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Abstract—Hyperspectral images have high spectral resolution. But, due to the tradeoff between spectral and spatial
resolution and various hardware constraints, imaging a hyperspectral image with high spatial resolution is not practical.
Hyperspectral super resolution is a soft approach to solve this challenge. Recently, deep learning based methods such
as convolutional neural network (CNN) show great success in this field. But, the contextual details in object boundaries
and anomalies present in the scene are not well addressed. To this end, a new CNN based framework is proposed for
hyperspectral image super resolution in this work. To improve ability of the convolutional blocks in simultaneous
extraction of spectral and spatial characteristics, the weighted Gabor features are concatenated in output of the defined
convolutional blocks. To extract more details containing anomalous targets present in the scene, the anomaly scores of
pixels are calculated and used for weighting the Gabor features. The experiments on three real hyperspectral images
acquired by AVIRIS and ROSIS sensors show superior performance of the proposed framework compared to several
state-of-the-art methods based on CNN and residual networks. In addition to common super resolution metrics such as
SAM and ERGAS, the efficiency of different methods are evaluated according to the classification accuracy metrics
such as overall accuracy and kappa coefficient. The overall classification accuracy is increased from 70.39 to 88.23 in
Indian dataset, from 86.07 to 96.20 in Pavia University dataset, and from 95.82 to 99.12 in Pavia center dataset.
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l. INTRODUCTION

Hyperspectral images provide a rich source of spectral
information needed for various applications such as
scene  classification,  target  detection  and
environmental monitoring [1]. But, due to imperfect
imaging sensors, acquiring images with both high
spectral and spatial resolutions is not possible. So,
spatial resolution enhancement of hyperspectral
images is a hot topic in remote sensing field [2].

Various hyperspectral super resolution techniques
have been suggested to reconstruct a high resolution
hyperspectral image from a low resolution one.
Generally, there are two categories of super resolution
methods. In the first category, it is tried that with fusing
a hyperspectral image with a high spatial resolution
image (panchromatic, RGB or multispectral), the
spatial resolution of the hyperspectral image is
increased [3]-[4]. Different fusion methods such as
tensor factorization [5], sparse representation and
dictionary learning [6], component substitution [7] and
multi-resolution analysis approaches [8] belong to the
first category. In the second category, there is no
auxiliary image for hyperspectral super resolution.
Different interpolation [9] and learning based
approaches [10] belong to the second category.
Recently, deep learning methods such as convolutional
neural networks (CNNs) [11]-[12], due to their abilities
in extraction of robust features invariant to local
changes, and autoencoders [13] have shown great
success for hyperspectral super resolution due to their
abilities in extraction of robust features invariant to
local changes.

A three layers CNN is suggested for hyperspectral
super resolution in [14] where the network is followed
by a triplet-pipline  CNN for hyperspectral
classification. Three coupled autoencoders are used for
fusion of hyperspectral and multispectral images
through unmixing them to their endmembers and
abundances. In [15], the wavelet transformation is used
to decompose the hyperspectral image into its
frequency  components. Then, the obtained
components are fed to three branches of three
dimensional CNNs. The observation matrix of
hyperspectral image is represented by subnetworks and
taken into account for an end-to-end optimization
through a model guided convolutional network in [16].

Gabor filters with acquiring optimal localization
characteristics in both frequency and spatial domains
can be a good candidate for hyperspectral feature
extraction resulting in contextual features containing
details with spectral fidelity [17]-[18]. The use of
Gabor filters beside the CNNs is suggested for
hyperspectral image analysis in several works [19]-
[20].

In this work, two improved Gabor based
convolutional based networks are proposed for
hyperspectral super resolution. In addition to texture
and objet boundaries, there are some anomalies in a
hyperspectral image. Detection of these anomalies is
important to appropriately extract details for super
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resolution. To this end, the Gabor features are weighted
with anomaly scores calculated from the local regions
with assumption of multivariate normal distribution for
the background image. Anomaly weighted Gabor
based CNN (AGCNN) and anomaly weighted and
edge based Gabor CNN (AEGCNN) are proposed
according to this idea. The experiments on three real
hyperspectral images show good performance of the
proposed methods with respect to several competitors
with a significant difference.

II.  THE ANOMALY WEIGHTED GABOR BASED CNN

A. The Proposed network

A convolution based neural network consisting of
convolutional blocks and Gabor feature maps revised
by anomaly scores is proposed for hyperspectral super
resolution in this work.

Generally CNNs provide hierarchical
representation of the given input by applying the
convolutional learnable filters for local feature
extraction. CNNs with two useful characteristics of
shared weights and local connections are appropriate
feature extractors for hyperspectral images. However,
when a CNN is used for hyperspectral super resolution,
it may be not efficient enough for extraction of image
details. In addition, due to hyperparameters in a CNN
and low number of labeled samples for training, the
used CNN cannot have high depth.

