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Abstract—Almost every industry has revolutionized with Artificial Intelligence. The telecommunication industry is one
of them to improve customers' Quality of Services and Quality of Experience by enhancing networking infrastructure
capabilities which could lead to much higher rates even in 5G Networks. To this end, network traffic classification
methods for identifying and classifying user behavior have been used. Traditional analysis with Statistical-Based, Port-
Based, Payload-Based, and Flow-Based methods was the key for these systems before the 4th industrial revolution. Al
combination with such methods leads to higher accuracy and better performance. In the last few decades, numerous
studies have been conducted on Machine Learning and Deep Learning, but there are still some doubts about using DL
over ML or vice versa. This paper endeavors to investigate challenges in ML/DL use-cases by exploring more than 140
identical researches. We then analyze the results and visualize a practical way of classifying internet traffic for popular
applications.
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Several approaches were used to improve customer
I. INTRODUCTION service delivery. Upgrade system infrastructures in
One of the challenges in telecommunication  high-population areas, identify ~communication
systems has always been optimizing data transmission protocols, and exchange traffic to transfer information
systems. In today's world, where a massive amount of ~ through specific infrastructures in different regions
information is transferred via the internet, some vital ~ based on priority, necessity, and security. In this survey,
and sensitive information necessitates real-time ~ We attempt to examine the traffic of viral applications,
communication, while others necessitate larger ~ Which can include messengers, games, and social
bandwidth and high reliability. This category is  media, which are following the users' appetites.
prevalent even in cellular networks, where achievement  Accordingly, network traffic is adjusted so that the user
is possible through something known as QoS. Tracking ~ obtains the highest satisfaction by using those
the evolution of cellular networks from 1G to 5G and ~ applications by providing the appropriate infrastructure
even 6G reveals that they all have the same goal, and facilities.
that is to provide users with the best quality of services.

- Corresponding Author

International Journal of Information & Communication Technology Research


http://dx.doi.org/10.52547/itrc.14.2.1
http://ijict.itrc.ac.ir/article-1-521-en.html

o
Y
—
N
T
a
S
«
c
S}
=
g
=
=
B
IS
S
=
=
B
S
o
E
3
o

[ DOI: 10.52547/itrc.14.2.1]

IJICTR

To this end, by comprehensively studying more
than 140 authoritative articles and journals, we tried to
find ways to solve these challenges. Among these,
traditional methods were also examined. There were
four approaches to traditional identification methods,
but none of them works in today's world, lonely. These
approaches include 1- Statistical methods which use
packet length, average packet time, and other
parameters to determine traffic type. This method is
both costly and prone to errors due to the use of human
labor. 2- Port-based methods are ineffective today due
to the use of dynamic ports, changing and updating port
numbers, and the use of tunnels. 3- Payload-based
methods are also ineffective due to frequent updates,
high costs, and encrypted data for information transfer.
4- Flow-based methods that employ a large number of
packets in a timely manner. To solve the problems
resulting from the high probability of error in each of
these approaches, a combination of the above-
mentioned methods with artificial intelligence is a
useful solution for increasing accuracy, lowering costs,
and improving user satisfaction. Machine learning and
deep learning are examples of artificial intelligence.
Features are extracted manually or using third-party
software in a machine learning algorithm. In contrast,
in Deep learning methods, the features in the data are
automatically extracted inside the network’s model, and
the network itself is responsible for extracting and
selecting the appropriate features. It should be noted
that deep learning is a subset of machine learning and
artificial intelligence, but in this article, we have treated
them as separate categories due to the stated
characteristics. In some cases, these new methods
combine all four approaches or selected features under
the subsections of each method combined with artificial
intelligence; the features in the datasets include a
combination of statistical features, port, IP features, or
features in packets or flow traffics. [1] demonstrated
that ISPs could use bandwidth and event duration as a
feature to make resource allocation, routing, and QoS
policies. However, when these features are combined
with Al techniques, they can improve QoS
performance. The key is Al structures and methods,
which we will elaborate on later. This paper focuses on
Network Traffic Analysis research, surveying Al-based
methods in recent years, detailing their observations,
and comparing their applications. Furthermore, this
paper describes the limitations of ML/DL methods and
briefly introduces future trends. The remainder of this
paper is as follows: Section Il introduces some Al-
based network traffic Analysis methods, as well as
classes and datasets; Section Il will reveal different
papers and the frequency of each ML/DL method;
Section IV will be about Model Evaluations; Section
will show a general pipeline for training Al-based
network traffic classification models. Conclusions are
drawn in section VI.

