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Abstract—in this paper we studied the performance of several distributed adaptive algorithms for non-stationary
sparse system identification. Non-stationarity is a feature that is introduced to adaptive networks recently and makes
the performance of them degraded. We analyzed the performance of both incremental and diffusion cooperation
strategies in this newly presented case. The performance analyses are carried out with the steady-state mean square
deviation (MSD) criterion of adaptive algorithms. Some sparsity aware algorithms are considered in this paper which
tested in non-stationary systems for the first time. It is presented that for incremental cooperation, the performance of
incremental least means square/forth (ILMS/F) algorithm surpasses all other algorithms as non-stationarity grows
and for diffusion cooperation, the performance of adapt-then-combine (ATC) diffusion prevails reweighted zero
attracting (RZA) ATC diffusion algorithm in non-stationary system identification. We hope that this work will inspire
researchers to look for other advanced algorithms against systems that are both non-stationary and sparse.

Keywords-Adaptive networks, , incremental least mean square, non-stationary condition, sparse system identification,
diffusion.

I.INTRODUCTION dif‘fusion_. In Qiﬁusion strategy aI_I _nodes can
] ) ] communicate with each other, while in incremental
Practical uses of wireless adaptive sensor networks ~ method each node can only share data with its
are so widespread and long lasting that made them @ immediate neighboring nodes in a Hamiltonian cycle.
hot topic of research. Environmental monitoring, ] .
object surveillance and tracking, wireless channel Recently numerous powerful adaptive algorithms
control and so many other applications are proof of the ~ are proposed for different applications [10-14]. Most
importance of this flourishing technology. Analyzing  ©Of these algorithms are designed to be robust in sparse
the performance of these networks under different ~ Systems that are known with their long impulse
environmental and systematic conditions is the key  responses and a few non-zero taps [6]. Sparse system
element of many recently published papers [1 & 3]. |dent|_f|cat|on is a topic that not _only challe_nged
Adaptive networks usually work with two distributed ~ adaptive algorithms but also crept into the topic of
cooperation  strategies namely incremental and  @adaptive sensor networks. In a few papers [2,4 & 15],
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the sparse system identification is mentioned with
sensor networks and some algorithms such as
incremental reweighted zero attracting LMS (IRZA-
LMS) and adapt then combine (ATC) diffusion
reweighted zero attracting LMS (RZA-ATC diffusion)
are presented for this task. Also in [4] diffusion
normalized least mean forth (LMF) algorithm is
addressed for this task. It is shown that when we want
to estimate a very long weight vector with a high value
of sparsity, it takes a longer time for the distributed
adaptive algorithm to converge. Also it is preferable
for an algorithm to have reasonable results for both
highly sparse and non-sparse system identification.

Also recently the performance of adaptive
networks under non-stationary conditions became an
important branch of research. In several papers [3, 9,
18], the performance of distributed LMS algorithm
and its variants are considered in estimating a non-
stationary unknown weight vector. It is claimed in
these papers that when we want to track a non-
stationary vector, the performance of network
degrades according to the non-stationarity of weight
vector that is, when the system changes rapidly, the
tracking of its behavior gets harder and in some cases
impossible. The sparsity of the system may change
after some time and give the algorithm the time to
converge, but in non-stationary case, the vector
changes at each iteration. If these changes are small
enough, we can expect the convergence of network, in
other cases we must look for other solutions. But there
are problems where we need to identify an unknown
system which is both sparse and non-stationary. Such
problems arise in, for example, wireless channel
estimation.

Unfortunately, while there has been a struggle for
presenting more sparsity aware algorithms, up until
now there has been no effort in producing algorithms
that are specially designed for non-stationary systems.
We tested several newly proposed algorithms in order
to find a suitable one for non-stationary case and it
turned out that the combined least mean square/forth
(LMS/F) algorithm of [5] works slightly better than
others for incremental cooperation.

