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Abstract—Hyperspectral images have high spectral resolution. But, due to the tradeoff between spectral and spatial 

resolution and various hardware constraints, imaging a hyperspectral image with high spatial resolution is not practical. 

Hyperspectral super resolution is a soft approach to solve this challenge. Recently, deep learning based methods such 

as convolutional neural network (CNN) show great success in this field. But, the contextual details in object boundaries 

and anomalies present in the scene are not well addressed. To this end, a new CNN based framework is proposed for 

hyperspectral image super resolution in this work. To improve ability of the convolutional blocks in simultaneous 

extraction of spectral and spatial characteristics, the weighted Gabor features are concatenated in output of the defined 

convolutional blocks. To extract more details containing anomalous targets present in the scene, the anomaly scores of 

pixels are calculated and used for weighting the Gabor features. The experiments on three real hyperspectral images 

acquired by AVIRIS and ROSIS sensors show superior performance of the proposed framework compared to several 

state-of-the-art methods based on CNN and residual networks. In addition to common super resolution metrics such as 

SAM and ERGAS, the efficiency of different methods are evaluated according to the classification accuracy metrics 

such as overall accuracy and kappa coefficient. The overall classification accuracy is increased from 70.39 to 88.23 in 

Indian dataset, from 86.07 to 96.20 in Pavia University dataset, and from 95.82 to 99.12 in Pavia center dataset. 
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I. INTRODUCTION  

Hyperspectral images provide a rich source of spectral 

information needed for various applications such as 

scene classification, target detection and 

environmental monitoring [1]. But, due to imperfect 

imaging sensors, acquiring images with both high 

spectral and spatial resolutions is not possible. So, 

spatial resolution enhancement of hyperspectral 

images is a hot topic in remote sensing field [2].   

     Various hyperspectral super resolution techniques 

have been suggested to reconstruct a high resolution 

hyperspectral image from a low resolution one. 

Generally, there are two categories of super resolution 

methods. In the first category, it is tried that with fusing 

a hyperspectral image with a high spatial resolution 

image (panchromatic, RGB or multispectral), the 

spatial resolution of the hyperspectral image is 

increased [3]-[4]. Different fusion methods such as 

tensor factorization [5], sparse representation and 

dictionary learning [6], component substitution [7] and 

multi-resolution analysis approaches [8] belong to the 

first category. In the second category, there is no 

auxiliary image for hyperspectral super resolution. 

Different interpolation [9] and learning based 

approaches [10] belong to the second category. 

Recently, deep learning methods such as convolutional 

neural networks (CNNs) [11]-[12], due to their abilities 

in extraction of robust features invariant to local 

changes, and autoencoders [13] have shown great 

success for hyperspectral super resolution due to their 

abilities in extraction of robust features invariant to 

local changes.  

     A three layers CNN is suggested for hyperspectral 

super resolution in [14] where the network is followed 

by a triplet-pipline CNN for hyperspectral 

classification. Three coupled autoencoders are used for 

fusion of hyperspectral and multispectral images 

through unmixing them to their endmembers and 

abundances. In [15], the wavelet transformation is used 

to decompose the hyperspectral image into its 

frequency components. Then, the obtained 

components are fed to three branches of three 

dimensional CNNs. The observation matrix of 

hyperspectral image is represented by subnetworks and 

taken into account for an end-to-end optimization 

through a model guided convolutional network in [16].  

     Gabor filters with acquiring optimal localization 

characteristics in both frequency and spatial domains 

can be a good candidate for hyperspectral feature 

extraction resulting in contextual features containing 

details with spectral fidelity [17]-[18]. The use of 

Gabor filters beside the CNNs is suggested for 

hyperspectral image analysis in several works [19]-

[20]. 

     In this work, two improved Gabor based 

convolutional based networks are proposed for 

hyperspectral super resolution. In addition to texture 

and objet boundaries, there are some anomalies in a 

hyperspectral image. Detection of these anomalies is 

important to appropriately extract details for super 

resolution. To this end, the Gabor features are weighted 

with anomaly scores calculated from the local regions 

with assumption of multivariate normal distribution for 

the background image. Anomaly weighted Gabor 

based CNN (AGCNN) and anomaly weighted and 

edge based Gabor CNN (AEGCNN) are proposed 

according to this idea. The experiments on three real 

hyperspectral images show good performance of the 

proposed methods with respect to several competitors 

with a significant difference.  

