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Abstract—Convolutional Neural Networks (CNNs) have been widely deployed in the fields of artificial intelligence and
computer vision. In these applications, the CNN part is the most computationally intensive. When these applications
are run in an embedded device, the embedded processor can hardly handle the processing. This paper implements loop
tiling to explain how one can construct a lightweight, low-power, and efficient CNN hardware accelerator for embedded
computing devices. This method breaks a large CNN engine into small CNN engines and calculates them by low
hardware resources. Finally, the results of small CNN engines are added and concatenated to construct the large CNN
output. Using this method, a small accelerator can be configured to run a wide range of large CNNs. A small accelerator
with one layer is designed to evaluate our methodology. Our initial investigations show that based on our methodology,
the constructed accelerator can run a modified version of MobileNetV1, 70 times per second.
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l. INTRODUCTION

Convolutional neural networks are used in
computer vision applications widely [2]. Artificial
intelligence and deep learning use CNNSs in their
applications [3]. CNNs are the most computation-
intensive part of all vision networks, such as ResNet,
MobileNet, VGG, and AlexNet [1]. The processing of
CNNs has two different phases training and inference.
Only the inference phase could be run on small
embedded processors, and training should be run
exclusively on powerful GPUs [3].

Using GPUs is a simple option for inference;
however, it is too expensive and power-hungry. Also,
powerful GPUs may not be physically available
anywhere, and these powerful GPUs provide their
computing capability as a cloud service to all devices
that require it [1]. However, access to these services has
several problems, including extra cost, extra power for
wireless or 5G interfaces, continuous bandwidth
requirements, delay in sending and receiving responses,
network disconnection possibility, Etc. Therefore, there
is a solid demand in the semiconductor industry for a
tiny co-processor or accelerator to run CNNs efficiently
beside small and embedded processors at the edge.

The main contribution of this work is that we
convert the loop tiling method into a new partitioning
scheme in hardware implementation. Using this scheme
in hardware, a small fixed CNN accelerator engine, as a
basic unit, can calculate a wide range of large CNNs in
the above networks, partially and in a step-by-step
manner. This methodology is hardware implementation
or dual loop tiling method that was previously used in
lots of software implementation of CNN execution in
small processors. The designed CNN accelerator is as
small as that can be integrated into a low-power
embedded processor.

The rest of the paper is organized as follows.
Section |l discusses the related works. Section Il
provides a background on CNN networks. Section 1V
states the problem statement. Section V proposes the
partitioning method. Section VI presents the
experimental results and finally section VII concludes
the paper.

Il.  RELATED WORKS

Many academic and industrial kinds of research
have been done on convolutional network accelerator
hardware. Many of these research projects focus on
accelerating convolutional networks on FPGAs. Some
accelerators are only designed for a specific
convolutional neural network [7]. In [5], the team has
developed a software-hardware template that can
generate the appropriate hardware convolutional
network as well as the software components (if needed)
by receiving the Python code [16].

Others focus on faster access to memory and
optimal use of memory to reduce the memory
bottleneck effect and thus increase the accelerator
performance [8]. In [18] an analytical model has been
proposed to find the best loop-level optimization
configuration, including loop tiling and loop
permutation for CNNs on multi-core processors. Loop
level optimization (loop tiling and loop permutation) is
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an essential transformation to reduce data movement
and provide an efficient memory architecture in CNNS.

[17] presents an enhanced version of loop-tiling in
the software manner. This technique utilizes various
combinations of affine and non-affine loop
transformations to find the best transformation
sequence for minimizing the CNN execution time. To
find the best combination, a cost model evaluates the
speedup of each sequence of transformations, which
would yield.

Most research studies have used Depthwise
Separable Convolution networks to reduce hardware
size and speed up the execution [7], [9]. In [16], a CNN
accelerator with a 14 x 16 processing element (PE)
array is designed and then utilized in a loop tiling
structure and Ping-Pong operations to efficiently
transmit feature maps from the on-chip buffer to the PE
array. Moreover, a roofline model is used to explore the
best tiling parameters. Additionally, this technique has
been implemented on the FPGA.

