[Downloaded from ijict.itrc.ac.ir on 2025-11-18]

[DOI: 10.52547/itrc.14.3.48]

IJICTR

International Journal of Information &

Communication Technology Research Volume 14- Number 3 — 2022 (48 -56)

The Efficient Alignment of Long DNA
Sequences Using Divide and Conquer
Approach

Mahmoud Naghibzadeh, Samira Babaei Behshid Behkmal*, Mojtaba Hatami
Computer Engineering Department Computer Engineering Department
Ferdowsi University of Mashhad Ferdowsi University of Mashhad
Mashhad, Iran Mashhad, Iran
naghibzadeh@um.ac.ir, samira.babaei@mail.um.ac.ir behkamal@um.ac.ir, hatami.mojtaba@mail.um.ac.ir

Received: 12 March 2022 — Revised: 2 May 2022 - Accepted: 18 June 2022

Abstract—discovering mutations in DNA sequences is the most common approach to diagnosing many genome-related
diseases. The optimal alignment of DNA sequences is a reliable approach to discover mutations in one sequence in
comparison to the reference sequence. Needleman-Wunsch is the most applicable software for optimal alignment of the
sequences and Smith-Waterman is the most applicable one for local optimal alignment of sequences. Their
performances are excellent with short sequences, but as the sequences become long their performance degeneration
grows exponentially to the point that it is practically impossible to align the sequences such as compete human DNAs.
Therefore, many researches are done or being conducted to find ways of performing the alignment with tolerable time
and memory consumptions. One such effort is breaking the sequences into same number of parts and align
corresponding parts together to produce the overall alignment. With this, there are three achievements simultaneously:
run time reduction, main memory utilization reduction, and the possibility to better utilize multiprocessors, multicores
and General-Purpose Graphic Processing Units (GPGPUs). In this research, the method for breaking long sequences
into smaller parts is based on the divide and conquer approach. The breaking points are selected along the longest
common subsequence of the current sequences. The method is evaluated to be very efficient with respect to both time
and main memory utilization which are the two confining factors.

Keywords: DNA sequence alignment; divide and conquer approach; longest common subsequence; big genome data, desease
diagnosis.

Article type: Research Article

© The Author(s).
Publisher: ICT Research Institute

data is continuously being produced which makes it an

I INTRODUCTION explosive big data area. There are variety of purposes

Genomic sequence analysis gained extra such as revealing the relations between genes or
momentum since the beginning of human genome proteins, understanding their homology and
project [1]. Nowadays, with the advances in the genome ~ functionality, deciphering sequences to disclose
sequencing technologies enormous amount of genomic biological aspects, diagnosing diseases, and producing

* Corresponding Author

International Journal of Information & Communication Technology Research

http://dx.doi.org/10.52547/itrc.14.3.48
http://ijict.itrc.ac.ir/article-1-515-en.html

[Downloaded from ijict.itrc.ac.ir on 2025-11-18]

[DOI: 10.52547/itrc.14.3.48]

Volume 14- Number 3 — 2022 (48 -56)

drugs, in the analysis of this big data. Many diseases are
caused by variations in the genome sequences such as
many kinds of cancers [2] and variety of disorders
related to nervous system’s degeneration such as
Huntington’s disease [3]. Even a repeat polymorphism
in one of the genes, i.e., IL-Ira, is shown to be associated
with an increased possibility of osteoporotic fractures
[4]. Comparing a subject sequence against a reference
one to find the differences is commonly used in this
analysis. The scientific meaning of comparison here is
optimal alignment of sequences and revealing their
differences. It is worth mentioning that optimal
alignment is not the only method of finding find
differences in genomic sequences towards diagnosing
some genome-related diseases, and if the goal is to
diagnose a particular disease, searching for specific
patterns that have been proven to lead to that type of
disease is another mechanism that has many
applications [5] [6]. However, alignment has a much
wider application and detects all kinds of variation in
the subject sequence.

Alignment of two sequences is the arranging of
these sequences such that similarities and differences
are shown in the best possible way while the order of
elements of each sequence is preserved. Often, a
scoring function is proposed and the quantitative
optimal alignment of the two sequences becomes
equivalent to minimizing or maximizing this function,
depending on the problem being solved and the
formulation of the scoring function. Considering the
countless number of ways that two sequences can be
aligned, when gaps are allowed, the Dynamic
Programming (DP) approach is an extremely
innovative way of optimally aligning sequences. DP is
a Mathematics-Computer optimization problem. A
problem has to have the principle of optimality [7]
property to be considered for being solved using the DP
approach. This principal of optimality states that an
optimal principle holds the property that whatever the
initial state and initial decision are, the decisions that is
followed must create an optimal solution starting from
the state resulting from the first decision. The novelty
of the DP idea is in systematic solution of all possible
sizes of problems starting from the smallest size and
going toward the largest, which is actually the given
problem to be solved. It stores the solution results of
smaller problems and in solving a bigger problem it can
use the solution results of any of the previously solved
sub-problems in an optimized manner. The optimal
sequence alignment has the principle of optimality and
it is successfully solved by the DP approach. The two
most important approaches for sequence alignments are
the Needleman-Wunsch algorithm and the Smith-
Waterman algorithm.