 

II. THE ANOMALY WEIGHTED GABOR BASED CNN 

A. The Proposed network 

A convolution based neural network consisting of 

convolutional blocks and Gabor feature maps revised 

by anomaly scores is proposed for hyperspectral super 

resolution in this work.  

     Generally CNNs provide hierarchical 

representation of the given input by applying the 

convolutional learnable filters for local feature 

extraction. CNNs with two useful characteristics of 

shared weights and local connections are appropriate 

feature extractors for hyperspectral images. However, 

when a CNN is used for hyperspectral super resolution, 

it may be not efficient enough for extraction of image 

details. In addition, due to hyperparameters in a CNN 

and low number of labeled samples for training, the 

used CNN cannot have high depth.  

      To deal with these difficulties, injection of desired 

feature cubes to the output of convolutional layers is 

suggested. The blockdiagram of the proposed network 

is shown in Fig 1. Each ConvRD block consists of two 

convolutional layers, each one followed by the 

rectified linear unit (ReLu) and dropout layer with 

dropping probability of 0.2. The first convolutional 

layer contains 4 kernels and the second one contains 𝑑 

kernels where 𝑑 denotes the number of spectral bands, 

and all convolutional kernels are from size of 3×3. The 

last ConvRD block contains 16 and 32 filters, 

respectively in its first and second convolutional 

kernels, respectively. Low resolution hyperspectral 

image (LR HSI) patch is given as input and the high 

resolution (HR) HSI pixel is achieved in the output. 

The edge feature cube and the anomaly weighted 

Gabor feature cube extracted by the HR HSI are added 

and concatenated to the output of three first ConvRD 

blocks in the training process.  

      The ReLu layer is used as the nonlinear activation 

function, which is efficient for learning the nonlinear 

representation of the hyperspectral image and avoiding 

the vanishing gradient issue. The dropout layer with 

dropping probability of 𝑝 = 0.2 is also used to avoid 

the overfitting. The output of ConvRD block is 

obtained by: 

          𝐹𝑙 = Drop𝑝(ℛ(𝐹
𝑙−1 ∗ 𝑊𝑙 + 𝑏𝑙))               (1)                      

 

where 𝐹𝑙 is the output feature map in 𝑙th layer, 𝑊𝑙 and 

𝑏𝑙  are the learnable weights and bias parameters in 
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layer 𝑙 , ℛ  is the nonlinear ReLu activation function 

and Drop𝑝  is the droput function with dropping 

probability of 𝑝.  

      Two networks are proposed in this work. Anomaly 

weighted Gabor based CNN (AGCNN) and anomaly 

weighted and edge based Gabor CNN (AEGCNN). In 

AGCNN, the Gabor feature cubes weighted by 

anomaly scores are concatenated in output of the 

ConvRD blocks. In AEGCNN, before concatenating 

the anomaly weighted Gabor feature cube, the edge 

feature maps extracted by an edge detector such as 

‘Sobel’ are added to the ConvRD outputs. The edge 

detector is applied to each band of the hyperspectral 

image. The edge cube is added to the convolutional 

outputs to help the network to learn more object 

boundaries.  

B. Gabor features 

Gabor functions inspired from the visual context of 

human act as low level texture and oriented edge 

discriminators. The Gabor functions are sensitive to 

various scale information and different frequencies. 

Gabor filters achieve optimal resolution in both 

frequency and spatial domains. Spatial resolution as a 

measure of finesse or coarseness of an image 

determines the amount of details in the image. From 

the other hand, spectral resolution is ability of the 

imaging sensor for small differences detection in 

wavelength. Due to providing optimal resolution in 

both spectral and spatial dimensions, Gabor filters can 

be useful tools for feature extraction in hyperspectral 

super resolution applications.  

     The output of a Gabor filter is a complex value. 