Our contribution in this paper is that we combined
both non-stationary and sparse system identification
and analyzed the performance of some adaptive
distributed algorithms over networks. As we
mentioned, such complicated conditions may occur in
the tasks like sparse channel estimation [16] or sparse
echo and noise cancellation. It means that most of the
channels that we are interested in estimating are fading
channels that are modeled with non-stationary
systems. Due to the complexity of the proposed
condition and the multiplicity of analyzed algorithms,
we only considered cyclic or incremental mode of
cooperation  between  sensor nodes, namely
incremental LMS or ILMS algorithm, and postponed
analyzing diffusion mode for our future works. Also
we must remind that in [10] a sparse non-stationary
system is mentioned but in that system only the
sparsity of weight vector changed in time and for
different phases of simulation. The rest of this paper is
organized as follows:

In part Il we briefly review incremental and
diffusion LMS algorithms for stationary systems. In
part 11l we review some distributed algorithms with
incremental cooperation then we introduce a new
algorithm that can handle both non-stationarity and
sparsity in systems. In part IV we describe sparse
diffusion algorithms. In part V we analyze the
computational complexity of the presented algorithms
and in part VI we present our simulation results for
non-stationary sparse system identification. Finally, in
part VII we present our conclusion and future scope.

Notation: We used boldface letters for vector
variables. Also we used the notation E[.] to denote
expectation operation and notation (.)* to denote
complex conjugation for vectors.

1. SYSTEM EXPLANATION

Consider a network with N active nodes as in Fig.
1 that is deployed to estimate an unknown weight
vector wewith M entries. In stationary case, this vector
is considered constant for all observations, but in non-
stationary case the unknown weight vector changes
with time and adaptive distributed algorithm must
track it. In non-stationary case instead of a weight
vector with constant values, the desired unknown
vector can change according to Random-walk model:

we(i+ 1) =wl()+n0
1
where n(i)is a zero mean random sequence with
covariance matrix R, . Along with non-stationarity
condition we assume that the weight vector is sparse.
It means that majority of its coeficients are zero and
the rest are produced according to non-stationary

model. Detailed explanations of the production of
weight vector is explained in simulation part.

Node 2
fda (D), u (D))

@ ©
o/ "O/ é

Node 1

dy (D) (D)}
{dy (D), u, (D)) \ o Node k
o. '\ {dk(t)-uktl)}
Node N ®
{dn (D), uy (i)}

Fig. 1. Distributed sensor network with incremental cooperation

In our network we assume that each node k in
time index i has access to local observations of
desired output d; (i) and regressor vector wu(i). In
incremental  strategy each node has only
communication with its immidiate neighbors while in
diffusion strategy the connections are more. here we
review the simple incremental LMS and diffusion
LMS algorithms.

A. Incremental cooperation

Simple ILMS algorithm starts with the assumption
that there is a linear relation between desired output
and algorithm inputs as follows:
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di (1) = w, (DOW’ () + v (D)
)
in this equation w? (i) is the unknown non-stationary
weight vector and v(i) is white Gaussian noise
sample. If we take ¥, (i) as the local estimate of
we(i) in node k, we have the following calculations
for each iteration i repeat:

Yol +1) =w()

e = di (D) — DYy + 1)

Y+ 1) = P, (i + 1) + weui (De (i)
©)

w(i+1) =¢y@i+1)
in this relation yu, is the step size. For all the
algorithms that follows and for ILMS algorithm too,
we evaluate the performance with Mean Square

Deviation (MSD) criteria that for each node is defined
as:

MSD;. 2 B[y ()|}
(4)
where
(@) 2 wo (@) — P ()
®)
and ||x||% operator means x*Zx for column vector x.

B. Diffusion cooperation

In diffusion strategy as we mentioned the nodes
exchange their data with other than their neighboring
nodes. The combination policy is governed by the
determination of combination weights namely a; . A
network with diffusion cooperation is presented in Fig.
2. The simple ATC diffusion LMS algorithm can then
be given as [17]:

For each iteration i repeat:

P (@) =wi (i — 1) + e (D [dr () — we (DHwi (@ —
D] (6)

Wi (D) = Yieny, Qi (D)
O

Node 1

Fig. 2. Distributed sensor network with diffusion cooperation

I11. SPAPRSE SYSTEM IDENTIFICATION WITH
INCREMENTAL STRATEGY

In this part we will present some of the tested
distributed algorithms with incremental cooperation in
sparse system identification. Some of these algorithms
are tested in distributed networks for the first time and
others are never tested in non-stationary system

tracking. All in all, four distributed sparsity-aware
adaptive algorithms are tested in this part and their
performances are compared to ILMS algorithm in non-
stationary case. It is obvious that to find an algorithm
that is robust to both sparsity and non-stationarity we
must compare all algorithms in the same situations.