Il.  NETWORK TRAFFIC ANALYSIS METHODS

To solve traffic classification problems, machine
learning algorithms and deep learning models have
been widely used. However, the structure and
architecture of these models differ greatly, and training
such models necessitates a large amount of labeled data
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(dataset). In the process of creating a dataset, data
tagging (labeling) is frequently a laborious and time-
consuming task. The type and number of output classes
are also important for data collection and network
training. In some cases, the granularity of a specific
application, such as WhatsApp, must be checked,
which can include Voice calls, Video calls, Chat, File
Sharing, and Voices, among others. In many cases,
simply checking the application type, such as Map, is
sufficient. Relevant solutions and outcomes will be
discussed in this section.

A. Atrtificial Intelligence

As opposed to traditional methods, Al-based
methods are used to automate the process of traffic
classification and have demonstrated undeniable
performance in Bigdata and high-speed connections.
Traditional classification methods were primarily used
for a specific application that could not be generalized,
but using Al allowed for greater accuracy than
superhumans. Al-based architectures benefit from
model iterations for different batches of data rather than
hand-crafted features extracted by humans' knowledge
and expertise, which typically contain far more errors.
Whereas traditional software is  purposefully
programmed line by line to perform a task, an Al-based
algorithm is programmed to learn how to perform the
task. The convergent analysis is one of the most
significant advances in modern science, utilizing
heterogeneous technologies from multiple and
independent domains/sources to analyze and classify
large amounts of data. Compared to traditional
classification methods, Al is the key enabler and makes
it a truly distinguishable feature. Furthermore, due to
recent privacy concerns and the massive growth of
connected devices, we can no longer process and
classify traffic using traditional methods with the
assistance of humans, and thus the best way to solve this
problem is to use robots or artificial intelligence
techniques for this field. One of the most substantial
steps in traffic classification/identification is to use the
appropriate artificial intelligence model. To solve a
traffic Classification problem, we generally have two
choices: one is to use machine learning methods, and
the other is to use deep learning methods. As mentioned
above, Deep learning is considered a subset of Machine
learning. So based on that, Machine learning
approaches are divided into four categories: supervised
learning, unsupervised learning, semi-supervised
learning, and reinforcement learning. With the studies
conducted, reinforcement learning includes a very
small  proportion of research and practical
implementation in this subject. Since we do not deal
with continuous data for traffic analysis, among the
subsets of Supervised Learning methods, which are
Regression and Classification, we only explore
classification methods. In [2], which is a supervised
machine learning method, they firstly filter the Ip
address and Protocol type of the game traffic to reduce
background noise as much as possible. Then, to remove
irrelevant and redundant features, the Pearson
correlation coefficient and information gain ratio are
used as feature selection criteria. They then analyze the
traffic using the SVM algorithm. The main purpose of
[3] was to introduce new traffic features to identify
applications. They have Proposed a set of statistical
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characteristics of traffic flow such as the number of
packets in each flow, the size and time of each flow, the
type of distribution in the burst, and the ideal time
between different bursts, ... that can be used for C5.0
decision tree method to achieve higher accuracy in
classifying web-based software traffic. As mentioned,
DPIt is a real-time separation (filtering) method that
uses packet payload to further analyze traffic alongside
packet header, and it is a network traffic analysis
technology. DFI? is the latest packet filtering technique
that uses flow statistical features such as TBF® and
RCF*and DF® and APBFS, etc., to detect traffic types.
it is worth noting that their work would cause a
microsecond delay between exact service execution and
packet capture time, which is not significant but should
be considered. To the best of our knowledge, defining a
value such as €, epsilon, which is an arbitrary small
sub_second value for compensating the delay, would be
helpful to increase the overall accuracy, whereas the
statistical features would be compromised without the
delay compensation!