Needleman-Wunsch algorithm [8] is often used to
compare biological sequences with the goal of
computing the similarity score of the sequences. It does
so by arranging the sequences in such a way that the
scoring function is maximized (in some cases the goal
is to minimize the overall penalty). In this paper we are
interested in global alignments (not necessarily global
optimal) of pairs of sequences of DNA, RNA, or other
similar genomic sequences composed of the four
nucleotides A(adenine), T(thymine), G(guanine), and
C(cytosine). The optimization problem is organized as

International Journal of Information & Communication Technology Research

vicTrR (CB

filling an m by n matrix S of scores, where m is the
length of one of the sequences and n is the length of the
other. Si; is the maximum score of aligning the i first
characters of the first sequence and the j first characters
of the second one. This is the clue to the dynamic
program nature of breaking the optimization of a large
problem into optimization of smaller problems. At the
end, the bottom right corner of that matrix, i.e., Smpn,
gives the overall score of the alignment. To find the
actual alignment, a technique for going from the bottom
right corner to the top left corner of the matrix has to be
followed [9]. For long sequences, the time complexity
of Needleman-Wunsch algorithm which is O(mn)
prolongs its execution time, hence continuous efforts
are made to make it more practical [10] [11]. For
example, for two human genomes of size 3.2 Giga
nucleotides each, and considering at least 10 operations
to fill each cell of the 3.2Giga by 3.2Giga matrix, the
number of operations needed to fill the whole matrix is
1020. Using a single processor computer with the
power of 10 million instructions per second, it takes
approximately 317,000 years to complete the matrix.
The amount of memory required by the Needleman-
Wunsch aligner is very high, similar to the amount of
runtime required. Calculating it is a simple task. A 3.2
billion by 3.2 billion matrix with each element being
four bytes, i.e., one word, is required. It is practically
impossible to get this amount of main memory. Using
external memory instead, will not work because it
further greatly increases the runtime. These are the
reasons that lead researchers to break long strings and
align the corresponding sections separately. Our effort
in this research is in this direction.

Smith-Waterman algorithm [12] is another variant
of global sequence alignment. Although the alignment
is global, for the following reasons, it can only produce
local optimal solutions. An important aspect of this
alignment is that if the scoring value of a cell of the
scoring matrix is calculated to be negative, its value is
set to zero. This means, in such situations, the partial
alignment score of sequences up to this point should not
affect the alignment score of the rest of the sequences.
The net consequence of this assumption is that Smith-
Waterman algorithm will better demonstrate the score
of local alignments. As a matter of fact, it better shows
the local alignment scores and hence it is often used for
finding similar regions of sequences. Smith-Waterman
algorithm has the same problem as Needleman-Wunsch
algorithm has, i.e., its time complexity is high and
hence it’s high execution time for aligning long
sequences is high. In addition, its space complexity is
also high such that some later researches have
concentrated on lowering its space complexity only
[13] [14]. This method has the same high runtime and
very high memory requirements of the Needleman-
Wunsch method. The novelty of the present study is the
use of Longest Common Subsequence (LCM) to break
large sequences into shorter ones and then align the
corresponding short strings.

One way to reduce the alignment execution time is
to break the two sequences into many pairs of smaller
sequences, when, possible, and align each pair
separately. For example, suppose the length of each of
the original two sequences is 100,000 base pairs, i.e.,
characters. Using the Needleman-Wunsch alignment

http://dx.doi.org/10.52547/itrc.14.3.48
http://ijict.itrc.ac.ir/article-1-515-en.html

IJICTR

[Downloaded from ijict.itrc.ac.ir on 2025-11-18]

[DOI: 10.52547/itrc.14.3.48]

algorithm, the number of operations would be
proportional to 101°. Let’s assume we can break the
two sequences into 10 pairs of sequences such that the
length of each of the resulting new sequences is
approximately 10,000 base pairs, i.e., bps for short. The
number of operations for aligning all these 10 pairs is
proportional to 10 * 108 = 10° which would need 10
times less execution time compared to the case when
the original sequences are aligned.

Examining the required main memory for this small
example will also show that by breaking large
sequences the need for main memory is also greatly
reduced. If the sequences are not broken and they
aligned at once, the amount of main memory required
is equal to 4 * 10° = 10° = 40 gigabytes. But if they
are broken, the amount of main memory required is
equal to 4*1074*107M=0.4 gigabytea. Note that, in
neither of cases it is assumed that the alignment is
performed in parallel.

On the global alignment of related long genome
sequences, many attempts have been made to break
pairs of such long sequences into many smaller pairs
[10] [15]. The current research is in the same direction
to higher the efficiency and the quality of globally
aligning two related genomic sequences. It uses the
Longest Common Subsequence (LCS) technology to
find anchor points, Divide and Conquer (DaC)
approach to recursively break pairs of longer
sequences, and Needleman-Wunsch algorithm to align
every corresponding short pair of sequences.

Finding the LCS of two genome sequences has
many applications such as phylogenetic construction
and analysis, quick search in genome sequences big
data, and identification of motifs. The natural approach
to solve LCS of a pair of sequences is to formulate it as
a dynamic programming problem similar to
Needleman-Wunsch algorithm. However, there are
quite newer methods with lower time complexities [16].