To the best of our knowledge only three distributed
incremental algorithms are tested in sparse system
identification and none of them are tested in non-
stationary systems. RZA ATC diffusion and IRZA-
LMS algorithms are mentioned in [15] and [2] and a
normalized version of diffusion least mean forth
(LMF) algorithm is used in [4]. Here we will review
some incremental versions of these algorithms and
also introduce LMS/F algorithm to distributed
processing.

A. IRZA-LMS algorithm

The main distributed algorithms that are introduced
for sparse system identification are 1ZA-LMS and
IRZA-LMS algorithms. The later algorithm is
concluded to be more robust in comparison and here
we will explain it. Again for each iteration we have:

Po(i +1) =w()
ex () = di (D) —w e (DY + 1)

MU (L)€ l) —
sgn(Pr-1(i+1)
1+elpy—q (i+1)]

(8)
w(i+1)=yy@i+1)

As we can see only local weight vector update
equation is changed in comparison with simple ILMS
algorithm and in this equation a penalty term is added
to previous one. In this penalty term that helps to
estimate only those equations that are non-zero, both p
and ¢ are positive controlling parameters.

B. ILMS/F algorithm

The LMS/F algorithm is designed with respect to
least mean square and forth criterion and the updating
relation of this algorithm is [5]:

w(i + 1) = w(i) + pu’ (i) =2
e2(i)+1
9)
where A is a positive threshold which controls the
convergence speed and stability of the LMS/F
algorithm. The optimum value of A can be calculated
according to the method proposed in [5]. The
distributed version of this algorithm with incremental
mode of cooperation (ILMS/F) is as follows:

For each iteration repeat:
Yol +1) =w()
(D) = die () —we (DPr—1 (L + 1)
uli 1) = i 1) + () 5o
(10)
wi+1D)=9yy@(i+1)
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C. Incremental Sparse normalized algorithms

In some papers the normalized versions of
algorithms described above are used [14]. These types
of algorithms are achieved via the normalization of
input vector to its norm. with this technique the
algorithm becomes robust to the variations of input
vector. For example, to achieve the normalized version
of ILMS algorithm in (3) we have:

P+ D) = Pecs (D) + 1 e, ()

g ()12
(11)
IV. SPAPRSE SYSTEM IDENTIFICATION WITH
DIFFUSION STRATEGY

Now consider the equation (2) again. We assume
that the unknown vector w? (i) is still non-stationary
and sparse but here we want to estimate it via diffusion
cooperation starategy. The simple diffusion LMS
algorithm is not designed for sparse or non-stationary
system identification and for adapt then combine
(ATC) scheme it is given in (6) and (7).

In order to over come sparsity, in [15] a sparsity
aware algorithm namely ATC-sparse diffusion (ATC-
SD) was proposed. This algorithm is presented by
considering the following cost function [15]:

JwW) = SME |die (D) — ww|” + pf(w)
(12)

where E(.) is the expectation operator and f(w) is a

regularization term weighted by parameter p > 0. The
ATC-SD algorithm is then given by:

YD) =w (i—-1)+
Bk Zieny, St (DA (D) — w (Dw (i —
D] — mepdf (wi (i — 1)) (13)
Wi (D) = Yieny, @i (0)
(14)
For RZA ATC diffusion algorithm the f(w)
function is given by [15]:

fw) = Xm=1log(1 + £lwy,[)
(15)

Finally the sub gradient term df (w) can be written as:

sign(w)

af(w) =¢

1+&lw|

(16)

In this paper for the first time we examine the
performance of RZA ATC diffusion algorithm in the
identification of a non-stationary system.

V. COMPUTATIONAL COMPLEXITY

In this paper we presented several adaptive
algorithms and their cooperative (distributed) versions
for system identification task. Here we analyze and

compare the computational complexity of these
algorithms. The computational complexities of
distributed versions of employed algorithms are
directly dependent to that of non-cooperative
algorithms. Therefore, we only compare the
complexity of these non-cooperative algorithms in
TABLE 1. One can easily deduce that if the non-
cooperative version of an algorithm is more complex
than others, then its distributed version is also more
complex. Also as we used real valued data in our
simulations and the complexities of algorithms are
given for this case.

TABLE 1. The real computational complexity of
presented non-cooperative adaptive algorithms

algorithms | Additions | Multiplications | Divisions

LMS 2M 2M+1 -
NLMS 3M 3M+1 1
ZA-LMS M+3K M+3K+1 -
RZA-LMS M+4K M+4K+1 M
LMS/F 2M+1 2M+4 1

In this Table M is the length of weight vector and
K (not to be confused with the sensor index k) is the
number of non-zero elements of the weight vector. As
we can see the complexity of LMS/F algorithm is only
a little higher than LMS and lower than other
presented algorithms.