RASHT [19] is a scalable architecture that resizes
PEs to match any layer shape of CNN layers. The main
idea behind RASHT is that a CNN network consists of
different layers of different sizes. Instead of designing
a fixed PE engine for all layers, the engine resizes itself
based on the layer it operates on it.

I1l.  CoNVOLUTIONAL NEURAL NETWORKS (CNN)

Almost all CNNs contain from a few ten to a few
hundred layers of convolutional [3]. In CNNs, the last
layer is converted to a flat matrix and fed to the input of
fully connected layers. Then, a fully connected neural
network is executed in one or two layers on this data for
classification purposes. Finally, a nonlinear function
analyzes the outputs of this neural network, and the
most likely classes are selected as the network output.
Therefore, most of today’s Al networks have a CNN
network similar to Fig 1. In the first layers, the
resolution of feature maps is usually high, but the
number of kernels (filters) is relatively low. In the final
layers, the number of kernels is between 128-2048, but
the resolution is decreased because of several pooling
layers.

RGB

Figure 1. A sample CNN network

CNNs are widely used in vision applications [1],
[2], [3]- The input layer (layer 0) in a vision application
is an RGB image. The first layer is generated directly
by convolving kernels and the input image. Step by
step, the other layers of feature maps are generated by
convolving kernels with previously generated feature
maps. Every convolution operation has several MAC
(Multiplications and Accumulate) operations, including
some element-by-element multiplications, followed by
adding those multiplication products. Besides
convolution, there are other layers in CNNs: Mean or
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Max Pooling, ReLU, addition, and normalization, that
are widely used in CNNs.

There are many mathematical operations in the
convolutional layers, so even for desktop and server
processors, executing a CNN is a heavy computational
task. For instance, AlexNet, Resnet, and VGG-16
include 724 million, 3.9 billion, and 15.5 billion MAC
operations, respectively [11]. There are two common
simplifications used in CNNs to reduce the number of
MAC operations and decrease the computation load: (1)
Compression of CNN models [10] and (2)
simplification of CNN models by replacing standard
convolution with Depthwise Separable Convolution
[6]. In Depthwise Separable Convolution, the
convolution operation is divided into two parts with a
smart kind of factorization [4]. As a result, this
factorization effectively reduces the volume of
mathematical operations. Due to the sharing of
calculations, the parameters of these calculations
(multiplication coefficients and biases) are also shared,
reducing the number of network parameters [4]. The
compression of CNN models tries to reduce the number
of kernels by removing redundant feature maps and,
consequently, redundant MAC operations [10].

MobileNetv1 is one of the first vision networks to
use depthwise separable convolution. Using this
convolution type, the needed operation for each image
is reduced to as low as about 1 billion MAC instructions
[6]. Another light vision model, ShuffleNet, uses the
depthwise technique and has about 0.5 billion MAC
instructions [15].

IV. PROBLEM STATEMENT

The methodology of designing a lightweight and
low-power CNN accelerator for embedded systems as
a general-use case is our primary objective in this paper.
To this end, a one-layer CNN accelerator is designed
with  minimum hardware resources. This CNN
accelerator can run only one Depthwise CNN layer at a
time.

CNNs have different layers of convolutions. There
are several kernels in each layer of the convolution.
Usually, the number of kernels is mainly a power of
two, i.e., 16, 32, 64, 128, 256, 512, 1024, Etc. Usually,
the number of kernels in the first layer is 16 or 32. This
number gradually increases layer by layer when we go
through the network. Each CNN accelerator has several
input feature maps and several output feature maps.
Consider a convolutional network whose first layer has
16 kernels and its last layer has 128 kernels; as the CNN
accelerator runs the convolutional network, step by
step, the CNN accelerator should support 128 feature
maps as input and could generate 128 feature maps as
output. Otherwise, this CNN accelerator cannot run the
last layers. Note that a 128x128 CNN accelerator is a
huge CNN accelerator that is not considered to be used
in an embedded processor. If a large CNN accelerator
is designed, it can run a wide range of CNNSs; however,
the use of a large CNN accelerator increases the
hardware resources and the chip area, power
consumption, and cost. This kind of design eventually
leads to a significant decrease in the circuit's speed of
execution and frequency. Moreover, some parts of the
hardware are actually unused in the layers of
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convolutional networks where the number of kernels is
less than the maximum number of kernels predicted for
the accelerator. Therefore, the resource usage and the
efficiency of the CNN accelerator are decreased.