In this paper, a new divide and conquer approach to
long genome sequence alignment is proposed. The
division is along the LCS of the two sequences which
is located approximately in the middle of the current
two sequences. Only a section in the middle of the two
sequences are selected in which the LCS is sought. If
the discovered LCS is not long enough the sections
length is enlarged until a reasonable length LCS is
obtained. The novelties of this approach are highlighted
in the following.

e Itis much faster than either of Needleman-Wunsch
and Smith-Waterman algorithms.

e It is faster than the state-of-the-art anchor-based
methods which also use some kind of division. At
the same time the space requirement of the method
is extremely low.

o It has the potential to be implemented in parallel in
three different levels, division of the long
sequences, alignment of all short pairs of
sequences, and utilization of General-Purpose
Graphic Processing Units (GPGPU) within each
alignment of short sequences.

Volume 14- Number 3 — 2022 (48 -56)

In this study, for the first time, longest
common subsequence method is used to break long
genomic sequences in order to divide them into
corresponding shorter sequences and then aligning
these the corresponding shorter sequences using
Needleman-Wunsch approach. It has been shown that
this is not only possible but also efficient with respect
to time and main memory utilization. The LCS
subsequence is removed from both sequences and they
are considered to be aligned, and hence exempted from
further processing, which further saves both execution
time and memory space.

The structure of the rest of the paper is as follows. In
Section 2 a short review of related work is presented.
Section 3 is for clarification of the problem being
solved. Section 4 details the implementation of the
proposed method’s solution approach. Section 5 is the
evaluation section and finally a short conclusion and
future work is documented in Section 6.

Il. RELATED WORK

Sequence alignment is the canonical point of most
tools of DNA and other genome sequences alignments.
Human genome sequencing and analysis [1] formally
started in 1990 and with it, computational methods,
especially alignment, became an important part of any
genome analysis activity. Undoubtedly, with the
invention of its dynamic programming implementation
and also after that, there has been great progress in
making the alignment algorithms efficient and up to
date. It is worth mentioning that although we have
focused on genome sequence alignment, alignment is
widely used in other domains such as protein sequences
alignment, protein networks alignment [17] and all
kinds of text alignment [18].

Needleman-Wunsch algorithm is the basic method
for global sequence alignments [8]. Smith-Waterman
algorithm is a variant of Needleman-Wunsch algorithm
which is also a global aligner but it is tailored to find
local similar regions of sequences being aligned [12].
The problem with these algorithms is their high time
complexity which is O(mn), or 0(n?) where the length
of the two sequences are the same and it is equal to n.
In addition, the space complexity of these algorithms is
also O(mn) which can be problematic for large
sequences. In such cases the solution would be to have
part of the scoring matrix in the secondary storage
which will further worsen the execution time
requirement. Many improvements are reported which
we will concentrate on the most recent ones, here.

BLAST is a heuristic algorithm developed to search
a short sequence in a large volume of data. Based on a
hashing mechanism and a local alignment method, it is
capable of finding sequences in the database that are
similar to the search sequence with some degree of
similarity [19]. BLAST is not originally developed for
alignment of genomic sequences and it has the potential
to be used in any kind of text data with any kind of
alphabet. Later, specific program versions were
developed for this purpose. BLASTZ and LASTZ are
recent versions of the program that are widely used for
local optimal alignment of genomic and DNA data. It is

International Journal of Information & Communication Technology Research

http://dx.doi.org/10.52547/itrc.14.3.48
http://ijict.itrc.ac.ir/article-1-515-en.html

[Downloaded from ijict.itrc.ac.ir on 2025-11-18]

[DOI: 10.52547/itrc.14.3.48]

Volume 14- Number 3 — 2022 (48 -56)

much faster than Smith-Waterman method especially
for long sequences [20].

Leimeister et al. [10] proposed a new anchor point
finding method called filtered spaced word match.
Anchor points are short subsequences in the two
sequences which will be matched in the final alignment
of these sequences. Subsequences between consecutive
anchor points of the two sequences are aligned using
known alignment algorithms. They claim that their
superiority is in finding better anchor points. However,
their comparison with that of Mugsy pipeline [21] did
not lead to similar quality for closely related sequences
but they claim it is superior in alignment of distal
sequences. Neither time nor space complexity of the
method is reported. Our guess is that its time
complexity would be in the level of that of Needleman-
Wunsch but there may be improvements is its space
complexity.

Another recent development in the field of long
genome sequence alignment is MUMmer4 [11] which
is the fourth generation of MUMmer. It is based on a
48-bit suffix array data structure. It is capable of using
multicores of the host computer however, this is
applicable for the case of aligning many sequences to
the reference genome; e.g., aligning many short reads
to the human reference genome. In such cases, it can
handle very large input size up to 141 Tera bps.
Although the most important aspect of an algorithmic
computational method is its time and space complexity,
these are not reported in the paper.

The research reported by Sun et al. [13] is an effort
towards space requirement reduction of Smith-
Waterman. similar to that of Smith-Waterman, its input
is a pair of sequences and it performs the optimal local
alignment of the sequences. It is capable of aligning
long sequences up to 100 million bps. It claims that the
space requirement is tremendously reduced but the
order of reduction is not reported. It also claims its time
complexity is the same as that of Smith-Waterman.
However, because of extra computations required to
reduce space, one would expect its time requirement
would be higher than that of Smith-Waterman.

