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Abstract—Cloud computing is a computing model which uses network facilities to provision, use and deliver computing
services. Nowadays, the issue of reducing energy consumption has become very important alongside the efficiency for
Cloud service providers. Dynamic virtual machine (VM) consolidation is a technology that has been used for energy
efficient computing in Cloud data centers. In this paper, we offer solutions to reduce overall costs, including energy
consumption and service level agreement (SLA) violation. To consolidate VMs into a smaller number of physical
machines, a novel SLA-aware VM placement method based on genetic algorithms is presented. In order to make the
VM placement algorithm be SLA-aware, the proposed approach considers workloads as non-stationary stochastic
processes, and automatically approximates them as stationary processes using a novel dynamic sliding window
algorithm. Simulation results in the CloudSim toolkit confirms that the proposed virtual server consolidation
algorithms in this paper provides significant total cost savings (evaluated by ESV metric), which is about 45% better
than the best of the benchmark algorithms.
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dominance of this processing model in the world of

I INTRODUCTION information technology [1]. Cloud based services

In recent years, Cloud computing offers utility- provide on-demand access to shared resources,

oriented IT services, based on a pay-as-you-go model ~ enabling companies to outsource their IT

to worldwide users. It is not completely a new concept,  infrastructures, and Cloud providers supply virtualized

however, current observations suggest a lucrative  resources to handle the ever-increasing demands of

market for investing in it. The widespread presence of ~ Cloud users. As a result, Cloud data centers consume a

large companies such as Sun Microsystems, Amazon,  significantamount of energy in order to supply services
Google, Microsoft, etc. in the competitive field of cloud
computing shows the rapid development and
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to a wide range of users, which increases operating
costs and CO, emissions [2].

Electricity usage (TWh) of Data Centers 2010-2030
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Fig. 1. Global electricity demand of data centers 2010-2030 [3]

Andrea et al. [3] have discussed about the trends of
power consumption by data centers (shown in Fig. 1)
considering three scenarios, in which they insist on the
importance of power management in data centers. The
worst-case scenario is exorbitant, however not totally
unrealistic. To meet user expectations in a cost-
effective manner, Cloud service providers should
minimize energy consumption while considering
service level agreements (SLAS) [2]. SLAs define the
quality of service (QoS) guarantees which are stated in
the contracts between Cloud service providers and their
customers. For instance, an SLA may determine that the
response time of a request must be in a certain duration
(e.g. 200ms) and the penalty could be that if the service
provider violate this agreement, the fee paid to the
service provider would be reduced for a limited time.
Therefore, there is an obvious trade-off between energy
consumption and QoS establishment.

Nowadays, virtual machine (VM) consolidation
approaches are employed in Cloud datacenters to
decrease energy consumption by placing VMs on a
reduced number of physical hosts [4]. To satisfy the
QoS, VM consolidation approaches use live VM
migration to transfer a VM from an overloaded host to
another. In a live VM migration (also called relocation
or real-time migration[5]) the VM state (memory pages
and processor state) are transparently transferred from
one physical machine (PM) to another while the VM is
in use [6]. There are various approaches to transfer VM
state from one PM to another which are explained in
[7]. However, a VM migration leads to SLA violations:
(i) Performance degradation of the applications running
on the migrating VM during the relocation process [8].
(i) A short downtime happens when at the final phase
of the migration process [9]. This effect is shown if Fig.
2. Simple consolidation policies may lead to many live
migrations.

Workloads on VMs are dynamic and the variation of
workloads on VMs and PMs makes the problem more
challenging (i.e., overload and underload conditions
may happen). Based on the things discussed above, in a
Cloud environment with heterogeneous physical hosts
and virtual machines, the consolidation problem can be
defined as: to determine what time, which VMs, and
where should be migrated to minimized the total cost in
the data center. Therefore, there is a need for efficient
methods for VM consolidation to establish an
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equilibrium between energy consumption and SLA
violation.
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Fig. 2. The effect on the response time of a service while
migrating its underlying virtual machine [9].