It is known that in embedded systems, the chip area,
size, and power consumption of any accelerator must be
small as possible. However, the use of a small CNN
accelerator leads to a limited number of input and
output feature maps in the CNN accelerator. In this
situation, it is impossible to calculate the convolution in
that network layer whose number of kernels is greater
than the predicted number in the CNN accelerator.
Thereby, it leads to a useless accelerator because it
cannot run most convolutional networks. Due to the
problems stated above, we have used loop unrolling
hardware implementation of the loop tiling technique
[13, 14, 18].

Loop tiling is used in executing the CNN network
over some relatively small processors that can be
embedded in chips. This type of execution of CNN
networks is called “software implementation” [17]. It
means that dedicated hardware for CNN execution is
not designed. The small processor executes each layer
of CNN. When the execution of the layer is finished, all
the result is kept in memory. The result of the previous
layer is used as input for the next layer in the
convolutional layer. Therefore, memory should have
enough capacity to keep at least the two biggest CNN
layers in the worth case plus the required parameter in
the multiplication of this layer. It is about 1-2 Mbyte in
a relatively small CNN network that is designed for
mobile and embedded applications.

To execute a CNN on a processor, the cache
capacity of the processor is an essential issue that
should be considered. Processors could execute over a
large amount of data in their cache very quickly
(Fomula.1). However, if the required data of execution
are out of the cache and in the main memory, then a
long delay is unavoidable due to the fetch operation,
which slows down the processor.

Fora=0to A-1:
Forb=0to B-1:
Forc=0to C-1:

X(a,b,c) = zjfo,kﬂ)x( a+j,b+k c*M@Ik, jl

Fomula.1. Original Convolution

The above pseudocode (Formula.1) shows a typical
calculation for computing one feature map over
previous feature maps in the last layer, where A is the
number of feature maps, and B and C are the input
image sizes. M represents the parameters of each
convolution.

The calculation of each CNN feature map in a new
convolution layer in a processor is a nested loop, as
shown above. This calculation should be repeated for
each feature map in the new convolution layer over all
feature maps in the last convolution layer. A
convolution layer with 224x224 resolution and 256
feature maps has 800 Kbytes integer data (humber) and
about 70 Kbytes integer parameters. If the processor
cache is about 256 Kbytes, not all the needed data can
be placed in the cache, and logically several consequent
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cache misses are happened during the processing
because of the capacity cache miss.

To overcome this problem, the above loop is broken
down to several small loops with less than 64K bytes
and can hold all in the cache, and the amount of cache
missed is kept as low as possible to speed up the
execution of the CNN network. Each small loop is
called a “tile,” and the overall technique is “loop tiling.”
Then the result of each tile is added together and
sometimes re-arrayed to build the originally required
output, that is, a convolution output.

The Tiling method divides the convolution into
several smaller convolutions (Formula 2). In the
software implementation, the parameters and data of
these small convolutions can be stored in the
processor's cache. Finally, based on the shape and size
of the original convolution, several small convolutions
are combined, and the big (original) convolution is
rebuilt.