While the amplitude contains information about 

directional frequency spectrum, the phase provides 

location of details and edges in the processed image. A 

Gabor filter is obtained by modulation of a sinusoidal 

function with a Gaussian overlap as follows [26]: 

𝐻(𝑥, 𝑦) = exp (−
𝑥́2+𝛾2𝑦́2

2𝜎2
) × exp (𝑗 (2𝜋

𝑥́

𝜆
+ 𝜓))  (2)                                              

where  

                    𝑥́ = 𝑥cos(𝜃) + 𝑦sin(𝜃)                       (3)                                                                         

                𝑦́ = −𝑥sin(𝜃) + 𝑦cos(𝜃)                        (4)                                                             

 

where 𝛾 denotes the spatial aspect ratio, 𝜎 determines 

the width of the Gaussian envelop, 𝜆 is the wavelength, 

𝜓 represents the phase offset and 𝜃 is the separation 

angle. To apply a Gabor filter bank with 𝑁𝑠 scales and 

𝑁𝑑  directions to a hyperspectral image, at first, the 

hyperspectral dimensionality is reduced by the 

principal component transform. The Gabor filter bank 

is applied to the 𝑚 first principal components. Then, 

the outputs are concatenated to form the Gabor feature 

cube. The magnitude of convolution of each Gabor 

filter 𝐻(𝑥, 𝑦) with each principal component 𝐼(𝑥, 𝑦) is 

considered as a Gabor feature map in the output: 

               𝐺(𝑥, 𝑦) = |𝐻(𝑥, 𝑦) ∗ 𝐼(𝑥, 𝑦)|                    (5) 

                                               

C. The Anomaly weighted Gabor 

     Although texture characteristics extracted by Gabor 

filters contain information about contextual details of 

the input image, but there are some anomalies in the 

hyperspectral images, which may be ignored in the 

Gabor filtering process. With inspiration from the 

Reed-Xiaoli (RX) detector [21], the probability value 

of anomaly for each pixel is calculated and used as a 

weight for Gabor features of the given pixel. Some 

pixels of the hyperspectral image having two 

characteristics are considered as anomalies: 1-pixels 

with different spectral signatures with respect to the 

background, and 2-pixels with low probability 

occurrence. Let assume that the hyperspectral 

background follows a multivariate Gaussian 

distribution. In this case, pixel 𝒙  belongs to the 

background with the following probability [21], [27]: 

                                                   

𝑝(𝒙 𝐵) =
1

√(2𝜋)𝑑|𝑪|
exp [−

1

2
(𝒙 − 𝝁)𝑇𝑪−1(𝒙 − 𝝁)]⁄   (6)                                             

 

where 𝑑 is the number of hyperspectral bands, 𝝁 and 𝑪 

are the mean vector and covariance of the background 

image. An anomalous pixel is significantly far from the 

background. So, if 𝒙  is an anomaly,  
𝑝(𝒙 𝐵)⁄  will be very small and thus, (𝒙 − 𝝁)𝑇𝑪−1(𝒙 −
𝝁) has a large value for an anomaly. To score pixels of 

a hyperspectral image according to their anomaly 

probabilities, the following anomaly distance is 

defined [28]: 

  𝑑𝑖 = (𝒙𝑖 − 𝝁𝑤)
𝑇(𝑪𝑤 + 𝛿𝑰)−1(𝒙𝑖 − 𝝁𝑤)          (7)                                                          

 

where 𝒙𝑖 ∈ ℛ𝑑; 𝑖 = 1,2, … , 𝑁  is 𝑖 th pixel of the 

hyperspectral image, 𝑁 is the total number of pixels 

and, 𝝁𝑤  and 𝑪𝑤  are the mean vector and covariance 

matrix calculated in a local window with size of 𝐿 × 𝐿 

centered in 𝒙𝑖, 𝑰 denotes the identity matrix with 𝑑 × 𝑑 

dimensions and 𝛿 is the regularization parameter. To 

include the spatial information of neighborhood, the 

local mean and covariance statistics are used instead of 

the global ones. In addition, due to high dimensionality 

of the hyperspectral image and to deal with the 

singularity problem, the regularized covariance matrix, 

i.e., 𝑪𝑤 + 𝛿𝑰 is used instead of 𝑪𝑤 . 𝑑𝑖 = 𝑑(𝑝𝑖 , 𝑞𝑖) is 

the anomaly score of pixel 𝒙𝑖 with spatial coordinate 

of (𝑝𝑖 , 𝑞𝑖), which can be used as a weight for output of 

the Gabor filter as follows: 
           𝐺𝑤(𝑝𝑖 , 𝑞𝑖) = 𝑑(𝑝𝑖 , 𝑞𝑖) × 𝐺(𝑝𝑖 , 𝑞𝑖)            (8)   

