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Abstract—MapReduce algorithm inspired by the map and reduces functions commonly used in functional
programming. The use of this model is more beneficial when optimization of the distributed mappers in the MapReduce
framework comes into the account. In standard mappers, each mapper operates independently and has no collaborative
function or content relationship with other mappers. We propose a new technique to improve performance of the inter-
processing tasks in MapReduce functions. In the proposed method, the mappers are connected and collaborated
through a shared coordinator with a distributed metadata store called DMDS. In this new structure, a parallel and co-
evolutionary genetic algorithm has been used to optimize and match the matrix processes simultaneously. The proposed
method uses a genetic algorithm with a parallel and evolutionary executive structure in the mapping process of the
mappers program to allocate resources, transfer and store data. The co-evolutionary MapReduce mappers can simplify
and optimize relational data processing in the large clusters. MapReduce using a co-evolutionary mapper, provide
successful convergence and better performance. Our experimental evaluation shows that collaborative techniques
improves performance especially in the big size computations, and dramatically improves processing time across the
MapReduce process. Even though the execution time in MapReduce varies with data volume, in the proposed method
the overhead processing in low volume data is considerable where in high volume data shows more competitive
advantage. In fact, with increasing the data volume, advantage of the proposed method becomes more considerable.
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. INTRODUCTION

MapReduce is a software programming and associated
implementation for processing and generating data sets
with a parallel and distributed algorithm on a cluster
system. A MapReduce program is composed of two
main procedures, a map procedure for filtering, sorting,
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and a reduce method, which performs a summary
operation. For optimization process, GA or Genetic
algorithm is an evolutionary computation algorithm
which can solve many optimization problems and
belongs to the larger class of evolutionary algorithms,
which generate solutions to optimization problems
using techniques inspired by natural evolution, such as
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inheritance, mutation, selection, and crossover [1] [2].
In this paper we take advantage of genetic algorithm to
solve the problem of mapper relations and propose a
new method to enhance the performance of MapReduce
processes. In fact, MapReduce is a useful technic in a
wide range of applications, including distributed
pattern-based searching, distributed sorting, web link-
graph reversal, singular value decomposition [3], web
access log stats, inverted index construction, document
clustering, machine learning [4], and statistical machine
translation. The MapReduce System orchestrates the
processing by marshaling the distributed servers,
running the various tasks in parallel, managing all
communications and data transfers between the various
parts of the system, and providing for redundancy and
fault tolerance. MapReduce algorithm inspired by the
map and reduces functions commonly used in
functional programming. The use of this model is more
beneficial when the optimized distributed shuffle
operation and fault tolerance features of the
MapReduce framework comes into account [5]. This
paper proposes an optimization method and evaluates
the modified MapReduce algorithm to improve data
transfers during the Shuffle phase under the bandwidth
constraints. Communication cost is an essential factor
in optimization for a good MapReduce algorithm. The
map function is applied to each input record (i.e.,
key/value pair) and produces a list of intermediate
records. The reduce function is applied to each group of
intermediate records with the same key, and produces a
list of output records [6]. Thus, we have focused on task
distribution, resource optimization and execution time
that enhance the Mappers utilization and reduce
operational costs. Variant parameters that have
influence on final decision have been considered as
input to the allocation algorithm and their impact have
been evaluated in different test scenarios. We have
organized the paper as follows. In section 2, related
work has been presented. In section 3, the proposed
mappers architecture and components. In section 4,
performance evaluation. Finally, a conclusion has been
described in sec.5.