According to [4,] P2P applications such as Facebook,
WhatsApp, BitTorrent, and others generate 60-80
percent of traffic. They compared the performance of
three machine learning algorithms: decision trees,
SVM, and Bayesian networks with DPI and DFI. Some
articles have also conducted thorough research on
encrypted data. Many applications combine symmetric
and asymmetric cryptography. Secure Socket Layer
(SSL) and Transfer Layer Security (TLS), two
encryption protocols designed to provide secure
communications over the Internet, are common
examples of such dual systems. SSL protocols are now
deemed insecure and will be phased out. TLS protocols,
on the other hand, are secure and widely used by major
browsers. While their work contains a wealth of useful
information, it contains some flaws, such as the effect
of DPI classification over DFI classification. They did
not take into account this effect in their work, and as a
result, some accuracy degradation happened.

Authors in [5] believe that different encrypted software
leaves distinct Footprints. So, they used a sequence of
randomly selected bits by the application as a feature.
They proved that when randomly generated data is
encrypted in different ways, these obtained features can
be used for training machine learning models to achieve
acceptable accuracy in classifying the network traffic.
Decision tree methods, Gaussian Naive Bayes, SVM,
and Adaboost, have been used for this purpose. A
mobile device with an Asus RT-3200AC as a wireless
router was required to perform such a test. It was
claimed that by using specific bit sequences for each
software and the aforementioned machine learning
methods, achieving an average accuracy of about 95
percent was easily accessible. An important note about
potential software updates or new network changes that
may arise for any application is mentioned in [6]. They
examined the impact of packet length changes that may
occur primarily to improve a program or security issues.
Various supervised machine learning algorithms were
used to investigate this issue. The Random Forest,

! Deep Packet Inspection
2 Deep Flow Inspection
3 Total Byte of Flow

International Journal of Information & Communication Technology Research

victTr (EN

Bagged Trees, and XGBoost algorithms achieved 90%
accuracy on the original data. Increasing the length of
packets (padding) reduces the accuracy of SGD and
SVM algorithms but does not affect Bayesian-based
network algorithms. Recall reduction is more affected
by packet length change in the random forest than in
Google Chrome, Google Drive, One Drive, OneNote,
Spotify, and WhatsApp. Despite using one of the best-
boosting algorithms to classify the traffic, they did not
consider the newly generated fake data for
watermarking or concealing information inside other
apps' data using Autoencoders or GANSs. As a result, in
the case of Steganography, this method would be
inaccurate. We believe that boosting the model with
synthetic data requires combining their techniques with
some more advanced techniques.

Two methods were explored in [7], one related to
MLP, and the other was LSTM. Instead of Softmax for
the last layer, which is commonly used, they defined a
threshold to determine the classes. If the class
probability falls below that threshold, the traffic is
recognized as a VPN; if it goes above that threshold, the
traffic is classified as a normal flow. This technique,
known as "the distance from the class center," has the
potential to improve model accuracy. A hybrid method
for network router traffic classification is introduced in
[9]. It uses a combination of flow-based methods with
XGhboost algorithms to train a model and then use it as
a classifier. The method begins by sampling the original
data, then classifying it using packet-based methods.
The categorization process is then aided by flow-based
and deep packet inspection methods. If the traffic does
not fit within the available information and classes, the
RULES will be updated to achieve the best results.
Incoming traffic goes through the router for routing
policy based on Class Aware or RULES. In addition,
Flow-Based and DPI-Based classifiers are given a
mirror of incoming traffic to label Packets/Flows based
on their characteristics. Gradient boosted tree models
such as XGBoost and LightGBM were used to design
and implement an updated packet-based routing policy
for the router to improve Class Aware classification on
time, which is a must.

