CK-

Means, surpasses the K-Means++ serial approach to 

data analysis by applying clustering to subsets of the 

dataset in parallel and selecting the winner cluster 

based on a fitness measure. In addition, they utilized a 

MapReduce framework that scaled effectively with 

enormous datasets for their innovative CK-Means 

[37].  

Zhongwei Shi et al. developed a class incremental 

learning technique for real-time recognizing frequent 

label combinations in a developing data stream. In 

their method, the learning process consists of two 

parts. In the first step of initializing the learning model, 

several samples with common label combinations are 

collected. In the second stage, each consecutive 

sample's label combination is compared to the set of 

frequent label combinations. If the label combination 

is not present in the list of label combinations, its 

occurrence number will be recorded to update the 

learning model [38]. Hongwei Zhang et al. offer a 

load-balancing self-organizing incremental neural 

network (LB-SOINN), which is an additional type of 

SOINN. LB-SOINN solves the deficiencies of E-

SOINN, such as its dependence on input data order, 

instability, and consequent loss of precision as the data 

dimension rises. LB-SOINN employs a load-balancing 

strategy to improve network stability by utilizing the 

learning time of each node as a representation of its 

load. Additionally, it applies a smoothing technique 

based on Voronoi tessellation to reduce the turbulence 

caused by deleting the overlapping zone between 

classes. In addition, Hongwei Zhang et al. [39] 

presented a novel measure of similarity between two 

vectors that is ideal for online incremental high-

dimensional learning tasks.  

Although these valuable studies have shown good 

clustering outcomes, there are downsides to employing 

the techniques mentioned above. For example, Nearest 

Neighbor clustering is an expensive technique whose 

cost climbs exponentially as dataset size and 

dimension increase. 

 Widely used K-means-based algorithms are too 

static, and the cluster numbers should be supplied at 

the outset. Decision-tree models are subject to 

instability and overfitting (small variations in the input 

data might result in a completely different tree). In 

addition, decision tree approaches generate biased 

trees when dominating classes already exist. Naïve 

Bayesian Classifier has strong feature independence 

assumptions that lead this method to inaccurate 

classification. In other words, it has trouble 

understanding the interplay of dataset properties. 

Despite the rapid and accurate categorization of SOM, 

the output lattice is fixed and cannot adapt to a 

changing environment.  

Among the clustering approaches mentioned above, 

the incremental hierarchical neural network is a 

suitable methodology for clustering expanding large-

scale datasets because of its high classification 

accuracy, low time consumption, and ability to readily 

adapt to a growing dataset size. ACS, BTASOM, and 

SOTA are successful instances of this methodology. In 

the part that follows, various background knowledge 

regarding the suggested model is examined to lay the 

foundation for the proposed method.  

III. BACKGROUND KNOWLEDGE 

As stated in the preceding sections, incremental 

neural networks are effective methods for 

unsupervised clustering tasks that are best suited for 

processing vast amounts of data. This section of the 

paper introduces a new incremental neural network-

based strategy that can address the drawbacks of the 

previous version. IHSOM is the proposed method 

based on a SOM and binary heap tree structure. In 

reality, IHSOM is an adaptive incremental neural 

network that learns based on SOM rules, and its nodes 

are organized as a heap binary tree. Before introducing 
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IHSOM, a quick review of SOM and binary heap tree 

will be presented. In addition, the final subsection 

includes an overview of the BTASOM method, which 

served as the basis for the proposed IHSOM algorithm. 

A. Conventional SOM 

Teivo Kohonen  [40] introduced the SOM in 1989 

as an unsupervised neural network employing a 

competitive learning algorithm. The original SOM 

algorithm maps a complex multi-dimensional input 

space {𝑥𝑖(𝑛): 𝑖 = 1, … , 𝑚 }  into a lattice of output 

space {𝑂𝑗: 𝑗 = 1, … , 𝑘}  by associating each input 

vector to every node in the output lattice via a weighted 

connection. Adjusting the weight of winning nodes 

(nodes that most closely resemble the input vectors) 

and their neighboring (neighbor) nodes in the lattice to 

make them more similar to the input vectors 

constitutes the learning phase of the method. Finally, 

similar input vectors will be mapped to nearby winning 

nodes on the output map, completing the clustering 

task. 

 As a result of reducing a high-dimensional 

environment to a low-dimensional space, one of the 

valuable characteristics of the SOM is its capacity to 

visualize data. It uses a neighborhood function to 

maintain the same topological relationship between 

input space data and the mapped output lattice. These 

two characteristics of the SOM algorithm and its fast 

unsupervised learning algorithm make its output 

results more understandable and suitable for 

classification tasks. However, SOM has a lattice of a 

fixed number of output nodes that cannot adapt to the 

growing size dataset. In order to solve this deficiency, 

the fixed lattice of SOM is substituted with the 

hierarchical binary heap structure.  