Il.  RELATED WORK

Parallel sort and join algorithms for large datasets
like MapReduce, have been widely studied since the
early 1980’s [7, 24]. To gain more flexibility, new
MapReduce-inspired  massive  data  processing
platforms have emerged: Dryad[8], Hyracks[9],
Spark[10] — all include elements of MapReduce, but
have more choices in runtime query execution. In
contrast to these projects, some chose to enhance
MapReduce, to leverage existing investment in the
Hadoop framework and in the query processing systems
built on top of it, such as Pig[11], and Hive[12]. The
MapReduce paradigm has gained a lot of attention in
academia and industry [13]. There are many
MapReduce tools, three of which that is Hadoop [14],
Apache HIVE [12], and Sqoop [15] are the most
important. Each of these open source platforms has a
specific MapReduce mechanism [16]. Evolution
techniques studies of MapReduce are always turned on
and tune themselves based on different data. A
comprehensive study of MapReduce and its application
in optimization algorithms is in [17].
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Reference [18] has comparing Apache Spark and
MapReduce with performance analysis using K-Means.
The study in [19] focused on Hadoop MapReduce
framework in Big Data analytics. In [20], the authors
have a comparative study of classification algorithms
based on MapReduce model. The Map-Reduce-Merge
implemented in [21], simplified relational data
processing on large clusters. A number of techniques
have been proposed to improve the performance of
MapReduce jobs. The study in [22] focused on
grouping MapReduce jobs that perform common
computations and evaluating each group as a single job.
Some these studies are complementary to our study and
can be used in our framework to improve the
performance even further. Dryad [8] goes one step
further by allowing modification of the dataflow graph
once a task is finished. Dryad, as well as Hadoop, has
considered techniques to direct multiple input partitions
to a single task. However, all of these techniques need
to be setup statically before the job starts. Hence, in the
general case, they cannot balance the workload as
efficiently as adaptive mappers. Adaptive aggregation
algorithms have been studied in parallel shared-nothing
architectures [23] as well as in multi-core architectures.
In [23], the authors propose a set of parallel aggregation
algorithms that dynamically adapt at run-time based on
the observed selectivity of the data. Adaptive
MapReduce consists of the components: DMDS,
SAMs, AMs, ACs, AS and AP [16, 25].

Input data is divided into splits and the split location
information is stored in DMDS. DMDS is Zookeeper
that is distributed coordination service in Fig. 1. Similar
to this method is also used in this paper. Here, we use a
DMDS storage that is a shared distribution coordinating
storage service between mappers. Hadoop MapReduce
is a popular implementation that works with the
Hadoop Distributed File System (HDFS). Matlab
program provides a slightly different implementation of
the MapReduce technique with the MapReduce
function. The MapReduce uses a Data Store to process
data in small chunks that individually fit into memory.
Each chunk goes through a Map phase, which formats
the data for processing. Then the intermediate data
chunks go through a Reduce phase, which aggregates
the intermediate results to produce a final result. The
Map and Reduce phases are encoded by map and reduce
functions, which are primary inputs to MapReduce.
There are endless combinations of map and reduce
functions to process data, so this technique is both
flexible and extremely powerful for tackling large data
processing tasks. Various methods mentioned above are
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different MapReduce with different mechanisms, some
of which are like Hadoop for general applications
where there are a number of studies and researches in
which they have tried to increase the efficiency of the
algorithm. Reference [16] uses the adaptive method and
the coordination between the elements of the
MapReduce. We've propose a collaborative technic and
we've added genetic algorithms to optimize and
increase the performance with better results. We have
shown that it is possible to make MapReduce more
flexible and collaborative by breaking a key assumption
of the programming model where the mappers are
completely  independent. We introduce an
asynchronous communication channel  between
mappers, by using a transactional, distributed meta-data
store (DMDS) or coordinator. This enables the mappers
to post some metadata about their state and see the state
of all other mappers.

I1l.  PROPOSED MAPPERS ARCHITECTURE AND
COMPONENTS

MapReduce architecture with parallelizing genetic
algorithms (MRPGA) has been shown in Fig. 2 [6].