[11] studies Unsupervised Learning methods. As
you may know, unsupervised methods are used only for
clustering. They discussed definitions and issues related
to the scope of traffic analysis in the first part and
techniques for unsupervised learning methods such as
data clustering, hidden variable models, and
dimensional reduction in the second part. Finally,
unsupervised learning applications were indexed in
cases such as Internet Traffic Classification,
Anomaly/Intrusion Detection, Network
Operations/optimization & Analysis, Dimensionality
Reduction & Visualization. Three different algorithms
in [12], including K-Means, Fuzzy C Means, and
Expectation Maximization, were considered as part of
the proposed classification and network error detection
solution. The methods attempted to improve the quality
of guaranteed services by automatically preventing
errors or detecting error points. Due to the increasing

4 Packet Count of Flow
® Duration of each Flow
¢ Average Packet Byte of Flow
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growth of applications, especially messengers and
SuperApp 7, Various communication services and
protocols had used within an application. this is only for
Android traffic, but one of the concerns about this
method is that it requires knowledge of a user's PII
(Hardcoded identifiers) to work on, which has some
privacy implications that should be taken seriously.

In [13], a study of performance and detection of
granularity using the MIMD techniques, a set selector
for the optimal feature selection was conducted. This is
helpful and differentiable to feature selection. Using
RCC, a type of K-Means could achieve in-app traffic
clustering. They evaluated this on WeChat, WhatsApp,
and Facebook and gained considerable accuracy.

[14] Is a Semi-supervised Learning approach.
They come up with new ideas for classifying
applications such as YouTube, Netflix, BitTorrent,
Skype, DropBox, GDrive, 8 ball Pools, Treasure
Hunter, Outlook, and more. They used 17-Tuple
Bidirectional NetFlow Records to categorize network
traffic. To accomplish this, the traffic was clustered
using K-mean, and the classification was obtained
using the Cb5.0 decision tree algorithm. Video
Streaming, Video Chat/Voice, p2p Torrent, Cloud
Storage, Online Gaming, and Email Clients are
examples of clusters.

Deep Learning has emerged as one of the most
effective methods for overcoming challenges in a
variety of domains in recent years. If a large amount of
data is available and also powerful processors are
accessible, acceptable accuracy can be achieved
through these models. An innovative method for traffic
analysis was presented in [16]. According to the
authors, Deep Packet is the first deep learning-based
traffic classification system that could identify the
application and traffic using CNNs® and SAE®. Five
fully connected layers of 50 to 400 neurons were used
in the SAE structure. The system described in this study
first receives incoming PCAP files before performing
preprocessing operations such as removing the data link
layer, modifying the transport layer header, deleting
irrelevant packets, truncating, normalizing, and IP
masking. The output is then fed into CNN and SAE, and
the expected output is displayed in the form of a specific
label. It is also worth noting that they compared the
results of their work with four different machine
learning methods t demonstrate the promising results of
deep learning models. [17] perused data collection
methods and identified about 140 widely used
applications using CNN, SAE, and LSTM networks.
They also studied the accuracy of convolutional neural
network models by increasing the number of input
payload bytes, which is much higher by using the initial
300 bytes of the subsequent payloads compared to
using a smaller number of payloads. They also used the
Tanh activation function for SAE with the ReLU
activation function for CNN & LSTM, and Adam
optimization is used in all of these models. In [18],
NTMA Techniques associated with network traffic
analysis and monitoring were scrutinized. It delves into
four broad categories of deep learning traffic
classification, traffic prediction, fault management, and

" That allows a user to access several services from a single app.
8 Convolutional Neural Networks

Volume 14- Number 2 — 2022 (1 -13)

network security. They looked at two common types of
NTMA techniques for obtaining network information:
1- Active methods, such as traffic probe generation and
injection within the network, to learn and understand
how it works. The sampling is mostly done on a regular
and scheduled basis. 2- Passive methods, which use
logs and post-events to improve monitoring capability,
error tolerance, and problem elimination, but can result
in computationally expensive network traffic analysis.
They also mentioned some issues with DPI-based
traffic analysis methods that could jeopardize user data.
Full-packet processing requires more processing
capabilities than traditional methods, and they are
unusable in some types of networks, such as Virtual
Private Networks(VPNs). To this end, they switched to
Flow-based strategies with nearly identical temporal
and statistical characteristics for each App/Service and
their capability to manage encrypted/normal traffic.