As mentioned, reducing energy consumption by
consolidation techniques increases the likelihood of
SLA violations. Therefore, the establishment of SLA
has been considered in various studies by considering
overload detection and/or overload prediction of
executing physical servers [10-13]. Some other works
such as [14] and [15] consider overload probability
before VM placement to reduce SLA violations. There
are few works, such as the works done by Naeen et al.
[4, 15] and Beloglazov et al. [16], that have mentioned
the issue of non-stationary nature of workload data.
However, [4] and [16] solutions are provided for
workloads with Markov property, and the solution
presented in [15] is not workload adaptive and uses a
static sliding window method to deal with non-
stationary nature of the workloads.

In this work a genetic algorithm (GA) based
approach for SLA-aware VM placement is introduced,
which dynamically adapts itself to the non-stationary
workload data variations in order to reduce the total
costs. The main costs considered in this paper are
energy consumption and SLA violation. The most
important contributions of this work include:

¢ Proposing a cost efficient (i.e. energy efficient and
SLA-aware) VM consolidation approach for Cloud data
centers with non-stationary workloads using a new GA-
based VM placement algorithm; the proposed approach
reduces the total cost in the system which is evaluated
by ESV metric (see section IV) and also the total
number of migrations in data centers.

o Presenting an algorithm that dynamically adapts the
sliding window lengths to workload variations. The
GA-based placement algorithm uses this dynamic size
sliding window method to perform SLA-aware VM
placement.

e The performance of the proposed algorithms is
evaluated by the means of extensive simulations using
CloudSim Toolkit with real workload data.

Our proposed This paper continues by reviewing
background of VM consolidation in section Il. Section
111 discusses the proposed system model and main SLA
violation factors in this study. Section IV describes the
experimental results; evaluation metrics and analysis of
results are also presented in this section. Finally, the
conclusion and future possible directions are discussed
in section V.
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Il.  RELATED WORKS

In virtualized data center, most running virtual hosts
only operate on a small part of the total available
resources [17]. Two sample VM’s CPU utilization are
shown in Fig. 3. Thus, multiple underutilized servers
may take up more space and allocate more resources
than can be justified by their workloads. This problem
is called server sprawl. Virtualization and live
migration can be used to dynamically consolidate to a
limited number of PMs and switch idle ones off [18].
Increasing resource utilization and, thus, reducing the
number of active PMs in data centers have considerable
advantages such as saving energy and other costs [19].
The VM consolidation problem can be divided into
several sub-problems (such as VM placement, overload
and underload detection, and VM selection) and each
can be considered independently. When the requested
resources on a PM are more than its capacity, the PM is
known as overloaded. This condition leads to
performance degradation of the residing VMs on the
overloaded PM (i.e., SLA is violated). Thus, it’s
necessary to avoid this condition. On the other hand, if
all the VMs located on a PM can be migrated out of the
PM without the occurrence of a new overload
condition, the host is considered to be underloaded.
Underload detection is important, since low loaded
PMs can turn to low-power mode or switch off. VM
placement algorithms are employed to determine the
new hosts of the migrating VMs which are selected for
migration from overloaded PMs (via VM selection
algorithms).

VM: A Random VM from Planetlab Workioad, Date: 3-Mar-2010
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Fig. 3. (@) A random VM selected from PlanetLab - (b) A
random VM Selected from IAUM Data Center

However, not all studies have necessarily followed
such a division; nevertheless, generally, they try to
manage resources in order to consider a trade-off
between energy consumption and other performance
criteria (such as, number of migrations [15, 20], SLA
violations [21], maintenance and reliability [22], etc.) in
Cloud systems. VM consolidation algorithms are
known as NP-hard algorithms [23], and the
implementation methods can be divided into two main
categories: exact methods and approximate methods.
Exact methods are applicable only on small size inputs
(Clouds with small number of PMs and VMs).

One of the earliest works on VM consolidation in
large Cloud data centers has been done by Nathuji and
Schwan [24]. They have split the resource management
problem into two levels. With the assumption that VMs
have a power-aware OS, at one level, a local manager
cooperates in power management on its host. At a
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global level, a manager finds the VM migration map.
To consolidate the VMSs, they have carry out the VM to
PM mapping process periodically without performing
any overload or underload detection. Verma et al. [25]
have performed dynamic VM consolidation for
heterogeneous environments, considering it as a
continuous optimization problem. In their suggested
solution, VM placement is optimized and efficiency
increases by considering both the migration cost and the
energy cost in every time period. Like [26], they have
presented a greedy approach to solve the VM placement
sub-problem considering it as a various sized and cost
bin-packing problem; Both articles do not consider
SLAs and thus, quality of services may decrease due to
workload variations.