where 𝐺(𝑝𝑖 , 𝑞𝑖) and 𝐺𝑤(𝑝𝑖 , 𝑞𝑖) are the Gabor feature 

and the weighted Gabor feature, respectively in the 

pixel position (𝑝𝑖 , 𝑞𝑖).  
 

III. EXPERIMENTS 

A. Datasets, competitors and parameter settings 

Three hyperspectral images are used for super 

resolution experiments. The first dataset is the Indian 

Pines collected by Airborne Visible-Infrared Imaging 

Spectrometer (AVIRIS) in 1992 over Northwestern 

Indiana. It has 145×145 pixels and 224 spectral bands 

in wavelength of 0.4 to 2.5 𝜇𝑚. After discarding water 

absorption channels, 200 spectral bands are selected. 

The spatial resolution of it is 20 m by pixel. The second 

and third hyperspectral images with 115 original 

spectral channels are acquired by the Reflective Optics 

System Imaging Spectrometer (ROSIS) with 1.3 m by 
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pixel. After discarding the noisy channels, 103 and 102 

bands are remained for Pavia University and Pavia 

center datasets, respectively.   

      The original Pavia University dataset has 610×340 

pixels and Pavia center has 1096×715 pixels. A sub 

image of Pavia University with size of 200× 130 

containing 7 land cover classes and a sub image of 

Pavia center with size of 202×152 containing 5 land 

cover classes are used for doing experiments. 50% data 

samples are used as training and the remained samples 

are used as testing set in each dataset. 50% of data is 

equal to 10513 samples in Indian, 13000 samples in 

Pavia University and 15352 samples in Pavia center 

dataset. 

      

 

Figure 1.  Fig. 1. Blockdiagram of the proposed AGCNN and AEGCNN networks. 

TABLE I.  THE SUPER RESOLUTION RESULTS FOR INDIAN DATASET. 

 

TABLE II.  THE SUPER RESOLUTION RESULTS FOR PAVIA UNIVERSITY DATASET. 

TABLE III.  TABLE 3. THE SUPER RESOLUTION RESULTS FOR PAVIA CENTER DATASET. 

 

For doing experiments, the original hyperspectral 

images are considered as HR images and the down 

sampled versions of them are considered as LR images. 

The downsampling is implemented by applying an 

antialiasing filter followed by downsampling along 

both the vertical and horizontal dimensions with the 

scaling factor of 2. The bicubic interpolation is used for 

resizing the image. A 11× 11 lowpass filter with 

Hamming window is used to avoid aliasing. 

So far, various versions of CNN and residual (RES) 

learning based networks have been proposed for 

hyperspectral image super resolution [22]-[25]. So, a 

specific version of CNN and RES are used as the 

competitors here. In addition to CNN and RES, 

different cases of the suggested framework called as 

edge based CNN (ECNN) and Gabor based CNN 

(GCNN) are also experimented to show impact of each 

part of the proposed framework. In this work, to have 

a fair comparison among the proposed method and the 

  MSSIM (1) PSNR (+∞) SAM (0) ERGAS (0) RMSE (0) UIQI (1) 

CNN 0.57 33.63 9.11 0.61 3.66 0.82 

RES 0.66 33.46 7.65 0.53 3.17 0.91 

ECNN 0.54 33.38 9.09 0.66 3.97 0.82 

GCNN 0.71 35.58 7.39 0.33 1.98 0.95 

EGCNN 0.69 35.36 7.44 0.35 2.10 0.94 

AGCNN 0.74 35.34 7.67 0.36 2.15 0.95 

AEGCNN 0.74 35.29 7.44 0.35 2.12 0.95 

  MSSIM (1) PSNR (+∞) SAM (0) ERGAS (0) RMSE (0) UIQI (1) 