A recent method called GSAlign is the last method
studied here. It is specifically designed for semi-optimal
alignment of long Genome and DNA sequences [22].
Fundamentally, it is composed of three phases: seed
identification and pairing of the two sequences’ seeds,
similar region identification by chaining seed pairs, and
finally the local aligning of regions. To produce the
overall alignment, local alignment of regions is joined
together. It is capable to implement the alignment phase
of the process in parallel using a multithreading
technique. The authors claim that GSAlign is the fastest
semi optimal aligner of long sequences. They also claim
that the developed program produces perfect or nearly
perfect precision and recalls on the identification of
sequence variations in the dataset.

With the exception of Needleman-Wunsch method
which is an optimal method for aligning genomic
sequences, all the other methods we have introduced in
this article are methods that do not guarantee to be
optimal. We showed that the Needleman-Wunsch
method cannot be used for large sequences. Therefore,

International Journal of Information & Communication Technology Research

vicTrR (D

efforts are being made to produce methods which
require less running time and less memory
consumption, and at the same time aligns the sequences
more accurately. In the evaluation section, we will show
that the proposed method is superior to the state-of-the
art methods.

I1l. PROBLEM DEFINITION

Given two genomic sequences S1 and S2 composed
of nucleotides A, C, G, and T are given. The objective
is to globally align the two sequences in such a way that
differences and similarities of the sequences are clearly
recognizable. A scoring function will be defined and the
alignment score is supposed to be optimal. However,
for very long sequences this may not be possible, hence
the aligner has to produce an alignment with and
acceptable score. The length of the sequences is
assumed to be very large to the point that their optimal
alignment using Needleman-Wusch is practically
impossible. The length of the sequences could even
reach the length of human genome which is around 3.2
billion base pairs. Furthermore, it is assumed that the
two sequences are very similar, for example one
sequence is the reference genome of a healthy person
and the other one is the genome of a person being
studied to find its differences with that of the healthy
person. It is expected that the method will use the
optimal aligner in the cases where the input sequences
are short or as a result of breaking them the parts which
are to be aligned are short.

The approach is to divide the long input sequences
into a number of corresponding sub-sequences and to
align these sequences optimally. Finding the right
breakpoints is a fundamental issue, and various
methods to find the breaking point have been developed
by previous researchers. It is important to note that the
lengths of the corresponding sub-sequences are not
necessarily equal. In this study, the longest common
sub-sequence method [15] is used to break a given pair
of long sequences into two pairs of sub-sequences and
each pair is aligned separately. The process of breaking
follows the divide and conquer approach, and continues
the division until the pairs to be aligned are small
enough.

IV. LCSDAC IMPLEMENTATION

In this section details of the implementation of the
proposed Longest Common Subsequence Divide and
Conquer (LCSDaC) alignment of two sequences is
explained. The system will be able to align similar
sequences of any sizes up to the length of a human
genome, i,e., 3.2 Giga bps. If both sequences are short,
i.e., less than 100 base pairs is assumed here, the
Needleman-Wunsch ~ will directly be utilized.
Otherwise, the divide and conquer process will
systematically break them into many pairs of short
sequences. Figure 1 illustrates how this breaking
process works. From the middle of each of the
sequences a subsequence of length equal to the
minimum of 1000 and one third of the current
sequence’s length, i.e., Minimum (1000, ni/3), is
distinguished which become the input to the LCS
procedure. This procedure will find their longest
common subsequence. If this subsequence is long

http://dx.doi.org/10.52547/itrc.14.3.48
http://ijict.itrc.ac.ir/article-1-515-en.html

) ictr

[Downloaded from ijict.itrc.ac.ir on 2025-11-18]

[DOI: 10.52547/itrc.14.3.48]

enough the division is successful, otherwise the lengths
of the distinguished subsequences are doubled and the
LCS is called again. There is a maximum which is set
to 3 for this step and in the worst case the longest
common subsequence obtained in the third iteration is
accepted as the breaking point. Figure 1 also shows the
maximum number of times the LCS is called in each
level of the tree.

Figure 2 has illustrated this procedure on a
miniature pair of sequences. It is assumed that the first
iteration of the procedure gives an acceptable result. In
this example, the length of each of the sequences is 50.
Although the length of sequences should be more than
100 to perform the division, for this example the
division is applied. The LCS procedure will find the
longest common subsequence to be

ranns]

Volume 14- Number 3 — 2022 (48 -56)

GGAGCATGAGCTGG. It is located in Locations 17
to 30 of the first sequence and 19 to 32 of the second
sequence. These places are assumed to be aligned in the
final alignment of the two sequences and hence they are
exempted from further processing. The algorithm
remembers this alignment and includes it in the final
alignment. In the second level of the tree of Figure 1 we
will have to deal with two pairs of sequences to be
processed. The first pair is in locations 1 to 16 of the
first sequence and Locations 1 to 18 of the second
sequence. The second pair is in locations 31 to 50 of the
first sequence and Locations 33 to 50 of the second
sequence. The division is not continued because the
sequences are short. For these two pairs Needleman-
Wunsch is directly applied.