In MRPGA method, the partitioning part splits the data
and performs mutation. Then it sends the data to the
master for evaluation and selection. The master splits
the data into m pieces in MapReduce for the map task.
The value of m is the maximum number of parallel map
tasks in this architecture. Each piece of data is sent to a
mapper in a MapReduce. The mapper is repeated for
each individual in the piece of input to execute the map
function for each task, and then it generates the results
by the map function which they are stored locally. After
the map phase process, the reduction phase is
performed. In the reduction process, the assignment
tasks have been performed. Finally, in the final phase
of reduce operations; the result has been obtained. We
have develop mapping process using collaborative
technique in MapReduce section, and with the proposed
methods based on GA and optimization mechanisms,
we succeed to improve the efficiency of the
MapReduce process.

A. Input Parameters
The input parameters for the MapReduce function
include three categories:

1- Input parameters of mappers: five different
parameters have been considered as the input for
mappers which are shown in Table 1.

+ CPU running speed in Mapper, which is usually in
Gigahertz.

e MapPRASe e = Reduce Phase
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@

Figure 2. MapReduce architecture with parallelizing genetic
algorithms (MRPGA)
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TABLE I. INPUT PARAMETERS OF MAPPERS
No. | Parameter Components Description
CPU clock
1 CPU CPU-cycle speed(GHZ)
Number of A
2 Core CPUs Deterministic
Amount of data
3 A Amount of data | produced by
Mapper i
Number of Number of MPs
4 #MPs MPs on each MR
Cache Capacity
5 Cache Cache-CAP (MB)
TABLE II. INPUT PARAMETERS OF DATASTORS
No. | Parameter | Components Description
RAM-Access RAM access
1 | RAM time speed (ms)
2 v Volume of Volume of data to
data to transfer | transfer to DSi
3 | Class Class of DS Class of the DSi
Number of Number of DSs
4 #DS DSs on each MR

 The number of processor (cores) per mapper that is
directly related to the speed of process execution
and reduces the execution time.

» The amount of data generated (A) by the mapper.
The smaller the number and amount of data, the
faster the mapper.

« The number of Maps (#MPs) in a MapReduce
program (MR) that the higher the number of Maps,
the faster the MapReduce program would be.

The capacity of cache or cache memory per Mapper,
the higher the cache, the faster the mapper program
will run.

Input parameters of data stores: four parameters are
the data storage input parameters in the MapReduce
function as are shown in Table 2.

Access speed with RAM, usually in milliseconds.
The higher the speed of access to memory, the
greater the execution of the program and the storage
of data generated by the execution of the map.

e The amount and volume of data (V) that is
transferred to the data storage. The more this data is,
the more time it takes to store it.

The storage class or technology class, the newer and
higher the storage class and technology class, the
better and faster the storage will be.

» The number of storage devices (#DS) in each
MapReduce program, the higher the number, the
faster the storage will be.

Input parameters of Network: the following
parameters are the network input parameters
between mappers and storage devices in
MapReduce as are shown in Table 3.

» Network bandwidth (BW), the greater the network
bandwidth between a mapper and a storage device,
the faster the data is transferred.
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TABLE IlI. INPUT PARAMETERS OF NETWORK
No. | Parameter | Components Description
Network
! BW NET-BW bandwidth
2 SP NET-SP Network speed

 Network speed (SP), the higher the network speed
between a mapper and a storage device, the faster
the data will be sent and stored.

B. Chromosome Representation

In genetic algorithms, a chromosome is a set of
entity or a string of data which defines a proposed
solution to the problem that the genetic algorithm is
trying to solve. The set of all solutions is known as the
population. In computation, we assume several
chromosomes in population based on variety of input
items. In our assumption the chromosome size is equal
to the number of mappers (MPs) with M members. M
has an integer value. To map the number of mappers
(M) to number of Data Stores (N), each chromosome
encodes a scheduler which holds MxN genes to
represent the placement of the MPs on the DSs. Thus,
the value in the i'th gene states the MPs number that
resides on j'th DS. As an example in Fig. 3, the selected
item in each mapper resides in the related chromosome
where the total member of the similar members resides
in the related DS. The advantage of the GA appears
where similar members in different mappers compete
for placement in one step where in the standard model
should wait for the coming steps. In Fig. 3, the MP;
resides on DS1, MP; reside on DS;, and MPM resides
on DS, that x index is smaller or equal N.