B. Binary Heap Tree   

The Binary heap tree [41-43] is a complete binary 

tree data structure that fulfills the heap ordering task. 

In the heap tree algorithm, each node is ordered 

concerning its parent node value so that the child node 

value is either less than (or equal to) its parent in min 

heap ordering or greater than (or equal to) its parent in 

max ordering. In order to build a heap tree, the first 

input data is considered the root node; then, according 

to the min-heap or max-heap strategy, when the 

following data is added to the tree, it will be compared 

with its parent. If the value of the child node is greater 

than its parent in min-heap or less than its parent in the 

max-heap, their position in the tree will swap. With the 

help of the Heap tree technique, SOM fixed size lattice 

becomes an incremental tree whose nodes are sorted 

and adapted to the changing size of data inputs. By 

combining these two methods, the proposed IHSOM 

algorithm is created.  

C. A review of the BTASOM algorithm 

BTASOM is a hierarchical binary tree structure 

SOM based on the time adaptive SOM technique. In 

other words, each node in BTASOM is an individual 

TASOM network. Each node in TASOM has a fixed 

number of neurons that create a one-dimensional 

lattice. To preserve the algorithm's binary tree 

structure, each node in the TASOM network of 

BTASOM has a maximum of two neurons.  

BTASOM's binary tree topology facilitates 

dynamic data input adaptation and accelerates 

grouping. The level and nodes of BTASOM are 

constructed at the time of data entry. According to their 

quantization inaccuracy, the nodes may be added or 

removed. The BTASOM algorithm begins with a root 

node that generates the tree's initial and highest level. 

The root node's TASOM weights are then initialized 

with random values. The TASOM learning algorithm 

adapts the root node's neuron (or neurons) to the input 

data distribution by the time data is fed to the tree. If 

the root node contains any child nodes, the input data 

will be sent to the relevant child at the subsequent 

stage. Until the input vector reaches a leaf node, the 

TASOM learning algorithm trains each visited node as 

the input vector is propagated through the tree. After 

training the last leaf node in the tree with the current 

input vector, the next input data are introduced, and the 

training procedure is repeated from the root node to a 

leaf node until the BTASOM has received the 

predetermined number of input data. During the 

training phase, the quantization error of each node is 

computed; based on its value, an undesired node is 

removed from the tree or an intransitive node is 

inserted. If a node's quantization error is smaller than 

a predefined minimal error, then the node and its 

subtree are removed from the BTASOM tree entirely. 

A new child node or nodes are added to the BTASOM 

tree if the quantization error of a node is greater than a 

preset maximum error. The maximum and minimum 

quantization error bounds are defined by the intervals 

[Minqe × Kmul, Maxqe × Kmul]. Trial-and-error 

selection of a positive integer value for the constant 

parameter Kmul enables the TASOM network to 

accurately approximate the input distribution. The 

fixed parameters Maxqe and Minqe provide the 

maximum and minimum quantization error values so 

that the inequality  0 ≤ 𝑀𝑖𝑛𝑞𝑒 ≤ 𝑀𝑎𝑥𝑞𝑒/2  is 

satisfied. In Shah-Hosseini’s paper, Maxqe and Minqe 

are set to 0.5 and 0.1, respectively. By selecting 

smaller Maxqe and Minqe values, more nodes will 

grow on the BTASOM tree, resulting in a more 

accurate approximation. Although additional nodes in 

a tree result in a more precise categorization, it is 

memory-intensive and slows down clustering. 

Therefore, the trade-off between clustering precision, 

memory usage, and algorithm performance must be 

considered.  

In BTASOM, the number of child nodes that a 

node’s subtree has determines the flexibility of that 

node. Similar to a natural tree, as the number of nodes 

in a subtree increases, the root node becomes less 

flexible. Otherwise, the flexibility of a root node will 

be increased in a subtree with fewer child nodes. By 
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this mechanism, the behavior of a real tree branch in 

nature is simulated; the heavy old branches of a tree 

may shrink, and new branches may grow based on 

environmental conditions. BTASOM controls the 

flexibility (shrinking-growing) of each node by the 

parameter 𝑠𝑓 . Each neuron has its own 𝑠𝑓 . Neurons 

with a low 𝑠𝑓  learn more quickly and become more 

adaptable to environmental changes, whereas neurons 

with a high 𝑠𝑓 become less adaptable.  