4 lcs

[log(n)—log (100)]

Fig. 1. The division process of LCSDaC showing the number of LCS calls.

1234567 89 10111213141516 17181920 212223 24252627 2829 30 31 32 33 34 3536 37 38 39 40 41 42 43 44 45 46 47 48 49 50

CCTTTATCTAATCTTTGGAGCATGAGCTGGCATAGTTGGAACCGCCCTCA
CCTTTATGTAATCTTTGTGGAGCATGAGCTGGGAGTTGGACACGCCCTCA

Fig. 2. The effect of applying LCS on two sequences.

The overall pseudocode of the algorithm of the method presented here is shown in Algorithm 1.

Algorithm 1. The pseudocode for LCSDaC approach

1- Input Sequences S1 and S2

2- Global SA1, SA2 // the two sequences after alignment

3- Recursive Procedure LCSDaC (S1, S2)

4- |

5- if (S1 < 100 OR S2 <100){

6- SA (S1, S2) // Short Align and place results in SA1, SA2
7- Return

8- }

9- SELECT (s1, S1) //s1 is selected from the middle of S1
10- SELECT (s2, S2)

11- LCS (s1,s2) /ffind the LCS of s1 and s2

12- S1=left section of S1 up to LCS start

13- S2=|eft section of S2 up to LCS start

14- LCSDaC (S1, S2) /irecursive call for new sequences S1 and S2
15- Append (LCS) //append LCS to current end of SA1, SA2

16- S1=right section of S1 from end of LCS

17- S2=right section of S2 from end of LCS

18- LCSsDacC (S1, S2)

19- }

International Journal of Information & Communication Technology Research

http://dx.doi.org/10.52547/itrc.14.3.48
http://ijict.itrc.ac.ir/article-1-515-en.html

[Downloaded from ijict.itrc.ac.ir on 2025-11-18]

[DOI: 10.52547/itrc.14.3.48]

Volume 14- Number 3 — 2022 (48 -56)

In Line 2, two new sequences which are the final
results of the alignment are obtained. Their length is not
necessarily equal to the length of the original sequences
and may be a bit longer. The actual processing section,
Lines 3 to 19, is declared as a recursive procedure. In
this procedure, whenever one of the two inputs is short,
i.e., less than 100 base pairs, Needleman-Wunsch is
called to align the two sequences (Lines 5 to 8). The
aligned results would be place in output sequences SA1
and SA2. In Lines 9 and 10, the SELECT procedure
selects a subsequence from the middle of each of the
sequences and then the longest common subsequence
of the selected sequences are computed (Line 11). A
similar procedure has to be applied to either sides of the
anchor segments with the LCS being placed in the
middle (Lines 12 to 18).

V. EVALUATION

For the alignment of long sequences, which is the
interest of this research, both time and space
complexities are two major limitations. Otherwise,
Needleman-Wunsch produces the optimal alignment.
Accuracy is often scarified to be able to obtain a
approximate solution in tolerable amount of time and
with the available storage capacity. We proceed first
with the most important property of the algorithm
which is time complexity.

A. Time complexity of Algorithm 1

Finding the time complexity of Algorithm 1 is
highly dependent on the time needed to find the LCM
of pairs of sequences. In [16]. It is calculated that if the
dominant point approach is used the time needed to find
the LCM of a pair of strings is proportional to k*|%]|,
where Y| represents the cardinality of the alphabet
which strings are made of. On the other hand, k is the
length of the longest string of the pair of strings. Note
that, the sequences considered here consist of 4
characters A, T, G, and C. Therefore, it is safe to say
calculation of LCM of a pair of strings is proportional
to k. On the other hand, the number of times we can
divide an integer n by 2 before the final result becomes
less than 100 is log, (n) — log,(100) or approximately
log,(n) - 6. This is the depth of the tree of Figure 1.
Therefore, the number of times the LCS procedure is
called is shown by Formula (1).

[log(n)—log(100)]
Number of LCS calls = Z 2t (1)
i=0
Assuming the maximum length of the pair of
sequences which is sent to the LCS procedure to be ki,
the number of operations needed to run the whole
algorithm would satisfy Formula (2). In this formula

O(SA) represents the time complexity of the Short
Align (SA) procedure.

[log(n)—log(100)]
T(n) < Cy xky 2t + 209+ g(54)
i=0

@)

Or,

International Journal of Information & Communication Technology Research

vicTrR (ED

T(n) <C*kyn+nx 0(SA). 3

Recall that even if the length of the original
sequences to be aligned is as large as a whole genome
or any other longer length, in the algorithm, alignment
for only short sequences with length less than 100 bps
is called. Let’s assume that the number of operations
needed to do this alignment is k. It is usually very small
compared to the length of the input sequences and it is
bounded by a constant. However, it is not too small to
satisfy the definition of the big O notation of the time
complexity to consider it a constant. On the average, for
alignment of short sequences there would be
50*50=2500 cells to fill. As this is represented by k, the
time complexity of the method would be O(kn). Of
course, there is always an option to set the length of
short sequences to be less than 100 bps.

There is a hidden benefit in the proposed method
which is the exemption of longest common
subsequences of each pair of sequences from any
further processing. In the calculation of the time
complexity, this is ignored because it does not affect the
time complexity itself but reduces the hidden constant
of the time complexity, and as a result it has a positive
effect in processing time of the algorithm.