CNN 0.46 7.34 6.38 3.65 58.87 0.55 

RES 0.77 13.02 5.24 1.59 24.93 0.92 

ECNN 0.44 7.28 6.35 3.76 60.57 0.53 

GCNN 0.51 8.10 6.17 3.27 51.99 0.60 

EGCNN 0.44 7.51 6.33 3.66 59.23 0.49 

AGCNN 0.80 13.62 5.11 1.47 23.15 0.91 

AEGCNN 0.81 13.78 5.04 1.37 21.89 0.93 

  MSSIM (1) PSNR (+∞) SAM (0) ERGAS (0) RMSE (0) UIQI (1) 

CNN 0.51 10.41 6.04 2.44 37.49 0.67 

RES 0.75 13.98 4.69 1.46 22.43 0.92 

ECNN 0.58 12.54 6.08 1.89 29.00 0.76 

GCNN 0.65 13.60 5.24 1.57 24.05 0.86 

EGCNN 0.64 13.17 5.74 1.66 24.92 0.83 

AGCNN 0.85 16.45 3.93 0.78 11.91 0.98 

AEGCNN 0.83 16.29 3.94 0.90 14.00 0.97 
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competitors, the same base structure for all deep 

learning methods are used for doing experiments. The 

proposed methods (AGCNN and AEGCNN) are 

compared with CNN, residual network (RES), ECNN, 

GCNN and EGCNN. To have a fair comparison 

between the networks, the same structure is used for all 

of them as shown in Fig. 1. In other words, the 

experimented CNN has the same structure of Fig. 1 

without any injected feature cubes through addition or 

concatenation layers; RES has the general structure 

shown in Fig. 1 where the original input patch is added 

to the output of each ConvRD block. In ECNN, the 

edge feature cube is added to the output of the ConvRD 

blocks; and in GCNN, the conventional Gabor feature 

are concatenated to the output of the ConvRD blocks. 

EGCNN uses both edge and conventional Gabor 

feature cubes.  

The input of all networks are the patch images with size 

of 5×5. In the anomaly weighted Gabor filters, 𝐿 = 7 

is used as size of the local window. The appropriate 

values of patch size and local window size can be 

obtained through doing experiments for each dataset. 

In this work, to avoid parameter settings for each 

dataset, the patch size of 5×5 and local window of 𝐿 =
7  are chosen for all hyperspectral images. According 

to done experiments, these parameters’ values are 

relatively appropriate for both AVIRIS dataset with 

spatial resolution of 20m by pixel and ROSIS datasets 

with a spatial resolution of 1.3m per pixel. These 

parameters are chosen as a tradeoff between accuracy 

and complexity. With selection of a small patch or 

local window, low spatial information are contributed 

in the super resolution process and with considering 

large patch or local window, redundant or non-related 

spatial information may be included in the decision 

process. In addition, larger window size leads to 

increasing the complexity burden. 

     𝛿 = 10−4 is used as the regularization parameter. 

𝑚 = 3  principal components of the hyperspectral 

images are used for Gabor feature extraction. The 

Adam optimizer is used for training of the networks 

with 20, 30 and 50 epochs for Indian, Pavia University 

and Pavia center datasets, respectively.  

 

B.  Performance assessment with super resolution 

metrics 

To assess quality of the generated high resolution 

images, the following quantity measures are used: 

mean structural similarity index (MSSIM), peak signal 

to noise ratio (PSNR), spectral angle mapper (SAM), 

Error relative dimensionless global error in synthesis 

(ERGAS), root mean square error (RMSE), and 

universal image quality index (UIQI). The obtained 

results for Indian, Pavia University and Pavia center 

datasets are reported in Tables 1-3, respectively where 

the ideal value of each measure is represented in the 

parentheses. A sample band of the reconstructed 

hyperspectral images are also shown in Figs. 2-4. The 

following conclusions can be found from the achieved 

results:  

1- In all datasets, CNN obtains the lowest 

performance in terms of all evaluation 

measures. It represents that the convolutional 

kernels are not lonely enough for extraction 

of the image details. 