Although BTASOM is an exciting approach to 

clustering with some remarkable properties, there are 

some disadvantages to using this algorithm. BTASOM 

cannot preserve the topology of input data in output 

space due to a lack of specifying the topological 

neighborhoods for its output nodes. Changing the 

order of sequence of serial input data produces 

different results, meaning the resulting tree will be 

altered with the different sequence input data in each 

run. When a node is deleted, that node's child nodes 

will be removed too. The deleted node is an outlier 

located in a sparse area of data distribution, and 

deleting the whole subtree causes losing potential 

clusters. Finally, there are too many parameters in the 

BTASOM algorithm to adjust by the user. 

 In the following sections, a new Incremental 

clustering method will be proposed to solve these 

defects using a binary heap tree structure for a self-

organizing map called IHSOM. 

IV. PROPOSED MODEL: INCREMENTAL HEAP SELF-

ORGANIZING MAP (IHSOM) 

IHSOM is a hierarchical adaptive SOM method 

with a binary heap tree topology. IHSOM begins with 

a root node so that a random weight vector according 

to the size of the training dataset is assigned to it. Since 

the serial data input in some previous incremental 

methods like BTASOM, SOINN, and its modified 

versions causes instability in the output results, 

IHSOM uses batch data input to overcome this 

difficulty. Thus, each node is trained with the whole 

input dataset. Every node in IHSOM has a cost used as 

a critical value to build the heap tree. The cost of each 

node is determined by the mean value of the weights 

designated to it. It is determined for which data inputs 

the present node is the winning node by calculating the 

Euclidean distance between the input data and the 

node's weight vector. Afterward, the most similar data 

inputs are selected to assign to the node using the 

probability density function. To this end, a threshold is 

defined as the mean of probability density function 

values, and those data inputs whose Euclidean distance 

probability density functions are above the threshold 

are chosen to earmark for the current node. The 

majority of these selected data (about 70 percent) are 

removed from the original dataset so that less similar 

data to the current node are passed to the next node for 

clustering. By keeping 30 percent of similar data to the 

current node in the original data set, there is a chance 

for them to assign to another node and the previous 

winning node to find the best matching unit. The 

strategy of eliminating similar data to the current node 

from the training dataset determines the direct outliers 

(or data with less resemblance to the others) down to 

the tree's leaf nodes. The next node will be treated like 

the previous one. A random weight vector according 

to the size of the remaining input data is dedicated to 

the node, its cost value is determined, the Euclidean 

distance of the data presented to the node is calculated, 

and similar data to the cluster node are selected based 

on their probability density functions. This process is 

repeated until the size of the dataset is zero. After 

creating all the cluster nodes, the binary heap tree is 

built out of them. The next node is added to the tree as 

the left child for the root node, considering the first 

node as the root node for the binary heap tree. If the 

cost of the child node is greater than its parent, their 

place is swapped. Otherwise, they will maintain their 

positions. The next node is added to the bottom level 

of the tree (as the right child), and this routine is 

repeated so that the max binary heap tree is built. 

Afterward, the weights of each node are updated with 

the batch learning of the SOM weight adjustment rule, 

and the neighboring function for each node in the heap 

tree is calculated. The neighboring radius decreases 

through the iterations (like the original SOM 

algorithm). Then Heap tree of SOM nodes is re-

ordered according to the new weights. In order to give 

more dynamism to the IHSOM tree, new nodes will be 

added in dense areas, and nodes in a sparse area of data 

distribution removed based on their quantization error. 

 According to the above explanation, the IHSOM 

algorithm is an adaptive hierarchical network that can 

easily adapt to the size of the input training data. The 

tree structure of IHSOM speeds up nodes traversing 

and restructuring after adding or deleting nodes. 

Adding or deleting nodes mechanism in the proposed 

algorithm is attained in place. Thus, unlike BTASOM, 

just one node is deleted, and the tree can restructure 

quickly. Due to its heap ordering property, the IHSOM 

can also preserve the topological relationship between 

data input space and the output space. IHSOM has a 

few parameters that need to be adjusted by the user, 

making the algorithm a perfect choice for 

unsupervised clustering tasks. The graphical 

explanation of the IHSOM algorithm is illustrated in 

Figure 1. 
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Fig. 1. Graphical illustration of proposed IHSOM 

 

 

Quantization error and topography error are 

employed to determine the IHSOM's reliability. These 

two measures are outlined in detail below.   

A. Quantization Error 

The Quantization Error (qe) [44] calculates the 

average distance of the data inputs to the cluster 

centroids (winner node) by which they are represented 

(see Equation 1) in order to evaluate the fitting of 

IHSOM to the dataset. 