B. Space complexity of Algorithm 1

Space complexity of the alignment methods is as
important as their time complexities. Some recent
methods such as Sun et al. [13] have left the time
complexity of the aligner untouched and have
concentrated on reducing its space complexity. The
actual space complexity of their proposed algorithm is
not reported because, it is calculated for the worst case
and in the worst case it would not be impressive.
However, they claim the main memory of a “normal
personal computer” would be able to align sequences as
long as 100,000,000 nucleotides.

Here we explicitly express that the space
complexity of our algorithm is O(n) where n is the
length of longer input sequence. There are two input
sequences of length say n and two output sequences of
approximate length n, too. LCSDaC would need 4n
bytes to keep them all in the main memory. Within this
algorithm, each Needleman-Wunsch execution will
require at the most 10,000 cells and considering 4 bytes
for each cell, adds up to 40,000 bytes. In the non-
parallel version of LCSDaC, there would be only one
running Needleman-Wunsch at any given time. Other
minor memory requirements are ignorable. Therefore,
the total memory space needed is expressed by Formula

(4).
S(n) = 4n + 40000 @)

For sequences larger than 40000 bps, the space
requirement would be

S(n) < 5n (5)

Therefore, the space complexity is S(n) € O(n). Even
for the case of parallel implementation of the LCSDaC
using multicores, the number of multicores is limited
and it is small, say 16, which still leaves the space
complexity to be O(n). This is another achievement of
the current research. Thus, it can be said that the
proposed method is much more efficient than both

http://dx.doi.org/10.52547/itrc.14.3.48
http://ijict.itrc.ac.ir/article-1-515-en.html

D icTR

[Downloaded from ijict.itrc.ac.ir on 2025-11-18]

[DOI: 10.52547/itrc.14.3.48]

Needleman-Wunsch and Smith-Waterman methods
with respect to both time and space complexities.
Compared to newer algorithms, its superiority is at least
in the hidden constants of time and space complexities.
In any case, the actual time and space utilization of the
proposed algorithm is less than each of the state of the
art methods.

The method presented here has a high potential to
be implemented in parallel. The simplest section that
can be paralleled is the “Short align” section of the
algorithm which is responsible for alignment of short
sequences. This section corresponds to the lowest level
of the tree of Figure 1. Within each short align instance
one can utilize General Purpose Graphic Processing
Unit (GPGPU) to elevate the degree of parallelism.
Furthermore, the LCS recognition can become parallel.
For example, in Level 2 (third level) of the tree of
Figure 1 four LCS instances could run in parallel. In this
paper, the whole idea is developed sequentially and the
compassions are with sequential competitors. Actually,
we intended to put our idea into practice and evaluate
the practicality of the method, first. The parallelization
of the whole algorithm is left for future work.

For short sequences, there is no need for
comparison, and the choice is definitely Needleman-
Wunsch [8] with optimal alignment capability. For
local optimal alignment, the choice is Smith-Waterman
[12] for local optimal alignment. The latter method
completely ignores many parts of the pair of sequences
meaning. It only looks for those parts the sequences
which are somewhat similar to each other. In some
applications that parts which should be focused on are
actually those which are very different. Those parts
could actually be the cause of some diseases. For
medium length sequences it depends on the available
computer, its number of cores, number of General
Purpose Graphic Process Units (GPGPUSs), and the
capabilities of the employed software program. For
large and very large sequences the choice is definitely
not Needleman-Wunsch or Smith-Waterman. A
practical choice is an efficient heuristic semi-optimal
methods. Therefore, two such recent methods are
selected for the comparison part: MUMmer [11], and
GSAlign [22]. The experiment includes both short
genomes and long ones.

BRCA1 is a human gene responsible for
suppressing tumors and repairing DNA, ATF6 is a
human gene which acts as a transcription factor inside
the nucleus, and CFTR gene that is the provider of
instructions for making a kind of protein. The
approximate sizes of these genes are expressed in
thousands (K) of nucleotides in Table 1. These genes
are taken from 1000 genomes project dataset [23].
Escherichia coli (E.Coli), Shigella, and Salmonella are
three bacteria with the approximate sizes that are
expressed in millions (M) of nucleotides in this table.
The bacteria sequences are taken from NCBI site [24].
For each gene and bacteria two different variants are
selected to be aligned.

The computer used for the experiments is Intel(R)
core(TM) i7-353U CPU 2GHz, RAM 6GB, and Linux
Ubuntu 18.0 operating system.

Volume 14- Number 3 — 2022 (48 -56)

Table 1 summarizes the result of comparisons of
MUMmer, GSAlign, and LCSDac methods.

TABLE I. SUMMARY OF THE TIMING COMPARISON RESULTS
Seqﬂfnce BRCAL1 | ATF6 | CETR | E.coli | Shigella| Sal*

#127K |#198K | #430K | #5M | #5M | #4.9M
Methody

MUMmer 5s 5s 9s | 328s| 350s | 246s

GSAlign 2s 3s 4s | 125s| 240s | 160s

LCSDaC 1s 2s 4s | 138s| 218s | 127s
*Salmonella

The overall results of Table 1 for the six tested
sequences, show that, on the average, LCSDaC is 2.61
times faster than MUMmer, and 1.29 times faster than
GSAlign. For example in comparing MUMmer and
LCSDacC the following computation is used.