[15] is an online traffic classification system for
network flow identification that combines CNN and
DPIs to detect network traffics such as RDP,
BitTorrent, SSH, eDonkey, etc. They claimed that by
receiving 10 packets of each traffic stream, classes of
these protocols could be identified. The idea of using a
system that can extract the pattern in the packets and the
patterns in the data flows using LSTM was suggested in
[19]. They identified 80 applications using a laboratory
dataset collected by popular tools like Wireshark and
tcpdump. They only considered the payload and
statistical features of the first few packets of a flow, but
as previously discussed, in the case of encrypted traffic
that conceals the payload, their work will not accurately
classify the traffic.

Software-Defined Networks are now considered an
alternative to traditional networks. Among the reviewed
articles on traffic analysis for software defined-based
networks, [22] addressed traffic classification using the
Mininet controller and OpenVSwitch. Various machine
learning methods such as decision trees, support vector
machines, simple Bayesian, and deep learning methods
such as AE, NN, and RNN were used to overcome some
of the challenges. Federated Learning was used in [23],
which is a new framework based on decentralized
datasets that allow collaborative model training. This
learning approach enables the use of deep learning
algorithms in resource-constrained appliances as the
training data is distributed among all participants use a
shared model. As a result, even with limited memory
and computational resources, the entire system can
achieve promising results, but none of them could
happen if they acted friendlessly. For this type of
dataset, a new GAN-based method was used. As a
result, we have a set of local servers that communicate
with FOG servers, and these FOGs communicate with
a central coordinator. Each of these local servers
receives the data, categorizes it, and then passes it to the
FOGs. There are now two options. The first possibility
is that these FOGs act as discriminators while the
coordinator acts as a generator. In this case, the
generator generates data, and FOG attempts to
distinguish between real and fake data. If the generated
data looks genuinely like the true data, the discriminator

° Stacked Auto Encoders
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is fooled, and the data is considered real. In the second
possibility, generation and discrimination are done
within both the FOGs and Coordinators. This
decentralized method reduces security concerns, and
the new data can be generated with a small dataset, so a
large amount of labeled traffic is not required.

The Internet of Things (1oT), which is expected to
support approximately 21 billion devices in the
upcoming years, is the communication structure of
devices that send and receive data. [25] introduces a
new method for converting traffic flow data into video
and categorizing and managing traffic flow based on
the analysis of this video for loT traffic data. The
combination of CNN and LSTM was used to extract
spatial and temporal information from the stream and
then convert this information into a video so that they
could apply Time Distributed Feature Learning with
MLP to achieve 95% accuracy. They discovered that
the combination of TD and MLP aids in understanding
semi-temporal properties which could not be detected
by LSTM. They compared the CNN + LSTM + TD +
MLP structure to the CNN + LSTM + MLP structure,
which is an obvious trade-off between 41 times the
parameters (about 115 thousand) for a 10% increase in
accuracy. It should be noted that the cost was doubling
the training time. In [26], the performance of Al-based
systems, including the ML and DL methods for
classifying encrypted traffic has been examined while
Adversarial Evasion  Attacks are conducted.
Adversarial Evasion attacks are a method in which
noise is added to the original data in such a way that it
misdiagnoses the decision boundary between normal
data and manipulated data which makes traffic
classification difficult. In this method, traffic generation
and evaluation were performed using Zeroth Order
Optimization (ZOO), Projected Gradient Descent
(PGD), and DeepFool to investigate the classification
performance of various algorithms for encrypted traffic.
The performance had measured with and without
attack, and it has shown that DL models performed
better than ML in non-attack environments. In attack
time, depending on the type of attack, the superiority of
DL over ML models could be different. In [31], the
problems of conventional Al methods for analyzing
network traffic classification were addressed, and an
optimal model called iCarl + was introduced. The
iCarl+ algorithm was inspired by the iCarl algorithm,
which is widely used in machine vision tasks for
continuous learning. To add a new class or category of
traffic using traditional methods, two steps must be
taken: 1- Create new training data or improve and
expand on existing data 2- Create a new network model
from scratch using new data. However, incremental
(continuous) learning methods were proposed,
eliminating the need for retraining from scratch, saving
time and money, and improving performance. A
network that benefits from continuous or incremental
learning is always looking for new ways to update the
models' weights to adapt to new information needed for
the best classification performance. In this case,
combining the knowledge gained from previous
information and available classes with the addition of
new classes can result in much higher accuracy. Then
they worked to resolve iCarl's ambiguities and improve
the network. NMC was replaced with SoftMax, and the
output layer was dynamically expanded instead of a
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fixed predefined output layer size, allowing it to be
compatible with new classes while improving
performance without affecting error. The model
consists of 1D-CNN with about 200,000 parameters.