 

𝑞𝑒 =
1

𝑁
∑‖𝑥̅𝑖 − 𝐵𝑀𝑈𝑥̅𝑖

‖, 

 
(1) 

where N represents the number of data inputs and 

𝐵𝑀𝑈𝑥̅𝑖
 represents the best matching unit of the 

corresponding 𝑥̅𝑖 data inputs. 

The least average quantization error means that the 

map properly fits the data. A smaller amount of 

quantization error indicates that input data are closer to 

their cluster centroids or the winner node. By 

increasing the number of IHSOM tree nodes, 

quantization error can be reduced due to the proper 

coverage over data input space on the IHSOM map. 

However, the lower quantization error may lead to 

distortion of the IHSOM map's topology. Therefore, a 

trade-off between vector quantization and projection 

properties of the IHSOM should be considered.  

B. Topographic Error 

Topographic Error (te) [45] evaluates the accuracy 

with which IHSOM maintains relative distances 

between locations in the input data space. This mistake 

takes into account the distance between the IHSOM 

map's top and second best-matching units. If the first 

and second best-matching units (BMU) are adjacent 

vectors, then the topology of input data is preserved by 

the IHSOM map. Thus, the lower the topographic 

error, the better topology preservation. The 

topographic error is calculated as follows: 

𝑡𝑒 =
1

𝑁
∑ 𝑢(𝑥̅𝑖)

𝑁

𝑖=1

, 

 

(2) 

where the function 𝑢(𝑥̅𝑖)  returns 1 if the first and 

second BMUs of the  𝑥̅𝑖  data input are not contiguous 

and 0 otherwise. 

C. IHSOM algorithm in details 

In this part of the paper, the IHSOM algorithm is 

specified step by step: 

1. Set input dataset as the Training Data. 

2. Create a node as the root node for the IHSOM. 

3. Set the root node as the Current Node. 

4. Set a random weight vector for the neurons of the 

Current Node. (According to the number of 

Training Data, the weight vector grows larger). 

5. Calculate the mean of the weight vector as 𝑀𝑤 for 

Current Node (𝑀𝑤 is the cost of the current node). 

 

𝑀𝑤 =
∑ 𝑤𝑖

𝑛
𝑖=1

𝑛
, 

 

(3) 

where 𝑤𝑖 is the weight vector, n is the weight vector's 

size, and i denotes the index of a particular weight in 

the vector. 

Determine the Euclidean distance (ED-

CurrentNode) between each input data vector and the 

weight vector of the node (the node's neurons) as 

𝐸𝐷𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒.  

 
𝐸𝐷𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒   

= √∑(𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑖 − 𝑊𝑖)2

𝑖=𝑛

𝑖=0

. 

 

(4) 

6. Calculate for the current node, the probability 

density function of 𝐸𝐷𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒 as 𝐸𝐷𝑝𝑑𝑓. 

𝐸𝐷𝑝𝑑𝑓 =
1

√2𝜋𝜎2
× 𝑒

−
(𝐸𝐷𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒𝑖−𝜇)2

2𝜎2 , 

 

(5) 

 

where 𝜇  and 𝜎  are the mean value and standard 

deviation of 𝐸𝐷𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒, respectively.  

7. Find the mean of the ED-pdf and set it as the 

threshold. 
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𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =
∑ (𝐸𝐷𝑝𝑑𝑓)𝑖

𝑛
𝑖=1

𝑛
. 

 

(6) 

In this step, the current node is set as a winning node 

to those input vectors (𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑤𝑖𝑛𝑛𝑒𝑟) which 

their 𝐸𝐷𝑝𝑑𝑓 are more than 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. 

8. Omit 70% of the 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑤𝑖𝑛𝑛𝑒𝑟 from the 

original dataset and set it as Training Data. In this 

way, 30% of assigning data to the Current 

winning node have a chance to assign to another 

node and the previous winning node to find Best 

Matching Unit.  

9. Create the Next node, set it as the current node, and 

go to step 4. Repeat until the size of the Training 

Data is zero.  

10. Call BuildHeap () Function to build a binary heap 

tree from the nodes created in the earlier stages.  

11. Update weights using the batch learning SOM 

weight adjusting rule [35].  