A known study that finds the solution for dynamic
VM consolidation problem is [2]. The authors have
proposed a placement algorithm namely Modified Best
Fit Decreasing (MBFD) for a virtualized datacenter
with heterogeneous hosts in which a VM is greedily
allocated to a host with the least increase in energy
consumption. The authors have investigated a couple of
VM selection policies named Minimization of
Migration (MM), Highest Potential Growth (HPG), and
Random Choice (RC) policy. The MM policy chooses
the least number of virtual machines needed to relocate
from a PM to lower the CPU utilization below a
predefined upper utilization threshold if a PM is
overloaded. In case of an overload condition, the HPG
policy migrates VMS that have the lowest CPU
utilization relative to the CPU capacity defined by the
VM parameters, with the goal to minimized the
potential increase of PM’s utilization and prevent future
SLA violation. The aforementioned work was extended
by presenting various heuristic algorithms in [8]. In the
study [8] the authors have presented a two new VM
selection policies named Minimum Migration Time
(MMT) and Maximum Correlation (MC) policy. In
MMT policy, a VM that requires the minimum time to
complete a relocation relative to other VMs on the same
overloaded PM. Migration time is estimated as the
amount of RAM utilized by the VM divided by the
spare network bandwidth available to the destination
PM. The MC policy chooses a VM that has the
maximum correlation of resource utilization with other
VMs. Simulation results indicate that MMT
outperforms other VM selection policies in case of SLA
violation due to migration. Hence, MMT is one of the
most popular policies that have been used in the next
works by researchers.

Avrianyan et al. in [27] have worked on overloading
host detection and VM selection as efficient approaches
to reduce energy consumption in cloud data centers.
The authors have presented fuzzy based solutions for
the whole phases of server consolidation in another
work [11]. In [11] they have presented a method in
which different criteria such as residual resources,
potential, bandwidth, RAM capacity and power
consumption in servers are considered for selecting the
destination of a virtual machine. According to their
model, hosts are scored by using a fuzzy system based
on the mentioned criteria and the machine with the best
score is selected as the new place of a virtual machine.
A sequential optimization based solution for power
management is proposed by Kusic et al. [28] which is
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solved by a limited look-ahead control. They have
minimized both power consumption and SLA
violations. They use Kalman filter [29] to predict
overloaded hosts. It is claimed in [30] that their
optimization process takes up to 30 minutes for 15
hosts, which means it's not a scalable solution.

The authors in [31] have proposed a VM placement
algorithm using queuing theory for workloads with
burstiness pattern. They have modeled the resource
utilization of VMs as a two state Markov chain to
represent burstiness. Their system is based on the
assumption that the input workloads are stationary,
known a priori, and have burstiness pattern. A Markov
chain is used to predict next state of a server, and in case
of an overload prediction on a PM, some VMs should
be migrated out of the PM. In a work done by other
authors [4] the workloads on the PMs are considered as
Markova processes. However, with a similar idea to
[31] they form a Markov chain on each PM based on
the resource utilization (without burstiness assumption)
to predict future state of the PMs. They have presented
three overload detection policies named Deferred
Overload Detection (DOD), Immediate Overload
Detection (IOD), and Prediction-based Overload
Detection (POD). According to DOD, the overload
detection is deferred to the time that an actual overload
happens. In POD, if the next state of the host is
predicted to be overloaded, the PM is considered as
overloaded and some VMs should migrate out before a
real overload happens. They use a long-term prediction
method in 10D policy, to move VMs out of a PM.
Results show that 10D has better results for SLA than
POD and DOD, while it leads to slightly more energy
consumption in the system. Naeen et al. [15] have
presented a heuristic VM placement algorithm named
stochastic process-based BFD (SBBFD), which
considers the workloads on PMs as stochastic
processes. SBBFD reduces energy consumption,
number of migrations, and SLA violation, but works
based on a single static size sliding window method and
it is not self-adaptive to non-stationary workloads.