B. Datasets and tools

As you may know, data plays a very essential and
critical role in the accuracy and performance of
artificial intelligence methods. Deep learning
algorithms are data-hungry, which means that the more
data they hit, the better their performance and accuracy
will be. In the network traffic analysis field, due to the
possibility of misusing data for specific purposes, the
number of articles that provide up-to-date and valid data
to the public for free is practically low. For this reason,
the data used in this field are mainly related to the
university environment (campus) or obsolete data. Of
course, as shown in TABLE. I, many dataset names are
no longer usable; only about 10-20 are publicly
available and valid to be used for today’s development.
Some of the most available prominent datasets can be
pointed out as follows: IP Network Traffic Flows
Labeled with 75 Apps [38], Moore [39], ISCX [40],
ANSM [41], ISCXVPN [52], Labeled Network Traffic
Flows-141 Applications [53], USTC-TFC[54], UNIBS:
Data sharing[59]. On the other hand, there are articles
about dataset collection and construction, including
[55], which provide tips on how to collect data for the
training and test dataset. It also explains how to place
the probes correctly. Are the training and test data
collected from the same networks (cellular networks,
home networks, or public networks)? Is the training and
testing data from the same layer (L7, L3, L2)? How was
the information gathered (online or offline)? A rich
dataset can be collected by observing and applying
these notes to achieve high-performance accuracy.

Another influential topic in dataset collection that
should be considered is tools. Wireshark and Netmate
were used for this purpose in [143]. NetFlow, SoftFlow,
and TCPdump are mostly open-source tools used by
[144], a system for detecting anomalies. By the way,
some commercial tools, such as PACE, Libprotoident,
and NBAR, ... that can be used in both the data
collection as well as classification phases, are studied in
[65]. It is also important to note in [19], which was
mentioned earlier, that if you want to generate a dataset,
you must pay attention to ambient traffic. According to
the authors, each application generates some ambient
traffic (obscure traffic) in addition to normal traffic.
Shared modules between applications, such as ad-
related traffic or a shared web API, can generate this
traffic. They also attempted to detect this type of traffic.
However, it should be noted that this type of traffic can
have a similar pattern while being delivered from
different apps. They also perused the effects of
categorizing traffic using adjacent flows. As a result,
they believe that examining ambiguous packets
generated by one application may not have a distinct
pattern from other applications; however, they were
able to achieve sufficient accuracy by leveraging
nearby traffic as well as the LSTM algorithm (the
LSTM uses time-series processing so that it can manage
few packets around the engaging packets).
Preprocessing can cause higher accuracy and better
performance in all Al-related studies. [60] examines
and categorizes Anomaly traffic class, and they believe
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in such a manner. They pointed out that preprocessing
methods have not received enough attention, and many
implementations have been done without paying much
attention to these methods, even though simple items
like raw data aggregation, Data Cleaning, Data
Transformation, Data Normalization, and under-
sampling can boost data quality and thus model
accuracy. They used Under Sampling to reduce the
unbalanced difference between data classes to increase
the number of Benign samples from approximately 13
million to roughly one million. The main focus of [61]
was on Deep Learning-based methods for studying
various issues in network traffic classification and
identification. However, they initially stated that the
complexity of the deep learning model and training
time would be increased due to the numerical
dispersion of training samples for each software,
operating system, device, and software version. They
also grouped deep learning classes into four broad
categories, including Single / Multiple Input Modalities
(SM / MM) and Single / Multiple Classification Task.