In Formula 2, it is assumed that a large convolution
has the number of feature maps equal to FMp, and the
size of the parameters and data of the convolution is
larger than the processor’s cache. The processor’s cache
can only hold the parameters and data of a convolution
length Lp. However, by breaking the big convolution
and making it smaller by the number of (1 + FMp/Lp),
the smaller convolutions are quickly calculated in the
processor.

fori=0to (FM—D):
Lp
fora=0to A-1:
forb=0to B-1:
forc=0to Ly — 1:
X(Gabc)= 2" X@a+jb+k c*M@k]

j=0,k=0
Fomula.2. Small Convolution made from Original
Convolution.

In a software implementation, it is clear that loop
tiling needs more memory for storing tiles for future use
but effectively reduces cache miss and keeps the
processor at the high-speed execution.

In the hardware implementation, the cache miss
problem faces like a limitation of input feature maps
and output feature maps in accelerators because of
using the small accelerator. It also appears as a
limitation in the size of on-chip memory. Therefore,
breaking down the CNN to small CNN, like the concept
of tiling, could be useful, especially in edge and
embedded systems with several limitations in memory,
area, power, Etc. This technique (loop tiling) is called
CNN partitioning in this paper. By using CNN
partitioning, it is possible to use a small-size hardware-
based CNN accelerator to run a wide range of CNNs,
from small to relatively large CNN.

V. THEPARTITIONING METHOD

This paper proposes a hardware-based methodology
that utilizes a lightweight, simple, and small CNN
accelerator engine to execute a wide range of relatively
large CNNSs. In this way, it is like one design a big CNN
accelerator inside an embedded system, but actually,
there is a small lightweight accelerator capable of
running big CNNs efficiently with less hardware and
memory.
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Using this engine, any type of CNNs can be
calculated in a step-by-step and partial method that is
similar to the concept of loop tiling [13, 14]. Our used
methodology and the designed CNN accelerator engine
can perform depthwise convolutional operations at very
good performance and standard convolution but at
lower performance. The designed CNN accelerator
engine as a basic unit has sixteen feature maps as input
and produces sixteen output feature maps. For
simplicity, a convolution with sixteen inputs and
sixteen outputs is displayed as 16x16. Note that these
numbers do not mean image resolution or feature map
pixels. This accelerator can perform convolution
operations on any image size with any resolution. To
minimize the hardware, this accelerator operates on 8-
bit integer numbers. Also, the CNN accelerator has 16
fast internal SRAM banks as internal memories for
storing the calculated feature maps. Therefore, every
output feature map has its own dedicated fast memory
bank, and no congestion happens during accessing
memory.

The basic-unit CNN engine performs a part of a
large convolution layer at each time. Finally, these parts
should be added or concatenated, as discussed below.
In other words, using this approach, instead of
generating all feature maps in one step in a layer, feature
maps for that layer are generated and placed in multiple
steps. The details of the technique are explained using
an example on MobileNet-v1.

V.I MOBILENETV1: AS AN EXAMPLE

MobileNetV1l is chosen as an example. This
network has 16 convolutional layers, as explained in
table 1. The first row of the table represents the first
convolutional layers. Layer 1 includes three input parts
of input image and 32 output feature maps (Conv3x32).
Layer 2 includes 16 input feature maps and 32 output
feature maps (Conv16x32). Layer 3 includes 32 input
feature maps and 32 output feature maps (Conv32x32).
The other layers are repeated as shown. The two last
layers have 128 output feature maps, as shown in the
figure (Conv64x128 and Conv128x128, respectively).

This example shows how a small CNN accelerator
(the basic unit) runs a relatively big MobileNetV1 CNN
from the first layer to the last layer, step by step. The
CNN accelerator stores the results of each layer in the
memory banks that are allocated for storing the results
of the CNN accelerator. CNN accelerator will use these
results as input for the next layer in the next step. In the
last layer, all output feature maps that are stored in the
memory banks are treated as the output of the CNN.