C/1+ %5+ %4+ 328/ 135+ 33014

Another major area of comparison is the accuracy
of the methods. It is obvious that Needleman-Wunsch
is the most accurate one because it is an optimal aligner.
The problem arises when the sequences are long and its
time and space requirements using Needleman-Wunsch
is absolutely intolerable. Smith-Waterman is not an
optimal aligner but, it is a locally optimal one.
MUMmer, GSAlign, and LCSDaC fall into this
category and none of them could be used as a fully
accurate one. In the absence of an optimal alignment the
number of exact matches of the two sequences are taken
to be a measure for the purpose of correctness
evaluations. A higher value of this measure is
interpreted as the method being more accurate. Table 2
shows that the method presented in this paper is more
accurate than others, in all cases. Therefore, the
Relative Accuracies (RA) of other methods are
computed in comparison to LCSDaC.

Evaluating their accuracy in terms of score,
precision, recall, and F-measure requires extensive
experiments on numerous sequences which is left for
the future work.

TABLE I RELATIVE ACCURACY COMPARISON RESULTS

Sequence— [BRCA1| ATF6 |[CFTR| E.coli |Shigella| Sal*
Method{ #127K |#198K |#430K| #5M #5M | #4.9M

MUMmer | 103521 | 15250 36624 | 281466 | 250537 (249410

GSAlign 98531 | 12895 | 32358 | 245326 | 237856 |210856

LCSDaC | 123087 | 19727 | 42144 | 295584 | 295876 275470
* Salmonella

Therefore, the average relative accuracies of other
methods are computed in comparison to LCSDaC.
Details of calculations for MUMmer is shown in the
following.

RAyummer = (103521/123087 + 152501/197277
+366248/421446 + 2814666/2955849
+2505372/2958760
+2494108/2754703)/6 = 0.864

Performing a similar calculation for GSAlign evaluates
its relative accuracy to be RAgsarign = 0.6554.

International Journal of Information & Communication Technology Research

http://dx.doi.org/10.52547/itrc.14.3.48
http://ijict.itrc.ac.ir/article-1-515-en.html

[Downloaded from ijict.itrc.ac.ir on 2025-11-18]

[DOI: 10.52547/itrc.14.3.48]

Volume 14- Number 3 — 2022 (48 -56)

Therefore the accuracy of LCSDaC is the highest and
that of MUMmer is 86 percent of LCSDaC. With
respect to relative accuracy, the GSAlign is the lowest
with 66 percent of the LCSDaC.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced LCSDaC which is a novel
long DNA sequence aligner base on divide and conquer
approach in which, the division takes place along the
longest common subsequence of the middle portions of
the current sequences. The time complexity of the
method is analyzed and it is shows to be superior to
traditional aligners. The space complexity of the
algorithm is also calculated to be O(n) which is superior
to all classic aligners such as Needleman-Wunsch and
Smith-Waterman methods. Further, it outperforms all
state of the art methods. The sequential version of the
presented method is implemented and it is compared
against two state of the art heuristic aligners called
MUMmer, and GSAlign. It is shown that on the
average, the proposed algorithm, LCSDaC, is 2.61
times faster than MUMmer, and 1.29 times faster than
GSAlign. For the accuracy we showed that the accuracy
of MUMmer is 86 percent of LCSDaC and that of
GSAlign is 66 percent of the LCSDaC.

REFERENCES

[1] H. Chial, "DNA sequencing technologies key to the Human
Genome Project,” Nat. Educ., vol. 1, no. 1, p. 219, 2008.,"
Nature Education, vol. 1, no. 1, p. 219, 2008.

[2] J. Lever, E. Zhao, J. Grewal, M. Jones and S. Jones,
"CancerMine: a literature-mined resource for drivers,
oncogenes and tumor suppressors in cancer,” Nature
Methods, vol. 16, pp. 505-507, 2019.

[3] I.Kovtunand C. McMurray, "Features of trinucleotide repeat
instability in vivo.,"” Cell Research, vol. 18, pp. 198-213,
2008.

[4] B. Langdahl, E. Lokke, M. Carstens, L. Stenkjaer and E.
Eriksen, "Osteoporotic Fractures Are Associated with an 86-
Base Pair Repeat PolymCorphism in the Interleukin-1—
Receptor Antagonist Gene But Not with olymorphisms in the
Interleukin-1b Gene," Bone Min. Res., vol. 15, no. 3, pp. 402-
414, 2000.

[5] Y.Deng, S. Kumar and W. Byrne, "Y. Deng, S. Kumar, and
W. Byrne, “Segmentation and alignment of parallel text for
statistical machine translation," Nat. Lang. Eng., vol. 13, no.
3, pp. 235-260, 2007.

[6] P. Neamatollahi, M. Hadi and M. Naghibzadeh, "Simple and
Efficient Pattern Matching Algorithms for Biological
Sequences," IEEE Access, vol. 8, pp. 23838 - 23846, 2020.

[7] R. L. E. Bellman, "History and development of dynamic
programming,” IEEE Control Systems Magazine, pp. 24 - 28,
1984.