However, meta-heuristic algorithms are more
effective for finding optimal solutions[32]. Farahnakian
et al. [33] proposed an ant colony optimization (ACO)
system for energy efficient consolidation of VMs. They
use a K-nearest neighbor (KNN) method to predict
overload conditions to prevent SLA violations. A meta-
heuristic approach named modified particle swarm
optimization is proposed by Li et al. [34] to reduce
energy consumption and QoS optimization. The
Authors in [35] and [36] have proposed GA based
placement algorithms for energy efficient VM
placement in Cloud data centers; the methods presented
in these two studies cannot consider the SLAS. Previous
meta-heuristic solutions for VM consolidation problem
consider only the current workloads on PMs when
performing the placements, i.e., they treat the
workloads as momentary events; this may lead to many
future overloads and VM migrations (after placement)
due to server oversubscriptions. To the best of our
knowledge, none of the previous works that solve the
VM consolidation problem using meta-heuristic
algorithms deal the workload data as non-stationary
stochastic processes. Hence, our work, solves the
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problem from a new point of view when compared with
its counterparts.

Il1l. PROPOSED SYSTEM

In this paper, an energy efficient and SLA aware
system is proposed for dynamic management of
heterogeneous VMs and PMs in Cloud datacenters
using GA optimization and stochastic processes. The
system dynamically models the workload changes and
adapts itself to the current workloads. The system
model is shown in Fig. 4. The system is consisted of
heterogeneous PMs on which heterogeneous VMs
work. Virtual Machine Monitor (VMM) on each host is
responsible for continuous monitoring of the host
resource utilization, step detection, estimating
utilization model, and cooperating with the Data Center
Manager (DCM) by sending adjustment requests, so
that the DCM can make appropriate decisions and
issues controlling commands. To do this, DCM
employs a SLA-aware VM placement algorithm using
GA to find migration map and then sends out migration
commands to VMMs.

A. Non-stationary Workload Data Modeling

In this study, we use the assumptions explained in
[15] that is, real workloads are assumed not to be
completely random, and thus they are independent
stochastic processes which may be non-stationary. If
we consider the CPU utilization of a VM, as a random
variable (represented as X)), there are n independent
random variables on a PM. Loads on different VMs are
not identically distributed, but it can be shown that the
Lindeberg-Feller Central Limit Theorem condition
holds. Let o be the variance of X, and s2 = Y%_, o/,
then the sequence of independent random variables on
a PM satisfies the following condition [37].

ok
max 5 — 0, asn— o« ()
k=1,..,n Spn

s ~

Relocation Oraers Data Center (DCm)

VM Placement

[Virtual Machine Monitor (Vi) Virtual Machine Monitor (VIM]

Physical Machine m
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Fig. 4. High level view of the system model.
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Fig. 5. Energy Consumption diagrams and histograms of four
of the 15 virtual machines with non-normal consumption
distributions randomly selected from the PlanetLab [38] data
set and placed on a host, along with diagram and histogram of
the physical host

Consumption diagrams and histograms of four of
the 15 virtual machines with non-normal consumption
distributions randomly selected from the PlanetLab
[38] data set and placed on a host, along with diagram
and histogram of the physical host

Thus, the workload on a PM has a normal
distribution. We illustrated an example of this in Fig. 5:
15 real loads with non-normal distribution (based on the
Kolmogorov-Smirnov (KS) test) from the PlanetLab
[38] data set were randomly placed on a host, and the
normality of the load data was tested using the KS test;
the total utilization on the host has a normal
distribution.