MP, MP, MPy
D|D|D D|D |D D D|D D
1] 2| s N 1|2 [T N T i 2 |77 N

DS, ps, | .| DS,

Figure 3. Chromosome dimensions

C. Fitness Function

We consider a fitness function which is used in genetic
algorithms to guide simulations towards optimal
design solutions. We assume the fitness function as
follows:

M N
F =22 GjXjj @)
i=lj=1

The algorithm try to maximize the function F where:
« i is number of gene state in MPs,

* j is number of gene state in DS,
* M is number of MPs,
* N is number of DSs,

. .th

Xij = 1 if ith MPs Data is assigned to jth DSs @)
0 if i MPs Datais not assigned to jth DSs

e iwk P, ®)

k=1
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P. = ({CPU || Core|| A|[# MPs || Cache},
{BW || SP},{RAM ||V || Class||# DS}) 4)

Where "nl" in equation 3, depicts the number of
linguistic parameters considered in our fitness function.
These parameters are selected from Table 1 for
Mappers, Table 2 for DataStors and Table 3 for
Networks. Py is score values for each of these
parameters and W is their weights. It should be noted
that, if all the parameters have the same weights, then
Wi in equation 3 is equal to 1. Besides, DSk and MPg
are the resource value available on DS and the resource
value demanded by the MP, respectively. Resources are
listed in Table 1.

D. Constraints

We consider several constrain so that every MPs
can inhibits multi DSs to Number of CPU cores.
Maximum relation every MPs with DSs is Number of
the CPU cores of the MPs (Eq.5). But every DSs
inhibits on only one MPs. (Eq.6, Eq.7)

N

DXjj<C i=12..M

©)
M
DoXijs1 o j=12..N

©)
M N

2.2 X =N

i—1 j-1 (7)

We consider eleven parameters as we have stated in
Tables 1, 2 and 3; which includes CPU, CPU-core,
Amount of Data, Bandwidth Net, Speed-Net, RAM
access time, Volume of data transfer, Class of DS,
Number of mappers and Data stores, and Cache of
mappers.

IV. PERFORMANCE EVALUATION

Fig 4 show a sample test of the overall MapReduce
counting process. In this example, input data is divided
into three separate groups during the splitting stage.

In the input node, nine key words with four different
key values of 001A, 002B, 003C, and 004D which are
representation of data file index with different payload.
Output of this node splits the key words in three
categories for three mappers. In the shuffling phase, the
data is transferred so that all the keys with the same key
value are sent to the same nodes or the same data store.

Splitting Mapping

Output

/

Input
004D 3
0014 2
003C 2
0028 2

0014, 0028, 003C
004D, 004D, 003C
0014, 004D, 0028

Map Reduce

Figure 4. The overall MapReduce word count process.
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TABLE IV. RESOURCE VALUES FOR MAPPERS (MPS) AND
DATA STORES (DSS)

BW DS1 DS2
MP1 1 1
1
1

MP2 2
MP3 1

NN»—\%
W
Nmn—\g
S

SP DS1 DS2
MP1 1 1
MP2 2 2
MP3 3 3

oomn—\g
@
@)
%)
N

Mapper CPU Core #A
MP1
MP2
MP3

W |N|T
w

w
wlw|w

Data
store
DS1
DS2
DS3
DS4

RAM Class

Blw N
RlIRrRR <
WIN W

Finally, the reduction process aggregates all similar
key value and the total values of the similar key words
are stored in the output block.

One of the limitations in this example is generating
three codes of 001A, 004D and 001A in the first line of
the three-mapping block. When the system decides to
transfer 001A code to shuffling group that located in the
third box of the shuffling box, two vectors of 001A and
001A should transfer simultaneously; but, the system
transfer one vector and postpone the second transfer for
the next coming step. If similar problem accrues in the
next step, the same procedure will happen and data
transfer should postpone for the next cycle. This
accumulation of similar tasks cause degradation in
system efficiency where in the proposed method based
on genetic algorithm, the system has ability to
overcome to this limitation and improves the system
efficiency.