[8] S. Needleman and C. Wunsch, "A general method applicable
to the search for similarities in the amino acid sequence of
two proteins," Journal of Molecular Biology, pp. 443-453,
1970.

[91 M. Naghibzadeh, New Generation Computer Algorithms,
Available on Amazon, 2021.

[10] C. Leimeister, T. Dencker and B. Morgenstern, “Accurate
multiple alignment of distantly related genome sequences
using filtered spaced word matches as anchor points,"
Bioinformatics, vol. 35, no. 2, pp. 211-218, 2019.

[11] G. MarcEais, A. L. Delcher, A. M. Phillippy, R. Coston, S. L.
Salzberg and A. Zimin, "G. MarcEais, A. L. Delcher, A. M.
Phillippy, R. Coston, S. L. Salzberg, and A. Zimin,

International Journal of Information & Communication Technology Research

vicTR G

“MUMmer4: A fast and versatile genome alignment system,"
PLOS Comput. Biol., 2018.

[12] T. W. M. Smith, "Identification of common molecular
subsequences,” Journal of Molecular Biology, pp. 195-197,
1981.

[13] J. Sun, K. Chen and Z. Hao, "Pairwise alignment for very long
nucleic acid sequences,” Biochem Biophys Res Commun,"
vol. 502, no. 3, pp. 313-317, 2018.

[14] M. Zhao, W. Lee, E. P. Garrison and G. T. Marth, "SSW
library: an SIMD Smith-Waterman C/C++ library for use in
genomic applications," PLoS One, vol. 8, no. 12, 2013.

[15] M. Brudno, C. Do, C. G. M. M. F. Kim and et.al., "LAGAN
and Multi-LAGAN: Efficient Tools for Large-Scale Multiple
Alignment of Genomic DNA," Genome Res., vol. 13, no. 4,
pp. 721-731, 2003.

[16] Q. Wang, D. Korkin and Y. Shang, "A Fast Multiple Longest
Common Subsequence (MLCS) Algorithm," IEEE Trans.
Knowl. Data Eng., vol. 23, no. 3, pp. 321-334, 2011.

[17] A. Mir, M. Naghibzadeh and N. Saadati, "INDEX:
Incremental depth extension approach for protein—protein
interaction networks alignment,”" BioSystems, vol. 162, pp.
24-34,2017.

[18] B. Chowdhury and G. Garai, "A review on multiple sequence
alignment from the perspective of genetic algorithm,”
Genomics, vol. 109, no. 5-6, pp. 419-431, 2017.

[19] S. F. Altschul, W. Gish, W. Miller, E. W. Myers and D. J.
Lipman, "Basic local alignment search tool," J. Mol. Biol.,
vol. 215, no. 3, pp. 403-410, 1990.

[20] S. Schwartz, W. J. S. A. Kent, Z. Zhang, R. Baertsch and
etal., "Human-mouse alignments with BLASTZ," Genome
Res., vol. 13, no. 1, pp. 103-107, 2003.

[21] S.S.S. Angiuoli, "S. V Angiuoli and S. L. Salzberg, “Mugsy:
fast multiple alignment of closely related whole genomes,"
Bioinformatics, vol. 27, no. 3, pp. 334-342, 2011.

[22] H. Lin and W. L. Hsu, "GSAlign: an efficient sequence
alignment tool for intra-species genomes," BMC genomics,
vol. 21, no. 1, pp. 1-10, 2020.

[23] IGSR: The International Genome Sample Resource, [Online].
Available: https://www.internationalgenome.org/data/.
[Accessed July 2020].

[24] National Center for Biotechnology Information, [Online].
Auvailable: http://www.ncbi.nlm.nih.gov/. [Accessed July
2019].

Mahmoud Naghibzadeh
completed his M.Sc. and Ph.D. in
Computer Science at the University
of Southern California (USC). He
has published about 300 scientific
research articles, 10 Persian books,
and 2 internationally available
English text books.

Samira Babaei received her M.Sc.
degree in Computer Science from
Ferdowsi University of Mashhad in
2021, Iran. Her main research
interests include Algorithms and
Bioinformatics.

http://dx.doi.org/10.52547/itrc.14.3.48
http://ijict.itrc.ac.ir/article-1-515-en.html

D) Jicr

[Downloaded from ijict.itrc.ac.ir on 2025-11-18]

[DOI: 10.52547/itrc.14.3.48]

Metrics.

Behshid Behkamal received her
Ph.D. degree in Computer
Engineering in 2014. Currently, she is
an Assistant Professor at Computer
Engineering Department of Ferdowsi
University of Mashhad. She works in
the area of Data Science, Specifically
on Data Quality Assessment and

Mojtaba Hatami is a Ph.D.
Candidate in Computer Science at
Ferdowsi University of Mashhad. His
current research interests include the
scheduling aspects of Real-Time
Systems, Cloud, Multiprocessors,
Multicores and 1oT. He is also
interested in Randomize Algorithms
and Complexity Theory.

Volume 14- Number 3 — 2022 (48 -56)

International Journal of Information & Communication Technology Research

http://dx.doi.org/10.52547/itrc.14.3.48
http://ijict.itrc.ac.ir/article-1-515-en.html
http://www.tcpdf.org