However, real-world workload data may be non-
stationary, and one of the methods used to deal with
non-stationary data is sliding window method [16]. The
problem with a fixed-length sliding window is that it
has to be tested for different lengths in the problem to
find the right length for it. To solve this problem, we
have provided a solution to dynamically determine the
size of the sliding window. Since the data distribution
is considered to be normal, we use two sample
Student’s t-test with unequal sample sized and unequal
variances to detect the significant changes in the
workloads on PMs. As discussed by Carter and Cross
[39], we can use two-sample Student’s t-test to find
whether the means of two set of observations are
significantly different. The t statistic to test whether the
sample means are different is calculated as follows,

X1— X2

t= 12 )

Where n, is the number of points in the initial
samples (in our experiences, 30 points after the current
detected change point), n, is the count of samples from
the current step point (excluding the initial samples) to
the current time. s;, s, are sample variances and x,, X,
are sample means. The degree of freedom is calculated
as follows.
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Fig. 6 shows the proposed algorithm used for
finding the dynamic size of the sliding window on each
host. By finding the length of the sliding window (1),
the distribution parameters are estimated using the
maximum likelihood estimation (MLE) method.
Therefore, the overload probability of physical hosts
can be calculated by having load distribution
parameters. The obtained values of the probabilities are
used in the VM placement solution, which is explained
in the next section.

1

Input: Workload on a host: load
Output: length of sliding window: 1

1 | Function findSlidingWindowLength(/oad) begin
2 point « 0,i <0

3 while (i < load.length() ) do

4 xy < SubArray(load, point, point + n,))
5 i =point + ny

6 for (j=i+1 to load.length()) do

7 x, « SubArray(load,i + 1,n, + j))

8 stepDetected « tieq. isSignificantChange(xy, x;)
9 if (stepDetected) then

10 point —«i+1+n;+j

11 break

12 end if

13 end for

14 end while

15 | = load.length()-point
16 return /

end Function

Fig. 6. The proposed algorithm for sliding window length
detection.

Input: PM list: PmList
Output: MigrationMap: Map

1 | Function Consolidation(PmList) begin

2 overUtilizedPMList « new List < PM >

3 vmsToMigrate « new List < VM >

4 foreach (pm in PmList) /lfinding overloaded PMs

5 slidingWindowLen«findSlidingWindowLenght (pm./load)

6 if(overloadProbaility(pm.load([s/idingWindowLen)> th,)

7 overUtilizedPMList.Add(pm)

8 else if (LocalRegression(pm.load) > pm.Capacty)

9 overUtilizedPMList. Add(pm1)

10 end if

11 end foreach

12 foreach (pm in overUtilizedPMList) //VM selection from overloaded PMs
13 foreach (viz in pm.VmList order by descending MMT)

14 vmsToMigrate < vin

15 pm.VmList.remove(vm)

16 if (pm 1s not overloaded) // after removing v from pm. VinList
17 break;

18 end if

19 end foreach

20 end foreach

21 destPMList « PmList.Remove (overUtilizedPMList)

for all PMs (when some VMs are assigned to) the sliding window length is
calculated and GA is executed based on Eq. 3 fitness

22 migrationMap « SlaAwareGaVmPlacement(vins ToMigrate. destPMList)
All the PMs that are not overloaded and their residing VMs

(according to migrationMap) are given to the Placement algorithm

23 underloadMigMap «getMigMapFromUnderUtilizedPMs(migrationMap,
destPMList)

24 migrationMap.addAll(underloadMigMap):

25 return migrationMap

end Function

Fig. 7. The proposed consolidation algorithm
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B. Stochastic process-based GA for VM
Consolidation

SLA-aware GA for VM Placement: The problem
of VM placement on servers have always been a
challenge for Cloud data centers. The basic idea of
different policies is based on mapping the VM
placement problem to bin packing problem with the
goal of reducing the number of active servers to reduce
energy consumption.

Here, a new GA-based VM placement algorithm is
proposed which is SLA aware. As stated before, the
workloads are considered as non-stationary stochastic
processes, so the GA placement is enabled to care about
SLAs. The optimization problem is considered as the
placement of n VMs on minimum number of hosts
while keeping the overload probability below a safety
threshold. The optimization problem can be
summarized as follows,