In continue, we have considered the MapReduce model
in Fig 4, as the testing scenario and using genetic
algorithm based on Fig 2. Input parameters are applied
to three mappers and four data store using the proposed
genetic algorithm. The parameters values are shown in
Table 4.

A. Evaluation Parameters

To evaluate the proposed method we have
considered performance, efficiency and utilization as
the three measurements. The first measurement is the
process of collecting, analyzing and reporting
information regarding the performance of system. The
second is the ability to avoid wasting energy, efforts,
and time in doing functionality or in producing an
expected result. The last one refers to utilization factor
or use factor that is the ratio of the time that system is
in use to the total time that it could be in use.

In this section we have compared the MapReduce
standard model with proposed DMDS model to

Volume 14- Number 4 — 2022 (28 -35)

compare standard Mappers and Cooperative co-
evolutionary [26] adaptive Mappers. Evaluation is
based on proposed parameters in Table 4 and the
proposed model in Fig. 2.

1) Performance Evaluation in Standard Model:

In order to evaluate the efficiency of MapReduce in
the standard model, the scenario has been implemented
in Matlab simulator program according to the standard
architecture model in Fig. 4. The details of the scenario
are based on description in Section 3 and 4. The goal is
to evaluate the process of word counting problem. In
this example, we have considered 9 input words that are
divided into three groups with three members between
three mappers. Indeed, the reason to consider this
example is to show how functioning the processes in a
MapReduce. The desired parameters for selecting
mappers are based on information in Table 4. Selected
parameters include bandwidth, network speed, current
status of the map processor in terms of processor speed
and memory, and finally the current state of the storage
in terms of speed and amount of data. The functionality
evaluation has been performed using the main standard
method of the MapReduce program shows in Table 5.
We define the main parameters as follows:

¢ Resource utilization rate (RU)

Performance (PE)
Efficiency (E)

After running the program, we calculate the results
as shown in Table 5, RU rate or utilization of the
MapReduce program is about 56%, PE is about 56%
and E is 20.86.

Utilization=9/16= 56%

The number 9 means that map processors have been
used only 9 times to count words in the standard
method. The number 12 means that Map processors
have been busy 12 times. As shown in Table 5, only 9
out of 12 houses are filled

PE = Resource utilization (CPU usage and
bandwidth facilities, bandwidth) - Overhead processing
costs Added programs Algorithm Genetics Program.

Performance=56% - 0=56%

The value of zero 0 in the above formula indicates
that we do not have additional overhead in the standard
method.

E= Performance X Effectiveness
Efficiency=56*(32+49+35+33)/4)= %56*149/4=20.86

TABLEV. STEPS PERFORMED USING THE STANDARD
METHOD

Steps rI?g(:ctive
MP1->DS3 | MP2->DS2 -
Stepl | c13-16 C22-16 F=32
MP1->DSI | MP2->DS2 | MP3>DS3 | —_
SEp2 | o113 C22-15 C33=21 F=49
MP1->DS4 | MP3->DS2 5
SEp3 | c14-16 C32=19 F=35
MP2->DSI | MP3->DS1 5
Sep4 | cog-q7 C31=16 F=33

International Journal of Information & Communication Technology Research
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Efficiency value indicates the amount of impact and _ _
average productivity. According to Objective Table 5, Evaluation Parameters of Mapers in two Method
it shows the amount of productivity and impact in each 100 100 = Proposed method
Stage. 90 - standard method
Appendix A shows more details about the values 80
and calculation method. 70
60 56 56
E 50
Lo 2 397
2) Performance Evaluation in DMDS Model: 40
The proposed scenario for simulation in the Matlab 30 20.86
environment is based on the proposed architecture in 20
Fig. 2. The rest of the information is similar to the 10
previous model based on information in Section 4. The 0
purpose of this scenario is to evaluate a counting Vilization Performance Efficiency

problem. In this example, we have 9 input words that
are divided into three groups with three members
between three mappers. The parameters in the new
method are the same as previous scenario. We select the
maps to run according to Table 4. These parameters

Figure 5. Comparison of the Mappers' Performances.