𝑤𝑢𝑝𝑑𝑎𝑡𝑒𝑑 =
∑ 𝑁𝑏ℎ𝑒𝑎𝑝𝑁𝑜𝑑𝑒𝑖,𝑗 × 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑖

𝑛
𝑖=1

∑ 𝑁𝑏ℎ𝑒𝑎𝑝𝑁𝑜𝑑𝑒𝑖,𝑗
𝑛
𝑖=1

, 

 

 

(7) 

where, 𝑁𝑏ℎ𝑒𝑎𝑝𝑁𝑜𝑑𝑒𝑖,𝑗 , is the neighborhood function 

around each heap tree’s node and is calculated as 

follows: 

 

𝑁𝑏ℎ𝑒𝑎𝑝𝑁𝑜𝑑𝑒𝑖,𝑗

= exp (−
‖𝑟𝑗 − 𝑟ℎ𝑒𝑎𝑝𝑁𝑜𝑑𝑒𝑖

‖
2

2𝛿2(𝑡)
), 

(8) 

 

where ‖𝑟𝑗 − 𝑟ℎ𝑒𝑎𝑝𝑁𝑜𝑑𝑒𝑖
‖  is the distance between 

ℎ𝑒𝑎𝑝𝑁𝑜𝑑𝑒𝑖  and the jth node in the binary heap tree 

and 𝛿(𝑡) is the neighborhood width at time t. 

  

12. Decrease the neighborhood width according to the 

below equation: 

𝛿(𝑡) = 𝛿0 (1 −
𝑡

𝑡𝑚𝑎𝑥
), 

 

(9) 

where 𝛿0 is the initial value of the neighborhood width 

and will be set as the total number of IHSOM tree’s 

nodes at the beginning of the algorithm and decreases 

by the time. Moreover, the current iteration is t, and the 

maximum iteration for IHSOM's learning phase is 

𝑡𝑚𝑎𝑥.  

13. Call MaxHeapify() Function to heap sorting the 

tree according to the new weight vectors. 

      Calculate quantization error for each IHSOM 

node: 

𝑞𝑒 =
1

𝑛
∑‖𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑖 − 𝑤𝑖‖.

𝑛

𝑖=1

 

 

(10) 

The average Euclidean distance between the input 

vector 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎  and its matching winning 

node's weight vector 𝑤𝑖 is the quantization error 𝑞𝑒. 

If  𝑞𝑒 < 10−6 , Call HeapDeleteNode (), function. 

Else if 𝑞𝑒 > 0.5, create a new node with a node cost 

𝑀𝑤 which is a random number between the parent and 

its left child’ 𝑀𝑤  of the place that the new node 

intended to insert. 

14. Call HeapInsertNode() function. 

15. Choose 30% of the new inserted node parent’s 

training dataset to assign to it (new node). 

Set a random weight vector such that the upper 

bound and lower bound are between the 𝑀𝑤 of the 

inserted node parent and left child, respectively. 

Then, go to the step 13, Re-compute 𝑀𝑤  for the 

inserted node. 

Calculate Topological Error 𝑡𝑒 for the IHSOM tree 

using the following equation: 

𝑡𝑒 =
1

𝑁
∑ 𝑢(𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑖)

𝑁

𝑖=1

, (11) 

 

where 𝑢(𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖) is 1 if best and second-best 

matching units are not adjacent and is 0, otherwise.  If 

maximum iteration is reached, stop else, go to step 13. 

The BuildHeap, MaxHeapify, HeapDeleteNode, and 

HeapInsertNode algorithms are defined in the 

followings. 

1) BuildHeap algorithm 

The binary heap tree, as previously stated, is a 

complete binary tree that may be built using an array 

(list) structure. A heap tree is represented in a level 

order from left to right. Thus, it is necessary to know 

the parent and its left and right child's location in the 

array. In order to build a heap tree from an input array 

by assuming the root index at 1, the parent of node i is 

located at the index floor (i/2). The left and right child 

of node i are respectively at indices (2i) and (2i+1). 

According to the above explanation, the following 

steps are used to build a max heap tree.  

 

Put all IHSOM nodes in an array; 𝐻[𝑖] =
IHSOM nodes𝑖

. 

Set   ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝐻). 

Set   𝑗 = ⌊
ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒

2
⌋; the last parent in the array. 

3-1. Repeat step 4 until 𝑗 = 1. 

Call MaxHeapify(H); this function heapifies the 

sub tree i and its children in a way that the largest 

node is stored at the root.  

Decrease j by 1 if the stop condition meets exit 

else, go back to step 4. 

(12) 

𝑗 = ⌊
ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒

2
⌋ − 1 

 

 

2) MaxHeapify algorithm 

The aforementioned MaxHeapify function, which 

maintains the heap property of the IHSOM heap tree is 

specified as below: 
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Set 𝐿𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥 = 2𝑖.  
Set 𝑅𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥 = 2𝑖 + 1. 

If 𝐿𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥 <
ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 𝑎𝑛𝑑 𝐻[𝐿𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥] > 𝐻[𝑖]. 

Then set 𝐿𝑎𝑟𝑔𝑒𝑠𝑡 = 𝐿𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥. 