Minimize number of hosts 4)

where:

considering current stationary utilization
obtained from Fig. 6 algorithm
Do < thy,

m
Yh=1 vje(l,..n

h=1

Where h;=1 if the VM j is allocated to the host h,
D, is the overload probability of the host considering its
last | utilization observations which is obtained using
the algorithm shown in Fig. 6, and th; is the safety
threshold determines the importance of SLAs.
Choosing smaller values for thy, reduces future SLA
violation probability on a host. Note that, lower SLA
violation increases the potential of higher energy
consumption in the data center. However, considering
SLA violation probability before the placements has
benefits that cannot be omitted: It reduces total SLA
violation in the system by having fewer overloading
hosts and also fewer migration due to overload (which
also imposes SLA violation). In other words, as shown
in Experiments section, the simultaneous optimization
of energy consumption and SLA violation which is
evaluated by ESV metric (discussed in section V)
significantly improves by employing the proposed idea
in the GA-based placement algorithm. To encode the
problem, each VM is considered as a gene, and thus a
chromosome consists of n (number of VMSs) gens. The
value of a gene is a number between 1 and m (humber
of PMs), which determines the PM that will host the
corresponding VM. Simple mutation and crossover
(uniform) functions are used similar to the ones
described in [35, 36].

Our GA-based VM placement has various
advantages: by considering the utilization of after
placement, and then by employing Fig. 6 algorithm, the
proposed placement algorithm uses the best length of
historical data for estimating utilization distribution
parameters. More importantly, the proposed algorithm
does not let VM placements which lead to overload
probability over the predefined safety threshold thy,
which is also calculated based on the current utilization
process. As a result, the proposed method avoids
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decision making based on momentary conditions by
considering workloads as stochastic processes, thus it
reduces both energy consumption and SLA violations
simultaneously. In summary, the use of our placement
algorithm leads to:

i) Less energy consumption by selecting minimum set
of active hosts

ii) Accurate overload probability estimations due to
using adaptive approach for workload data modeling,
and thus good SLA establishment.

Overload and Underload Host Detection: In this
paper, according to the utilization process of a host,
whenever the probability of overload becomes greater
than a predefined threshold (th,), we consider the host
as overloaded. A local regression method is also used
for short term utilization prediction.

For underload detection, all the hosts that are not
considered as overloaded are given to the placement
algorithm to see if the PMs can be considered as
underloaded. Since our VM placement algorithm is
SLA-aware, the advantages of our approach is that it
does not decide based on instantaneous resource
consumption, which prevents short-term shutdowns.
Fig. 7 shows the algorithm of the proposed
consolidation process.

IV. EXPERIMENTS

A.Experiments Setup

For the sake of the repeatability of the experiments
CloudSim Toolkit [40] is used. The simulated data
center includes 800 heterogeneous servers with two
types of physical machines: 400 HP ProLiant ML110
G5 (2 cores x 2660 Mhz), 400 HP ProLiant ML110 G4
(2 cores x 1860 Mhz). Real workload data of the
CoMon project [38] (i.e. PlanetLab workload data) is
considered in the experiments. We randomly selected
450 VMs from the dataset. GA parameters are set like
the ones presented in [36], th, = 0.05,th, = 0.05,
and the significance level of the t-test is set to 0.

B. Performance Metrics

The main metrics considered for evaluating the
efficiency of the proposed algorithms are defined
briefly as follows.
OTF: If the demand of the CPU on a host exceeds its
capacity, the SLA is violated. Overload Time Fraction
(OTF) is used to calculate the SLA violation due to
resource shortage on PMs, which is
__1 yIPM|To;
OTF = Wzi=1 = (5)

Where |[PM]| is the PM counts and T, is the total
overload time. T, is the total time that PM; has been
active.

PDM: Performance degradation by VMs due to
Migration (PDM) which is calculated as follows.

_ 1 lvm| Cej
PDM_WMlzj=1 2, (6)


http://dx.doi.org/10.52547/itrc.14.2.14
http://ijict.itrc.ac.ir/article-1-519-en.html

) uictr

[ Downloaded from ijict.itrc.ac.ir on 2025-11-17 ]

[ DOI: 10.52547/itrc.14.2.14 ]

Where |[VM| is the total VM count; Cd]. is the
performance degradation of V' M; caused by migration.
CT]. is the total CPU capacity in MIPS requested by V M;

during its lifetime the average reduction in performance
(Cd].) is assumed to be equal to 10% of CPU utilization

during all migrations of VM; [8, 11, 15].

SLAV: SLA Violation (SLAV) is a multi-parameter
metric which considers both the OTF and PDM
metrics, which previously defined in section IlI.

SLAV = OTF X PDM  (7)

ESV: this metric is used for simultaneous evaluation of
the optimization of energy and QoS.