TABLE VII. AVG. EXECUTE TIME IN DIFFERENT DATASET IN
STANDARD MAPREDUCE AND CO-EVOLUTIONARY PROPOSED
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include bandwidth, network speed, current status of the MeTHoD

processor in terms of processor speed and memory, and Average Times Average Times
current state of the storage in terms of speed and amount Dataset | (ms)in Standard (ms) in Co-

of data. In this scenario, a genetic algorithm has been size MapReduce evolutionary
used. The way to create chromosomes using the genetic Method proposed Method
algorithm is shown in Section 3. Each chromosome is 8 MB 50 60

equal to the number of mappers multiplied by the 64 MB 59 63
number of reduce in binary mode. The execution and 512 MB 110 69
calculations in the genetic algorithm are in accordance 1024 MB 110 70

with the main formulas 1 and 3 mentioned in the above
section. After running the program, results of the
proposed method with genetic algorithm is shown in
Table 6. As shown in this table, the Resource
Utilization of the MapReduce program for this especial
example that utilize all resources is about 100%,
Performance is about 80% and Efficiency is 39.73.

RU= 16/16= 100%
PE=100% - 20%=80%
Efficiency = 80%x((51+52+46)/3)=80%x149/3=39.73

Appendix B shows more details about the values
and calculation method.

TABLEVI. STeps OF PERFORMED USING THE Co-
EVOLUTIONARY GA METHOD

MPL- MP2-

Step 1 >DS1 >DS2 Mgg;glss F=51
Cl1=14 | C22=16 =
MP1- MP2-

Step 2 >DS3 >DS4 Mgg;?gz F=52
C13=15 | C24=18 =
MP1- Mp2-

Step3 | >DS4 >DS2 Mgg;?gl F=46
Cl4=16 | C22-14 =
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Fig. 5, compares the utilization, performance and
efficiency of the mappers in the MapReduce program
for the above example in the standard and proposed
methods. In continue, we compare the standard
MapReduce with the Co-evolutionary proposed
Method regarding the execution time for different data
set volume.

Table 7 shows the approximate execution time for
data with different sizes in both standard and
collaborative proposed method. As shown in the table,
at first the genetic algorithm creates additional
overhead in the processing time, this overhead
increases with data volume size. But, the number of
processing steps is reduced and this advantage also
affects the execution time. As a result, when increases
the data volume, an equilibrium relationship between
the overhead and the number of steps has been raised in
the process. Thus, as shown in Table 7, by increasing
the data volume, we reach to an almost constant
execution time. This is fixed threshold level that is
much lower in the proposed method rather than the
standard method. The result also show that there is
noticeable advantage regarding the average time in the
proposed method, and this advantage increases with
enlarging the data volume. According to the results, the
larger the data volume, the shorter the execution time in
accordance with standard MapReduce model.

Fig 6, shows comparison of processing time in
standard Mappers and Co-evolutionary collaborative
[27] Mappers in different data size. As it is shown, the
capabilities and advantages of the proposed method are
more pronounced in big data and the effect of the
proposed method is more obvious.
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Figure 6. Comparison of processing time in Standard and
collaborative Mappers.

The results show that in low data volume, both the
proposed and standard methods are very close together,
but with increasing data volume, this behavior changes.
Furthermore the increase of data size shows more
advantages in the proposed method. The important
issue in this process is to compare execution time of the
processes in different data volume in both methods to
reach to a relative stability; where the time level of
stability in the proposed method is considerably lower.
As a result, the level of time stability is lower than the
standard method and this is a very important advantage
for processing time in the large data volume.