TABLE I. MOBILENET-V1 BODY ARCHITECTURE
Type / Stride Filter Shape Input Size
Conv/s2 3x3x3x32 224 x 224 x 3
Conv dw /sl 3x3x 32 dw 112 x 112 x 32
Conv pw /sl 1x1x32x64 112 x 112 x 32
Conv dw / s2 3x3x 64 dw 112 x 112 x 64
Conv pw /sl 1x1x32x128 56 x 56 x 64
Conv dw /sl 3% 3x 128 dw 56 x 56 x 128
Conv pw /sl 1x1x128 x 128 56 x 56 x 128
Conv dw /s2 3x3x 128 dw 56 x 56 x 128
Conv pw /sl 1x1x128 x 256 28 x 28 x 128
3 x 3 x 256 dw 28 x 28 x 256
Conv dw /sl 1x 1 x 256 x 256 28 x 28 x 256
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Conv pw /sl
Conv dw /s2 3% 3 x 256 dw 28 x 28 x 256
Conv pw /sl 1x 1 x 256 x 512 14 x 14 x 256
sx | Convdw/sl 3x3x512dw 14 x 14 x 512
Conv pw /sl 1x1x512 %512 14 x 14 x 512
Conv dw / s2 3x3x512dw 14x 14 x 512
Conv pw /sl 1x1x512 x 1024 7x7 %512
Conv dw /s2 3x3x 1024 dw 7x7 x 1024
Conv pw /sl 1x 1 x 1024 x 1024 7 x 7 %1024
Avg Pool / s1 Pool 7 x 7 7 x 7 %1024
FC /sl 1024 x 1000 1x1x1024
Softmax / s1 Classifier 1 x 1 x 1000

An example explains this process. Assume a 16x16
CNN accelerator is available (the basic unit that we
have designed already). As discussed above, the
MobileNetV1 network has 32 kernels in the first layer,
64 kernels in the second layer, and up to 1024 kernels
in the last layers. In the first layer, the first group of
feature maps is generated from the input image. As the
first CNN layer has 32 kernels in this layer, the CNN
accelerator can execute the whole network in two tries
or steps, as shown in Fig.2. All 32 generated feature
maps from the input image will be stored in the memory
banks for using in the next convolution. As there are
only 16 memory banks, in the second convolution try,
the generated feature maps should be stored again in the
16 memory banks but in different locations.

In the second layer of convolution, the second group
of feature maps should be generated from 32 generated
feature maps in the previous layer. Because the CNN
has 32 input kernels and 32 output kernels in this layer,
the CNN accelerator can execute the whole convolution
in four tries. A 32x32 convolution is supposed as four
16x16 convolutions, as shown in Fig. 4. Therefore, it is
executed as four consequent convolutions. Again the
generated feature maps should be stored in the 16
memory banks but different locations (Fig. 3 and also
Fig. 4, 5 for next layers).

N=16 N=3,

L e

Whole
— Conv Conv
16x32 16x16 16x16
Convolution

Figure 2. 16x32 convolution in two consequent steps.

N=16  N=16
Then n
+
N=16 N=16
hen (I

Conv Conv

Whole 16x16 16x16
32x32 + +

Convolution Conv Conv

16x16 16x16

Figure 3.  Executing 32x32 convolution in four consequent steps.

Conv Conv Conv. Conv.

WhOIe 16x16 16x16 16x16 16x16
32x64 —

- Conv Conv Conv Conv

Convolution 16x16 | 16x16 | 16x16 | 16x16

Figure 4. Executing 32x64 convolution in eight consequent steps.

In the third layer of convolution, the third group of
128 feature maps should be generated from 64
generated feature maps in the previous layer. As shown
in Fig. 6, a convolution calculation can be done in 32
tries. In this case, the whole convolution is done by 32
runs of CNN accelerator (the basic unit). In addition, 24
”add” operations should be done to add partial
convolution and convert sixteen parts into four.

In the fourth layer of convolution, the group of 128
feature maps should be generated from 128 generated
feature maps. As explained in Fig. 7, convolution can
be calculated in 64 tries. Fifty-six ”add” operations
should be done to add partial convolutions and merge
eight parts into four sets of feature maps.