ESV = Energy x SLAV ~ (8)

C. Comparing with benchmark approaches

Here, we discuss the performance evaluation of our
proposed system in comparison with benchmark
approaches. The benchmark algorithms include the
Heuristic-based Dynamic  Server  Consolidation
(HDSC) approach proposed in [8], Energy and SLA
efficient VM Consolidation (ESVMC) approach
proposed in [27], Simple GA based VM placement
(SGAVMP) algorithm proposed in [36], and
Stochastic-based Dynamic Server Consolidation
(SBDSC) approach proposed in [15]. HDSC, and
ESVMC, SGAVMP are considered with a Local
Regression (LR) method for overload host detection
and SBDSC uses a stochastic process-based solution for
overload host detection which is similar to the one
described in this paper, but it works with static sliding
window. All of the benchmark solutions use MMT
policy as their VM selection algorithm and differ in VM
placement and underload detection algorithms. HDSC
is implemented in the CloudSim simulator by default.
We implemented the algorithms of the other approaches
in CloudSim and the input data are all considered the
same, as mentioned in Section IV part A.

The results show that the usage of the dynamic
approach for determining the length of the historical
data for estimations has reduced the OTF values (Fig.
8), and its combination with our VM placement
algorithm has led to a decreased number of migrations
due to overload (Fig. 9) and a lower SLA violation in
terms of the SLAV metric (Fig. 10). The main reason is
that out proposed system has more accuracy in
predicting overloaded hosts, and thus both OTF and
SLAV reduces; another reason to the lower SLA
violation is that our approach indirectly prevents
unnecessary underload detections. The main reason that
the number of migrations reduces is that our placement
algorithm does not decide based on momentary
information, in contrary to HDSC, ESVMC and
SGAVMP.
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Fig. 8. OTF (%) values for different server consolidation

policies.
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Fig. 9. Number of migrations due to overload for different

server consolidation policies.

On the other hand, it can be seen in Fig. 11 that the
proposed VM placement which is power-efficient and
SLA-aware has led to low energy consumption in
compression with its heuristic counterparts, which is
about 9% lower than the ESVMC approach, but this
method consumes more energy than the simple GA-
based VM placement method because the SGAVMP is
not SLA aware and it violates the SLAs more than other
approaches (7.1% more overload time fraction than our
approach). These indicates that the efficiency of our
method is acceptable in terms of energy consumption.
Finally, the proposed consolidation approach in this
paper outperforms all the benchmark algorithms in
reducing the total cost in the system, which is
represented by the ESV metric as shown in Fig. 12.
Results show that ESV value has improved about 45%
when compared with the best of the benchmark
approaches, i.e., SBDSC.
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v
0.002
- I I |

ESVMC SGAVMP SBGAVMC

Fig. 10.  SLAV (%) values for different server consolidation
policies.
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Fig. 11.  Energy consumption of different server consolidation
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Fig. 12.  ESV values for different server consolidation policies

V. CONCLUTION AND FUTURE WORKKS

In this paper, we presented a non-stationary
workload adaptive server consolidation approach
which is energy efficient and also has a high QoS. In
this regard, we introduced an approach for modeling the
utilizations of VMs and PMs based on the dynamic
variations happens in utilization processes during time.
In addition, a new VM placement algorithm was
proposed which succeed in reducing the total energy
consumption in the system while avoiding future SLAs
violations. Our proposed VM placement approach
outperforms its meta-heuristic counterparts, since
unlike the previous works that usually make decisions
based on the current workload or the predicted behavior
of workloads, in this paper, we consider the workloads
as stochastic processes, which enables the system to be
SLA-aware (i.e., fewer overload condition happens)
and avoid unnecessary underload detections (i.e., lower
SLA violation due to migration).

The performance of our proposed algorithms were
evaluated by the means of CloudSim simulation ToolKkit
and real workload data. The performance of the
consolidation process has greatly improved when
compared with  benchmark approaches. The
performance of the system has improved in SLA
violations, ESV, and number of migrations due to
overload. For future work, we want to further improve
the proposed system by finding solutions for more
energy efficient VM placement while keeping SLA
violations as low as possible.
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