As it is shown in fig 6, from one hand, the effect of
genetic algorithm appears in the overhead of execution
process and increases in big data volume. On the other
hand, the collaboration between the mappers reduces
the number of steps to reach the final result and the
effect of this advantage is much greater than the
overhead, especially in large data volumes. As a result,
using Co-evolutionary method in MapReduce functions
reduces the average execution time of the process.

V. CONCLUSION

The purpose of this paper is to provide a new way to
improve resource utilization and optimize the
processing time in MapReduce program. In standard
mappers, each mapper operates independently and has
no functional or content relationship with other
mappers. On the other hand in the proposed method,
the mappers have mutual relationship and collaborated
through a shared coordinator using a distributed
metadata database called DMDS. In this new structure,
a parallel and co-evolutionary genetic algorithm has
been used to optimize and match the process matrix
simultaneously. It uses a genetic algorithm with a
parallel and co-evolutionary executive structure in the
mapping process to allocate resources, transfer, and
store. In this algorithm, processor speed, number of
mappers, amount of data, temporary memory,
communication speed and bandwidth of the network
were considered in the decision-making algorithm to
decide a better decision which serve more allocating
resources and reducing the execution time. Evaluation
of the proposed method has been performed in a
sample test program which counts the input data
words. In this scenario, the variable parameters
affecting the final results where they apply as the input
to the proposed allocation algorithm and their effect

Volume 14- Number 4 — 2022 (28 -35)

has been investigated on the performance for two test
scenarios. The results of evaluation show that proposed
technique improves performance especially for
computation in big data volume, and dramatically
reduce processing time across the MapReduce process.
The results of the tests show that our proposed changes
to the standard model of the MapReduce increases the
use of mappers and reduce operating costs in
implementation of the MapReduce process. According
to the results, in case of small data volume, the
overhead caused by the genetic algorithm optimization
program slightly slows down the system. However,
with increasing the data volume, effect of this overhead
decreases by reducing the number of processing steps;
as a result, the overall execution time of the
MapReduce program has been reduced. Finally, the
collaborative mappers greatly improve the efficiency
and scalability compare to the standard MapReduce.

Appendix A:

C13=(CPU+ Core+#A)+BW+SP+(RAM +V+ Class)
C13=(2+3+3)+1+1+(3+1+2)=8+2+6=16
C22=(1+3+3)+1+2+(2+1+3)=7+3+6=16
F=16+16=32
C11=(2+3+2)+1+1+(1+1+2)=7+2+4=13
C22=(1+3+2)+1+2+( 2+1+3)=6+3+6=15
C33=(3+4+3)+2+3+(3+1+2)=10+5+6=21
F=13+15+21=49
C14=(2+3+1)+1+1+(4+1+3)=6+2+8=16
C32=(3+4+2)+1+3+(2+1+3)=9+4+6=19
F=16+19=3516+19=35
C24=(1+3+1)+2+2+( 4+1+3)=5+4+8=17
C31=(3+4+1)+1+3+(1+1+2)=8+4+4=16
F=17+16=33

Appendix B:

C11=(2+3+3)+1+1+( 1+1+2)=8+2+4=14
C22=(1+3+3)+1+2+( 2+1+3)=7+3+6=16
C33=(3+4+3)+2+3+( 3+1+2)=10+5+6=21
F=14+16+21=51

DS=1230

MP=1000,0100,0010
C13=(2+3+2)+1+1+( 3+1+2)=7+2+6=15
C24=(1+3+2)+2+2+( 4+1+3)=6+4+8=18
C32=(3+4+2)+1+3+( 2+1+3)=9+4+6=19
F=15+18+19=52

DS=0412

MP=0010,0001,0100
C14=(2+3+1)+1+1+( 4+1+3)=6+2+8=16
C22=(1+3+1)+1+2+( 2+1+3)=5+3+6=14
C31=(3+4+1)+1+3+( 1+1+2)=8+4+4=16
F=16+14+16=46

DS=3201

MP=0001,0100,1000.
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