2- Two proposed AGCNN and AEGCNN are two 

best methods with a significant difference 

compared to other methods. The Gabor features 

weighted by defined anomaly scores contain rich 

contextual information with highlighting 

anomalies in local regions, which are so efficient 

for hyperspectral super resolution. 

 

Figure 2.  Fig. 2. The super resolution images for Indian dataset.
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Figure 3.  Fig. 3. The super resolution images for Pavia University dataset. 

 

 

Figure 4.  The super resolution images for Pavia Center dataset. 
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Figure 5.  The training and testing time of super resolution methods. 

TABLE IV.  THE CLASSIFICATION RESULTS FOR INDIAN DATASET. 

TABLE V.  THE CLASSIFICATION RESULTS FOR PAVIA UNIVERSITY DATASET. 

TABLE VI.  THE CLASSIFICATION RESULTS FOR PAVIA CENTER DATASET. 

No. Name of class # samples Raw CNN RES ECNN GCNN EGCNN AGCNN AEGCNN 

1 Corn-no till 1434 66.32 61.09 78.73 55.02 81.59 81.73 89.19 84.73 

2 Corn-min till 834 72.06 49.04 79.26 40.29 81.89 86.21 90.05 86.57 

3 Grass/pasture 497 91.55 75.25 90.95 77.87 89.34 90.34 92.76 94.16 

4 Grass/trees 747 92.50 76.84 93.57 81.12 96.92 93.44 97.72 96.25 

5 Hay-windrowed 489 98.98 95.50 99.80 97.96 99.18 97.55 98.98 98.57 

6 Soybeans-no till 968 71.80 39.67 80.17 48.97 80.27 86.26 93.90 88.02 

7 Soybeans-min till 2468 47.29 51.13 70.54 40.11 70.91 74.43 82.98 80.43 

8 Soybeans-clean till 614 76.87 6.51 76.38 17.43 84.04 83.22 90.88 86.81 

9 Woods 1294 79.52 62.52 79.91 75.73 88.18 90.80 96.37 95.98 

10 
Bldg-Grass-Tree-

Drives 
380 

78.95 53.68 86.05 63.16 97.37 94.47 96.32 95.26 

Average Accuracy (%) 77.58 57.12 83.54 59.77 86.97 87.85 92.91 90.68 

Overall Accuracy (%) 70.39 55.52 79.96 55.40 82.88 84.65 90.83 88.23 

Kappa Coefficient 0.6638 0.4896 0.7699 0.4915 0.8037 0.8239 0.8944 0.8644 

Name of class # samples Raw CNN RES ECNN GCNN EGCNN AGCNN AEGCNN 

Asphalt 317 90.22 74.76 86.75 70.35 89.59 93.69 85.49 96.21 

Meadows 617 97.41 99.84 99.51 98.54 99.51 99.51 99.84 99.03 

Gravel 966. 78.57 88.61 89.96 74.74 91.41 88.51 97.72 95.96 

Trees 263 96.20 96.20 96.96 94.68 97.72 98.10 96.96 95.44 

Bitumen 424 96.46 89.62 94.58 88.44 97.17 94.34 94.81 97.64 

Self-Blocking Bricks 1641 78.61 48.39 80.62 51.13 89.21 89.34 92.26 94.33 

Shadows 293 100.00 99.66 100.00 100.00 100.00 99.32 100.00 100.00 

Average Accuracy (%) 91.07 85.30 92.63 82.55 94.94 94.69 95.30 96.95 

Overall Accuracy (%) 86.07 75.82 89.14 73.19 93.05 92.48 95.00 96.20 

Kappa Coefficient 0.8245 0.7013 0.8630 0.6673 0.9122 0.9050 0.9365 0.9516 

Name of class # samples Raw  CNN RES ECNN GCNN EGCNN AGCNN AEGCNN 

Trees  490 99.80 100.00 99.39 100.00 100.00 100.00 99.39 100.00 

Meadows 58 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Bricks 2001 93.95 98.05 94.25 97.75 97.95 98.90 98.50 98.85 