C. Classes

Numerous works in network traffic analysis have
been completed, ranging from intrusion detection to
identifying social media, games, and messengers. Each
of these includes several categories based on the dataset
and the researchers' intentions. For example, [29]
discusses the traffic classification of social networks
such as WhatsApp, WeChat, Facebook, and Weibo.
Alternatively, in [33], traffic is classified as HTTP,
BitTorrent DNS, SSL, etc. Convolutional neural
networks were used in [8] to classify Emails, file
transfers, chat, streaming, and VolP traffic. They
obtained promising results, but they were only
considered ideal for classifying the majority classes and
focused on improving the performance of the model
structure because their approaches lacked rebalancing
strategies and thus failed to classify minority classes.
The full results of these studies can be seen in TABLE
I. In [3], which was mentioned earlier, the output
classes include Facebook, Google, YouTube, Gmail,
Amazon, BBC News, and Bing, which are considered
from a very general perspective. Also, in [19], 80
applications from different contexts were categorized.
l.e., Social media's subcategories include traffic
detection on Instagram, WhatsApp, Telegram,
LinkedIn, Skype, Twitter, etc. Other contexts such as
Download, Store, Maps, News, and Music have also
been studied. The classes used in [60] related to IDS
include Benign, BruteForce, DDos, Web Attack, and
Infiltration, built using a model based on LightGBM.

IIl.  FINDINGS

After numerous and time-consuming studies, more
than 140 articles in which at least one artificial
intelligence method was used had studied, and the
results have shown in TABLE I.

The Table starts with the name of the article’s
author, the reference number, and the publication year.
The columns that follow are about Machine Learning
or Deep Learning methods, and the last two columns
are about Datasets and Classes. In ML algorithms, If the
exact header, such as Bayesian Networks, was used and
no details were provided, the green checkbox would be
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present as the possible article methods. If the exact
method of Baysian Networks was mentioned in their
articles, that is written in the Table. For example, [5]
compares their self-collected datasets using gaussian
bayesian networks with other ML methods. As
mentioned earlier, the majority of the articles collected
their datasets (written as Self-collected), while the
others used public datasets. The classes cover a wide
range of use-cases, such as encrypted traffic, VPNs,
social media, and various protocols such as FTP, TCP,
UDP, SCTP, and so on.

............

Figure 1. Most Frequently used AI/ML Techniques in reviewed
Network Traffic Classification papers

According to studies and investigations, the
frequency of methods is shown in Fig.1. As can be seen,
if we consider the left side of the figure as deep learning
models and the right side of the figure as machine
learning-based algorithms, it can be argued that for
machine learning methods, algorithms based on
Bayesian networks are at the forefront and they are the
most widely used machine learning algorithms for
traffic analysis. Also, convolutional neural networks or
a combination of convolutional networks with other
networks such as LSTM are known as the most widely
used type of implementation for models based on deep
learning.

IV. MODEL EVALUATION

After we've trained our model on a dataset, it's time
to see how accurately it can classify unknown data. The
"Confusion Matrix" concept will be conducted when
the accuracy of predicting a category is more important
than the accuracy of the overall diagnosis. Each data
point will eventually be assigned to one of these
Classes. Therefore, each data sample contains four
candidates:

e The data is a member of a Positive category and
predicted to be a member of the same Class (TP)

o The sample is a member of the Positive Class, but the
model predicts it as a Negative Class (FN)

e The sample is a member of a Negative class and
predicted to be a member of the same Class (TN)

¢ Finally, the sample is a member of the Negative
Class, but the model has predicted to Positive Class
(FP)
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Following the implementation of the classification
algorithm, according to the mentioned explanations and
definitions, the classifier's performance can be
examined using a table as shown Fig. 2.

+ Predicted -

+ TP FN .
" False Negatives
— True Positives
© Type Il error
rg FP
- TN
False Positives .
' True Negatives
Type | error

Figure 2. Confusion Matrix

The Confusion Matrix displays classification results
based on the currently available information. The

Confusion Matrix can be used to define various
evaluation criteria such as Accuracy, Precision, Recall,
Specificity, and Fl1-score. Accuracy is the most
common, fundamental, and straightforward criterion
for assessing prediction quality. This parameter
represents the number of patterns that were correctly
predicted and formulated as

Accuracy = (TP+TN) / (TP+FN+FP+TN) (1)

Precision or Positive Predictive Value expresses the
"ratio of correct replies in each category." it shows
what percentage of the data has truly categorized as
the Positive class and is formulated as follows:

Precision (PPV) = TP / (TP+FP) )
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Figure 3. General Perspective of Network Traffic Classification
system based on different Methodologies