In the fifth layer of convolution, the group of 256
feature maps should be generated from 128 generated
feature maps in the previous layer. Similar to what is
shown in Fig. 7, a convolution calculation can be done
in 128 tries. In this case, the whole convolution is done
by sixteen runs of the CNN accelerator. In addition, 112
”add” operations should be done to add partial
convolutions.

This process continues similarly until the network
reaches the last layer of CNN. The last layer of CNN is
the fourteenth layer, which has 1024 feature maps and
a 7x7 resolution of each feature map, as shown in
Table.1.

The remaining three layers are average pooling,
fully connected, and SoftMax layer. These layers are
not computation intensive out of accelerator in CPU
with ant major computation load. So, only the core of
the CNN network is executed by the accelerator at high
speed.

Conv Conv Conv Conv
16x16 | 16x16 | 16x16 | 16x16

1 1 1 3
T T T L
Conv Conv Gonv Conv
Whole 16x16 16x16 16x16 16x16
Convolution J [l [l 1
Matrix o r o o
64x64 Conv Conv Conv Conv

16x16 | 16x16 | 16x16 | 16x16

1 [ 1 1
T T e T

Conv Conv Conv Conv
16x16 | 16x16 | 16x16 16x16

Figure 5. Executing 64x64 convolution in sixteen consequent
steps.

Conv | Come | Cenw  Gonv | Conv | Comv | Comv | Cenw
1615 | 16x16 | 16x16  16x16  16x16 | 16018 | 16x16 | 16x16
'

' ' 4 N | "
4 + + —+ + -+ S +

Canv Come Cerw Conw Canw Loy

& wihole: TEx1E | TEx1E | 18k 16x16  16xT8 | 16x18 | 1Ex16

aneion

T +——+— + + +— + | +
e onw | come | Ganv | coms | com | Come | com | Conw
1856 | 16116 | T8 1616 | 1A | 1816 | 18AS | 1e6

+ | +

Cam
16x16

Cony | Conw
16x1g

o

+
conv | Come
1816

+ o+ 4|+
Conv Come Conw Cone Canv
16216 | 1616 16ex16 16x16 1616 16x16

Figure 6. Executing 64x128 convolution in sixteen consequent
steps.
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16616 | 16¢16 | 16616 | 16x15 | 16x16 | 16¢16 | 1616 | 16k16

16016 | 16x15 | 1616 | 16x18 | 16616 | 16x16 | 16615 | 1616

16x16 | 16x15 | 16k16 | 16x15 | 18416 | 16x16 | 15616 | 1616
128x128

Convolution

16016 | 16x15 | 16u16 | 16x15 | 15416 | 16x16 | 15016 | 1616

xxxxx 1615 | 16416 | 16016 | 16416 | 16016 | 16016 | 16416

1616 | 16515 | 15436 | 16x15 | 15616 | 16416 | 15615 | 18416

16416 | 16x15 | 1816 | 16x16 | 18616 | 16x16 | 16415 | 1616

Figure 7. Executing 128x128 convolution in sixty forth
consequent steps.

The layers between the fifth and eleventh layers are
equal to or similar to those described in the example.
For example, in layer ten, the 64 input and 128 output
feature maps must be created. This issue is similar to
Figure 5. In this layer, the number of convolutions is 32,
and the number of additions is 24. If the number of
kernels in the last layer reaches 256, then the last layer
is calculated similarly to what is shown in Fig. 5, with
different steps. Therefore, it is shown visually that this
accelerator can partially run each layer of a big CNN
network.

Usually, the size of convolutions is duplicated in
some layers of CNNs. In rare cases where the size of
convolutions is not multiplicand of 16, it is possible to
calculate those convolutions by adding some zeroes to
the end side of convolutions and fix sizes to true
multiplicand of 16 as needed (similar to the concept of
padding). According to what has been described earlier,
using this accelerator in networks whose dimensions
are more than eight times the dimensions of the
accelerator will lead to lots of overheads and delays.
Therefore, it is better to use 32x32 accelerators for
networks with 256 kernels in the last layers in the above
case. The occupancy chip area of a 32x32 accelerator
that can produce 32 feature maps from 32 input feature
maps is about four times more than a 16x16 accelerator.
Therefore, a good trade-off should be established
between the accelerator chip area and the level of
required processing capability.