Else set 𝐿𝑎𝑟𝑔𝑒𝑠𝑡 = 𝑖. 
If 𝑅𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥 < ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 𝑎𝑛𝑑 𝐻[𝑖] >

𝐻[𝐿𝑎𝑟𝑔𝑒𝑠𝑡]. 
Then set 𝐿𝑎𝑟𝑔𝑒𝑠𝑡 = 𝑅𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥. 

If 𝐿𝑎𝑟𝑔𝑒𝑠𝑡 ≠ 𝑖. 
Then exchange 𝐻[𝑖] ↔ 𝐻[𝐿𝑎𝑟𝑔𝑒𝑠𝑡]. 
Call MaxHeapify(). 

 

3) HeapDeleteNode algorithm 

The HeapDeleteNode algorithm for removing a 

node from the IHSOM heap tree is as follows: 

 

𝐼𝑛𝑑𝑒𝑥 = 𝐹𝑖𝑛𝑑𝐼𝑛𝑑𝑒𝑥(𝐻, 𝑣𝑎𝑙𝑢𝑒) . // Find the 

index of the value to delete;   

Set 𝐶𝑜𝑢𝑛𝑡 = ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 . 
Replace the deleted node with the right most 

node on the lowest level of the binary heap tree; 

𝐻[𝐼𝑛𝑑𝑒𝑥] = 𝐻[𝐶𝑜𝑢𝑛𝑡]. 
Set ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 = 𝐶𝑜𝑢𝑛𝑡 − 1. 

Call MaxHeapify(). 

 

4) HeapInsertNode algorithm 

To add a node to the IHSOM tree, the following 

algorithm is used: 

Set 𝐶𝑜𝑢𝑛𝑡 = ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 . 
Add the new node to the right most empty 

location at the bottom level of the heap tree: 

 𝐻[𝐶𝑜𝑢𝑛𝑡 + 1] = 𝑁𝑜𝑑𝑒𝑛𝑒𝑤. 

Set ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 = 𝐶𝑜𝑢𝑛𝑡 + 1. 

Call MaxHeapify(). 

 

V. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, the empirical results achieved by 

applying IHSOM to both synthetic and real-world 

datasets are demonstrated. IHSOM reliability and 

mapping quality are analyzed based on two criteria; 

quantization error and topographic error. In order to 

compare the proposed algorithm with other methods, 

BTASOM, LB-SOINN, and GHSOM [46] algorithms 

are selected, which are incremental hierarchical SOM-

based methods. 

A. Artificial Datasets 

In order to evaluate IHSOM performance, an 

artificial dataset with 5000, 25000, and 200000 input 

data instances are generated. Figure 2 illustrates data 

distribution in the artificial dataset divided into three 

parts; rectangular class, oval class, and ring class. 

 

Fig. 2. The Artificial Dataset with three classes 

Different size of datasets is chosen to demonstrate 

IHSOM ability to adapt to the growing size of input 

datasets appropriately. The proportion of the most 

similar data allocated to a node is the single user-

defined parameter in the IHSOM algorithm. This 

parameter is empirically set as 70% to gain better 

results. Experiment results on the artificial dataset 

confirm the efficient performance of IHSOM. As 

shown in Table 1, the value of Quantization Error is 

very low, and with increasing the number of data 

instances decreases. In fact, increasing the volume of 

training data improves clustering accuracy and reduces 

quantization error.  

The number of network nodes grows moderately as 

the dimension of training data augments. This 

memory-efficient characteristic of IHSOM empowers 

it to cluster large-scale data. Another remarkable 

property of IHSOM is its ability to preserve 

neighborhood topology. As the Topographic Error 

column is shown in Table 1, the IHSOM perfectly 

preserves data neighborhood topology, and the 

average value of topographic error is 0. The execution 

Time column also confirms the acceptable run time of 

IHSOM. Despite the fact that the suggested 

algorithm's execution time grows as the data 

dimension increases, IHSOM gives a quick clustering 

when the size of the training data is considered. The 

hierarchical tree structure of the suggested algorithm 

allows fast traversing of the nodes so that data can 

easily direct to the next node in the heap tree.  