The only remaining item here would be comparing
the complexity of incremental and diffusion
cooperation strategies. Diffusion strategy is more
complex than incremental strategy both in
Computations per node and transmission per node. For
incremental strategy we need O(M) (order of M)
computations per node and O (M) scalar transmissions
per node [18]. While for diffusion algorithm we need
0(3M) computations and transmissions per node [15].
It means that as the number of tap weights goes high,
the feasibility of diffusion algorithm declines and it is
better to use incremental cooperation strategy. All in
all, incremental LMS/F algorithm is more desirable
with respect to computational complexity.

V1. SIMULATION RESULTS

To run our simulations we consider a network with
20 nodes (N = 20). The value of step-size for all
incremental algorithms is 0.0045 except for
Normalized ILMS algorithm in which we have u =
0.05. The noise variance for all nodes is chosen to be
equal and o2 =0.01. For our simulations, we
assumed perfect communication links between nodes
and the study of non-stationary sparse system
identification over networks with noisy links or fading
conditions can be a new topic of research. In order to
compare the performances of incremental algorithms
that are mentioned in previous parts we follow two
scenarios. In both of them as it is customary in sparse
system identification literature, we consider a 16-tap
FIR system. But for the first scenario we assume a
stationary system and for the second one a non-
stationary system is designed. In part C. of our
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simulations we consider non-stationary sparse system
identification with diffusion strategies.

A. Stationary Sparse system

We run this simulation for 1800 iterations. For the
first 600 iterations, only one tap, chosen at random, is
non-zero. For the next 600 iterations, all the odd
indexed taps are set to 1. For the last 600 iterations, the
odd indexed taps remain 1 while the remaining taps
are set to -1. As a result, the sparsity of the unknown
system varies during the estimation process [2].
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Fig. 3. Stationary sparse system taps

The taps of this system is depicted in Fig. 3. To
compare the performance we run the simulation for 4
separate algorithms and presented MSD results in
Fig.4. The results are averaged over 50 experiments.
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Fig. 4. Performance of incremental algorithms in stationary
system identification with varying sparsity.

In this simulation the sparsity for the first 600
iterations isli6 and as we can see the performance of

IRZA-LMS is better than others because this algorithm
is specially designed for highly sparse systems. The
performance of ILMS and ILMS/F are almost the
same and are better for final 600 iterations where the
system is non-sparse. Also the performance of
normalized ILMS is good but this algorithm converges
slower than others. We can speed up the convergence
of Normalized algorithms by increasing step-size but
this will accordingly increase steady-state error.

B. Non-stationary sparse system

Now we must consider the conditions in which our
paper proposes a novelty. As mentioned before we
assume that our unknown weight vector is non-
stationary and changing with time. It means that for
each iteration we have a slightly different weight
vector. Also our weight vector is assumed to be sparse.
It means that only a few entries of it are non-zero.

Following the procedure in [9, 18] we produce the
non-zero elements of non-stationary weight vector as
follows:

o __ 1 T
wi =3 [al,ir Az, Az, a4,i]

(17)

where a;; = [cos (wi + @) ,sin (wi + (k_zl)")]

for k =1,2,3,4 and w = ﬁ As we can see in this

case the weight vector has a length of 8 (or M = 8)
and it is not sparse. In order to make it sparse we can
zero pad this vector to reach the desired length. It is
important to mention that this ‘time changing' model is
just for simulation purposes and in order to derive
theoretical results, this non-stationarity must agree
with Random-walk model. Also in order to produce
longer vectors we can repeat the vector with 8 entries,
for example in a vector with 16 entries we repeat (17)
only 2 times. We can produce this time varying vector
in advanced and fed it to algorithm at each iteration or
we can change weight vector iteratively.

Again a 16-tap system is considered in this simulation
and we have 1800 iterations. For the first 600
iterations only one tap has value and it is calculated
from (17). For the second 600 iterations only odd taps
are drawn from (17) and for the final 600 iterations all
the taps are calculated according to (17), in this
situation the system is not sparse but it is completely
non-stationary. We can see the results of this
simulation in Fig. 5.