V. GENERAL PERSPECTIVE

In the previous sections, disassembled information

about the classification of network traffic was

pointed out. Fig. 3 shows the general operational
structure of a system in which the traffic of connected
devices to the WAN network is first captured by
Wireshark or other network traffic tracking tools. The
traffic is then subjected to preprocessing operations
such as Datalink Header Removal, Transport Header
Modification, Irrelevant Packet Rejection, Byte
Conversion, Truncation, Normalization, and IP
Masking, among others. Machine learning algorithms
are then utilized to select and extract features using
statistical-based, packet-based, and flow-based
approaches (this step for DL is done automatically
within the model). Now it's time to pick an artificial
intelligence learning type. At this point, extracted
features can be used to train the network using
Supervised Learning, Unsupervised Learning, or Semi-
supervised Learning. Clustering is a subcategory of
Unsupervised Learning. Some of these clusters include
Games, Social Media, Messenger, and so on.
Furthermore, WhatsApp, Facebook, and Telegram,
among others, can be categorized as Supervised
Learning algorithms in network traffic classification.
After training the network, various evaluation criteria,
such as the Confusion Matrix, can be used to calculate
Accuracy, Recall, Precision, Specificity, etc. Other
criteria, such as the F1 Score, are also computable.
Following model evaluation, various techniques such as
dropout can be conducted to improve the final model's
result and performance. Nowadays, the majority of
internet  traffic  transmitted via satellites/lane
lines/cellular networks is encrypted to protect the user's
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privacy (encrypted payload contents) while providing
promising quality of service. The data rates, packet
sizes, and delays remain unchanged while the payload
is encrypted. As a result, we can use this information to
classify traffic without having to inspect the payload of
the packets. We also believe that using correlations
between neighbor flows could be an important feature
to extract to gain a few percent accuracies.

We discovered that many of the techniques
investigated paid little attention to the balance of the
dataset or the enrichment of its classes. The emphasis
was primarily on providing a new model with various
features. It is necessary to improve and enrich the
dataset regardless of whether you are using ML-based
models or DL techniques, especially when part of the
traffic can be generated by new or unconventional
methods such as DeepFool, where deep learning
techniques generate the traffic, and they are not real.
However, they look like real data to fool the model by
not accurately learning features from the ground truth.
The use of cloud computing for data processing and
analysis, as well as edge processing, has gained traction
and enabled low-cost training using a vast majority of
devices and testbeds with varying devices, operating
systems, topology, and protocols, and this is an open
challenge to have a better and more accurate classifier
even though heterogeneity and decentralized
processing and traffic transfers are two of the domain's
most difficult challenges.

VI. CONCLUSION AND FUTURE WORKS

A Comprehensive Comparison of Al techniques
was needed to determine which methods were
frequently used and which are the most suitable for
different datasets of varying sizes and features. To this
end, we investigated some of the limitations of DL and
ML-based algorithms used to classify internet traffic for
over 140 identical state-of-the-art Algorithms and
articles. The routing policies can be updated to make
the best/most effective use of resources by classifying
the internet traffic. Knowing the best method would
also enable us to apply it to the telco
infrastructure/industry to ensure that users receive
promising QOS and QOE. The traffic Classification
algorithm can also be used in 5G network slicing to
provide eMBB, MMTC, or URLLC slices to users and
loT devices.

We believe that Machine Learning algorithms are
far better than Deep Learning Methods for Datasets
with low sparsity in Classes and low volume of Data,
while deep learning methods are better for the high
volume of normalized data and a wide variety of classes
in the Network Traffic Classification Domain.
Considering network growth and rapid security/feature
updates for various applications (e.g., social media,
games, ...), the new continuous learning approaches
based on deep learning, which can learn through
inference time, are more efficient in all aspects. After
all, we analyzed different approaches to find the
best/most suitable workflow for using Al in network
traffic classification (Fig. 3).

Although there are some other novel approaches to
Internet traffic classification, artificial intelligence has
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gained tremendous popularity in the modern era.
Recent advances in Computer Vision / Deep Learning
research, such as Attention Networks or Capsule
networks, may draw attention to internet traffic
classification in the coming years.
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