In order to evaluate IHSOM clustering reliability in 

the presence of noisy data, different amounts of noise 

samples are added to the artificial dataset (i.e., 500, 

2000, and 5000 noisy data samples are added). Figure 

3 depicts the fabricated dataset with noisy data 

(outliers). From the results presented in Table 2, it can 

be determined that IHSOM performs well with noisy 

data and that its technique for controlling outliers is 

effective.  
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TABLE I.  EXPERIMENTAL RESULTS WERE OBTAINED BY APPLYING IHSOM TO THE ARTIFICIAL DATASET 

 
Artificial 

Dataset 

Number of 

Instances 

Number of 

Classes 

Maximum 

Iteration 

Number of 

Nodes 

Quantizatio

n Error 

Topographic 

Error 

Execution 

Time (s) 

IH
S

O
M

 

1 5000 3 1000 10 0.03787 0 3.182× 10 

2 25000 3 1000 13 0.02009 0 3.979× 102 

3 200000 3 1000 14 0.00333 0 1.144× 103 

 
Fig. 3. The Noisy Artificial Dataset with three classes 

TABLE II.  EXPERIMENTAL RESULTS OBTAINED BY APPLYING IHSOM ON THE NOISY ARTIFICIAL DATASET 

 

Noisy 

Artificial 

Dataset 

Number of 

Instances 

Noise 

Percentage 

Number of 

Classes 

Maximum 

Iteration 

Number of 

Nodes 

Quantization 

Error 

Topographic 

Error 

Execution Time 

(s) 

IH
S

O
M

 

0 10000 0 3 1000 11 0.0814 0 7.156× 10 

1 10000+500 5% 3 1000 11 0.12124 0 8.216× 10 

2 10000+2000 20% 3 1000 14 0.20361 0 8.731× 102 

3 10000+5000 50% 3 1000 16 0.6734 0 1.012× 103 

 

  
a. Wisconsin Breast Cancer Database containing two 

classes (Malignant-Benign) according to radius, 

texture, and perimeter features. 

 

 
b. Wisconsin Breast Cancer Database containing two 

classes (Malignant-Benign) according to area, 

smoothness, and compactness features. 
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c. Wisconsin Breast Cancer Database containing two classes (Malignant-Benign) according to concavity, concave points, and 

symmetry features. 

Fig. 4. Wisconsin Breast Cancer Dataset with two classes 

 

Although increasing the number of noisy samples 

decreases, the quantization error is acceptable. 

However, due to the increase in the learning rate of the 

noisy data, the execution time of the IHSOM grows 

rapidly with the size of outliers. This phenomenon can 

affect the clustering task time when the outlier’s 

sample is very high, but the execution time for a 

normal noise distribution is tolerable For a more 

comprehensive evaluation of IHSOM's performance, 

two real-world datasets are employed, and the 

proposed algorithm's efficacy is compared to that of 

hierarchical incremental SOM techniques such as 

BTASOM, LB-SOINN, and GHSOM. 

A. Real-world datasets 

In real-world examinations, two Iris and Wisconsin 

breast cancer datasets are used to analyze and compare 

IHSOM performance versus BTASOM, LB-SOINN, 

and GHSOM algorithms. Madison and the Wisconsin 

breast cancer dataset (WDBC) were acquired from the 

University of Wisconsin Hospitals and Dr. William H. 

Wolberg, respectively [47]. WDBC has 569 instances 

with 32 attributes distributed in two classes: malignant 

and benign. Each sample in the WDBC characteristics 

includes an ID number, a diagnosis (M = malignant, B 

= benign), and ten real-valued features computed for 

each cell nucleus, including Radius, Texture, 

Perimeter, Area, Smoothness, Compactness, 

Concavity, Concave points, Symmetry, and Fractal 

dimension. These characteristics are extracted from 

the digital photographs of a fine needle aspirate of a 

breast lump. Figure 3 provides a visual demonstration 

of two types of breast cells, malignant and benign, 

according to the real-valued features. The Iris dataset 

is another notable multivariate data set given as an 

example of discriminant analysis by R. A. Fisher [48]. 

The Iris dataset included four iris flower 

characteristics: sepal length, sepal width, petal length, 

and petal width. This data set contains 150 samples, or 

50 samples for each of the three species (classes) 

Setosa, Virginica, and Versicolor. Figure 4 illustrates 

the classes of Iris flowering trees. Table 3 shows 

WDBC and Iris datasets' characteristic. 

TABLE III.  REAL-WORLD DATASETS 

Dataset 
Number of 

Instances 

Number of 

Attributes 

Number of 

Classes 

Iris 150 4 

3 (Setosa, 

Virginica, 

Versicolor) 

Wisconsin 

Breast 

Cancer 

569 32 
2 (Benign, 

Malignant) 

For IHSOM performance assessment, four 

hierarchical and incremental algorithms are used to 

compare the results obtained from deploying real-

world datasets; BTASOM, LB-SOINN, and GHSOM 

algorithms. Each of these algorithms has some 

parameters that are set according to their reference 

papers’ values in the following implementations. 