Bare Soil 370 95.68 96.76 99.46 99.73 98.65 96.49 97.30 98.65 

Asphalt 477 99.16 99.58 99.37 100.00 100.00 100.00 97.90 99.58 

Average Accuracy (%) 97.72 98.88 98.49 99.50 99.32 99.08 98.62 99.42 

Overall Accuracy (%) 95.82 98.44 96.38 98.65 98.65 98.97 98.44 99.12 

Kappa Coefficient 0.9321 0.9742 0.9412 0.9777 0.9776 0.9829 0.9741 0.9854 
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Figure 6.  The classification maps for Indian dataset. 

Figure 7.  The classification maps for Pavia University dataset. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.  The classification maps for Pavia Center dataset. 

 

3- In Indian dataset, GCNN ranks third after 

AGCNN and AEGCNN while in two other 

datasets, RES provides the best performance after 

the proposed methods.  

4- In Indian dataset, the use of edge feature cube has 

not positive effect in images reconstructed by 

CNN and GCNN. In other words, generally CNN 

works better than ECNN and GCNN works better 

than EGCNN. But, in the proposed methods, the 

use of edge cube leads to better performance from 

the SAM, ERGAS and RMSE point of view. This 

improvement can be seen in comparison between 

AGCNN and AEGCNN. 

5- In Pavia University, the use of edge cubes 

degrades performance of ECNN compared to 

CNN, and performance of EGCNN compared to 

GCNN. But, the results show improvement of 

AEGCNN compared to AGCNN. It can be found 
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that in Pavia University image, the use of edge 

features together with the conventional Gabor 

features is not appropriate. But, when they are 

used together with the revised Gabor features 

weighted by anomaly scores lead to increasing the 

spatial resolution and spectral fidelity. 

6- In Pavia center dataset, the use of edges is useful 

just for improvement of CNN.  

 

The training time and testing time of different methods 

are compared together in Fig. 5. The highest training 

time is related to EGCNN and AEGCNN while the 

lowest training time is related to RES. GCNN, 

AEGCNN and EGCNN have the highest running time 

in the testing phase. Computations related to 

calculating the edges, Gabor feature maps and anomaly 

scores lead to increasing the running time. 

 

C. Performance assessment with classification 

metrics 

To assess performance of different super resolution 

methods from the land cover classification accuracy 

point of view, the produced hyperspectral images with 

increased resolution are given as input of the support 

vector machine (SVM) for doing the classification 

task. The SVM classifier is implemented in LIBSVM 

[29] with polynomial kernel. The classification results 

for three datasets are represented in Tables 4-6. Ground 

truth map (GTM) beside the classification maps 

obtained by raw hyperspectral images and the 

hyperspectral images obtained by the super resolution 

methods are shown in Figs. 6-8. The following results 

can be concluded from the experiments: 

1- ECNN and CNN methods provide the least 

classification accuracy in Indian and Pavia 

University datasets while the raw features and 

RES method achieve the lowest classification 

accuracy in Pavia center dataset.  

2- The best performance is obtained by AGCNN and 

AEGCNN in Indian dataset, by AEGCNN and 

AGCNN in Pavia University dataset, and by 

AEGCNN and EGCNN in Pavia center dataset.  

3- Generally, injection of Gabor features together 

with edge information or anomaly scores 

significantly improves quality of the super 

resolution performance, and so, the classification 

accuracy.  

 

IV. CONCLUSION 

Two Gabor based CNN methods are suggested for 

hyperspectral super resolution. The improved Gabor 

features weighted by anomaly scores are suggested to 

include anomalous pixels as valuable spatial details in 

the reconstructed image. The core structure of the 

proposed network consists of three convolutional 

blocks where each block contains two convolutional 

layers followed by ReLu and dropout layers. The edge 

feature cube and the weighted Gabor feature maps are 

injected to output of the convolutional blocks through 

addition layer and concatenation layer, respectively. 

The proposed networks show significant improvement 

with respect to CNN, RES, Gabor based CNN and edge 

injected versions of them.  
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