Our proposed method enhances the performance of
the CNN network in terms of resource utilization. This
issue reduces the required resources (hardware
resources), which are necessary for embedded systems.
Moreover, loop tiling reduces memory resources. In
other words, we need less memory in the embedded
system for processing the CNN network by utilizing the
loop tiling.

VI. RESULTS

This paper originally describes the methodology of
partial calculation of a relatively big CNN network with
asmall CNN accelerator. Although the implementation
is not the primary goal, a small prototype CNN
accelerator is designed for the proof concept. This
design is implemented on the ZedBoard for initial
evaluation. ZedBoard is an FPGA development board
that contains a medium size FPGA from Xilinx
(XC72020). This ZYNQ FPGA has two built-in ARM
Cortex processors. One of these processors is used as
the main processor. The main processor is connected to
the CNN accelerator using the built-in AXI bus in
ZYNQ FPGAs.
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Different networks for testing the built-in
accelerator and the loop tiling method are considered.
These networks are MobileNetV1, MobilenetVv2, fd-
MobileNet, ShuffleNet, Xception, MobileNetV1-0.5
and MobileNetV1-0.25. These are all networks that are
all designed for embedded and mobile processors in
terms of network parameters, computing volume, and
network bandwidth.

The execution strength of the built accelerator is
obtained as frames per second (FPS), which is shown in
Figure 8. As can be seen, for most of the selected
networks, an average of seventy images are processed
in one second, which is beyond the needs of most
hidden applications. In the meantime, only the Xception
network runs slightly slower than the others. It is
necessary to explain that the Xception network is
relatively heavy with reasonable accuracy from the
point of view of computation. This network is also
capable of processing seventeen images per second,
which is suitable for most embedded applications.

As most of the previous state-of-the-art papers have
used MobileNet, especially MobileNetV/1, the results of
MobileNetV1 are used to evaluate the proposed
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Figure 8.  Amount of frame rate per second (FPS) of lightweight
CNN models on the proposed accelerator and using loop tiling.

Using this medium-size FPGA, we show how
compact and small our design is compared to [5] and
[7]. Table2 shows the initial result of the
implementation of an accelerator designed for eight-bit
integer data on ZedBoard in comparison with two
recently published works [5, 7].

TABLE II. RESULT OVER XC7Z020 FPGA (ZEDBOARD)
FPGA DSP BRAM Power | Clock | Work
XC72020 | 200 | 112/140 | 31W 120 1 Current
. MHz
Stratix-V 100
GXA7 256 2330/2560 191w MHz Ref [5]
200
XC7VX690T 1027 850/ 1470 IW MHz Ref [7]
200 Ref
XC72045 224 162/545 53W MHz [16]

As can be seen, the accelerator designed for the 8-
bit integer data is fully embedded in the FPGA chip and
takes up almost 91.4% of its resources. The
MobileNetV1 is run on this FPGA board about 70 times
per second over a 224x224 resolution image at the
frequency of 120MHz, which is a good execution rate
for a small FPGA at low power of 3.1 Watt. The image
has been selected from the ImageNet dataset and has a
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resolution of 224x224. The MobileNetV1 is trained for
remote sensing classification application with 21
classes.

VII. CONCLUSION

This paper uses a new method for executing large
convolutions over a small CNN accelerator. We select
the MobileNetV1l CNN network as a case study. Our
initial implementation shows that the applied method
can effectively break up and run MaobileNetV1, which
has 1024 convolution kernels at its last layers. This
paper shows how a large convolutional network is
visually broken up and run partially with a lightweight
CNN accelerator. This method is useful for low-power
and embedded processors that cannot tolerate a huge
CNN accelerator.
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