Table 4, illustrates the results of applying these 

algorithms to the Iris dataset and Wisconsin Breast 

Cancer dataset. From the obtained results, IHSOM 

proposed algorithm outreaches almost the other three 

clustering algorithms both in accuracy (quantization 

error) and execution time. The great disadvantage of 

BTASOM is that it cannot preserve the topology 

neighborhoods, and the quantization error grows 

drastically with the increasing dataset dimension, 

which can be checked with the Wisconsin breast 

cancer dataset with 569 samples and 32 features.  

However, the BTASOM execution time in the Iris 

dataset is better than the proposed IHSOM and other 

compared algorithms. In fact, the BTASOM shows 

faster clustering performance in lower dimensions due 

to its binary hierarchical structure, but its performance 

is not necessarily accurate. LB-SOINN and GHSOM 

algorithms both show better results than BTASOM in 

the quantization error, but both are defeated in 

competition with IHSOM clustering speed and 

accuracy. Due to the k-means approach that LB-

SOINN uses to perform a local search in the input 

space and the hierarchical multi-layered structure of 

GHSOM, in which each layer is composed of several 

independent SOMs, they both have lengthy execution 

times despite their excellent quantization error 

performance. 
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a. Iris Dataset including three classes (Setosa, Versicolor, 

and Virginica) according to sepal length, sepal width, and 

petal length. 

 
b. Iris Dataset including three classes (Setosa, Versicolor, 

and Virginica) according to sepal length, sepal width, and 

petal width. 

 
c. Iris Dataset including three classes (Setosa, 

Versicolor, and Virginica) according to petal 

length, petal width, and sepal width. 

 
d. Iris Dataset including three classes (Setosa, 

Versicolor, and Virginica) according to petal 

length, petal width, and sepal length. 

Fig. 5. Iris Dataset with three classes 

TABLE IV.  COMPARED RESULTS OBTAINED BY IHSOM  

Datasets Clustering Methods Quantization Error Topographic Error Execution Time (s) 

Iris 

IHSOM 0.04093 0 1.5228 

BTASOM 0.5877 ------ 1.0661 

LB-SOINN 0.1018 0.0538 24.7617 

GHSOM 0.8092 0.0007 17.0159 

Wisconsin Breast 

Cancer 

IHSOM 1.2380 0 2.6349 

BTASOM 20.8091 ----- 26.3878 

LB-SOINN 5.1641 0.1733 121.7058 

GHSOM 7.9160 0.0013 53.4190 

 

As previously mentioned, both BTASOM and LB-

SOINN algorithm structure depends on the sequence 

of input data meaning that if the sequence of the same 

training data changes during one run, the entire tree 

structure will differ. Since the IHSOM algorithm is a 

batch learning algorithm, it resolves the problem 

mentioned earlier and demonstrates a robust 

performance on various datasets with different sizes.  

Furthermore, the binary heap tree structure can also 

preserve the input space topology ideally in output 

space. The Topographic Error results shown in Table 4 

verify this allegation. Another remarkable property of 

the IHSOM algorithm is that, unlike BTASOM, LB-

SOINN, and GHSOM, it has a few (just one) 

parameters to adjust by a user. This makes IHSOM 

more desirable for unsupervised clustering tasks. In 
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other words, to gain a better result from BTASOM, 

LB-SOINN, and GHSOM algorithm, there are too 

many parameters that need to be adjusted empirically.  

According to the results provided in Table 1, Table 

2, and Table 4, the IHSOM algorithm has an excellent 

capability for unsupervised clustering of a large 

amount of data. The proposed algorithm demonstrates 

its efficiency concerning BTASOM, LB-SOINN, and 

GHSOM, which are incremental SOM-based 

algorithms like IHSOM.  

VI. CONCLUSION 

This paper proposes an Incremental Heap Self-

Organizing Algorithm (IHSOM) for large-scale data 

clustering. IHSOM is an adaptive hierarchical SOM 

algorithm with a binary heap tree structure that 

overcomes the disadvantages of the previous methods 

like BTASOM, SOINN, and its modified versions such 

as the LB-SOINN algorithm. IHSOM proposed 

algorithm preserves the topology of input data by its 

heap structure and efficiently handles outlier data by 

forwarding them down to the tree’s leaf nodes using a 

probability density function as a threshold for 

assigning more similar data to a cluster node. The 

proposed algorithm pruning and growing nodes 

mechanisms make it robust to noises and more accurate 

in clustering tasks as well as memory efficient.  The 

heap tree structure of the algorithm speeds up nodes 

traversing and restructuring after adding or deleting 

nodes. Furthermore, IHSOM has one user-defined 

parameter, making it a powerful unsupervised method 

for clustering tasks, and due to its properties, it can be 

used for clustering “Big Data”. For future work, the 

capability of IHSOM for clustering big data will be 

tested.  
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