Non-stationary sparse system
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Fig. 5. Performance of incremental algorithms in non-stationary
system identification with varying sparsity.

Non-stationarity imposes an intrinsic error increase
to the system performance and it is because of the
fluctuations of weights around changing optimum
vector. As the normalized ILMS algorithm did not
performed well in non-stationary case we omitted it
from our simulations of this part.
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It is obvious that as the non-stationarity grows, the
performance of IRZA-LMS algorithm degrades,
because this algorithm is specially designed for sparse
systems. On the other hand, the performance of
ILMS/F algorithm is better for strongly non-stationary
systems and clearly outperform both fixed other
algorithms in final 600 iterations.

C. Diffusion strategy performance

In this part we analyze the performance of a
network with diffusion cooperation strategy in non-
stationary sparse system identification. Like previous
simulations we consider a network with 20 nodes that
have communication with each other and combine
their data with uniform combination weights [17]. The
simulations are for 300 iterations and the curve for
each algorithm is achieved by averaging 20
simulations. The variance of inputs are slightly higher
than that of incremental algorithms, therefor we can
expect a better performance for diffusion cooperation.

Only two algorithms namely simple ATC diffusion
and RZA ATC diffusion are compared in this
simulation. For RZA ATC algorithm the parameters
are set to be: u =0.05, p =5x10"* and £ = 10.
We did not consider the stationary simulation in this
part because similar results are given in [15]. Here we
only consider a combined non-stationary and sparse
system. We ran six simulations for this case, three for
ATC diffusion and three for RZA ATC diffusion
algorithm. Again we assume the system has 16 taps
that change with time according to (17) but in the first
two simulations only one entry of weight vector is not
zero, in the second two simulations 8 entries are non-
zero, and in the third two simulations all entries are
non-zero and system is completely non-stationary and
non-sparse. The results of these six simulations are
gathered in Fig. 6. As we expected the performance
degradation of non-stationarity is higher than sparsity.

Diffusien performance en Non-stationary sparse system

T T

e R4 ATC Diffusion sparsity 1116
ATC diffusion sparsity 116
m—R7A ATC Diffusion sparsity 8/16
= = ATC diffusion sparsity 816
T e RZA ATC Diffusion non-sparse |
ATC diffusion non-sparse

MSD(dB)

GO b ........

70 \ H i . H
0 50 100 150 200 250 300

iteration

Fig. 6. Performance of diffusion algorithms in non-stationary system
identification with varying sparsity.

As we can see in Fig. 6. When the sparsity ratio is
%Gthe performance of RZA ATC algorithms is better
than simple ATC because RZA ATC is specially
designed for sparse system identification. But, as the
sparsity ratio rises, and the system become non-sparse
and non-stationary, the performance of simple ATC

prevails RZA ATC algorithm. These results showed
again that although RZA algorithms are highly
recommended for sparse systems, they are not a good
choice for non-stationary system identification.
Further investigations must be made to find more
reliable algorithms for non-stationary systems.

VI1Il. CONCLUSION AND FUTURE SCOPE

In this paper we studied the performance of several
sparsity-aware distributed algorithms in adaptive
networks. The performances are carried out for the
first time in identifying a non-stationary sparse system.
For our simulations, three scenarios were taken into
consideration, in the first scenario a 16-tap stationary
system is modeled with varying sparsity and it is
shown that the performance of normalized ILMS
algorithm is better in the sense of steady-state error but
its convergence speed is low. For the second scenario
we considered a time varying non-stationary system
with 16 taps and changed sparsity for our simulations.
In this simulation, the ILMS/F algorithm performed
slightly better for identifying a completely non-
stationary and non-sparse system. In the third scenario
the performance of non-stationary sparse system
identification was considered with  diffusion
cooperation strategies. It was presented that RZA ATC
diffusion algorithm has a better performance when the
system is highly sparse.

From these simulations we can conclude that for
highly sparse systems reweighted zero attracting
algorithms are recommended while for completely
non-stationary systems, ILMS/F algorithm and ATC
diffusion algorithms are more preferable. We can
combine these algorithms to achieve an algorithm
which is robust to sparsity and non-stationarity.

In future works we will examine other newly
proposed algorithms in non-stationary sparse system
identification with distributed networks. P-norm like
adaptive algorithms seems to be good choices for this
topic and also all tested algorithms in incremental
strategy can be applied to diffusion cooperation
strategy and benefit from its features.
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