To deal with these difficulties, injection of desired
feature cubes to the output of convolutional layers is
suggested. The blockdiagram of the proposed network
is shown in Fig 1. Each ConvRD block consists of two
convolutional layers, each one followed by the
rectified linear unit (ReLu) and dropout layer with
dropping probability of 0.2. The first convolutional
layer contains 4 kernels and the second one contains d
kernels where d denotes the number of spectral bands,
and all convolutional kernels are from size of 3x3. The
last ConvRD block contains 16 and 32 filters,
respectively in its first and second convolutional
kernels, respectively. Low resolution hyperspectral
image (LR HSI) patch is given as input and the high
resolution (HR) HSI pixel is achieved in the output.
The edge feature cube and the anomaly weighted
Gabor feature cube extracted by the HR HSI are added
and concatenated to the output of three first ConvRD
blocks in the training process.

The ReLu layer is used as the nonlinear activation
function, which is efficient for learning the nonlinear
representation of the hyperspectral image and avoiding
the vanishing gradient issue. The dropout layer with
dropping probability of p = 0.2 is also used to avoid
the overfitting. The output of ConvRD block is
obtained by:

F' = Drop,(R(F'"1 » W' + bY)) @

where F! is the output feature map in [th layer, W' and
b are the learnable weights and bias parameters in
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layer [, R is the nonlinear ReLu activation function
and Drop, is the droput function with dropping
probability of p.

Two networks are proposed in this work. Anomaly
weighted Gabor based CNN (AGCNN) and anomaly
weighted and edge based Gabor CNN (AEGCNN). In
AGCNN, the Gabor feature cubes weighted by
anomaly scores are concatenated in output of the
ConvRD blocks. In AEGCNN, before concatenating
the anomaly weighted Gabor feature cube, the edge
feature maps extracted by an edge detector such as
‘Sobel’ are added to the ConvRD outputs. The edge
detector is applied to each band of the hyperspectral
image. The edge cube is added to the convolutional
outputs to help the network to learn more object
boundaries.

B. Gabor features

Gabor functions inspired from the visual context of
human act as low level texture and oriented edge
discriminators. The Gabor functions are sensitive to
various scale information and different frequencies.
Gabor filters achieve optimal resolution in both
frequency and spatial domains. Spatial resolution as a
measure of finesse or coarseness of an image
determines the amount of details in the image. From
the other hand, spectral resolution is ability of the
imaging sensor for small differences detection in
wavelength. Due to providing optimal resolution in
both spectral and spatial dimensions, Gabor filters can
be useful tools for feature extraction in hyperspectral
super resolution applications.

The output of a Gabor filter is a complex value.
While the amplitude contains information about
directional frequency spectrum, the phase provides
location of details and edges in the processed image. A
Gabor filter is obtained by modulation of a sinusoidal
function with a Gaussian overlap as follows [26]:

H(x,y) = exp (— xz%ﬁyz) X exp (j (27111—é + 1/))) (2
where

% = xcos(8) + ysin(0) (3)
y = —xsin(0) + ycos(8) (4)

where y denotes the spatial aspect ratio, o determines
the width of the Gaussian envelop, A is the wavelength,
1 represents the phase offset and 6 is the separation
angle. To apply a Gabor filter bank with N, scales and
Ny directions to a hyperspectral image, at first, the
hyperspectral dimensionality is reduced by the
principal component transform. The Gabor filter bank
is applied to the m first principal components. Then,
the outputs are concatenated to form the Gabor feature
cube. The magnitude of convolution of each Gabor
filter H(x, y) with each principal component I(x, y) is
considered as a Gabor feature map in the output:
G(x,y) = |H(x,y) = 1(x,y)] )

C. The Anomaly weighted Gabor

Although texture characteristics extracted by Gabor
filters contain information about contextual details of
the input image, but there are some anomalies in the
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hyperspectral images, which may be ignored in the
Gabor filtering process. With inspiration from the
Reed-Xiaoli (RX) detector [21], the probability value
of anomaly for each pixel is calculated and used as a
weight for Gabor features of the given pixel. Some
pixels of the hyperspectral image having two
characteristics are considered as anomalies: 1-pixels
with different spectral signatures with respect to the
background, and 2-pixels with low probability
occurrence. Let assume that the hyperspectral
background follows a multivariate Gaussian
distribution. In this case, pixel x belongs to the
background with the following probability [21], [27]:

P(x/B) = T=rexp [~ (x~ W€ x ~ )] (6)

where d is the number of hyperspectral bands, ¢ and €
are the mean vector and covariance of the background
image. An anomalous pixel is significantly far from the
background. So, if x is an anomaly,
p(x/B) will be very small and thus, (x — u)"C™1(x —
W) has a large value for an anomaly. To score pixels of
a hyperspectral image according to their anomaly
probabilities, the following anomaly distance is
defined [28]:
d; = (x; — ”w)T(Cw + 61)_1(xi D) )

where x; € R%i=12,..,N is i th pixel of the
hyperspectral image, N is the total number of pixels
and, u,, and C,, are the mean vector and covariance
matrix calculated in a local window with size of L X L
centered in x;, I denotes the identity matrix with d x d
dimensions and & is the regularization parameter. To
include the spatial information of neighborhood, the
local mean and covariance statistics are used instead of
the global ones. In addition, due to high dimensionality
of the hyperspectral image and to deal with the
singularity problem, the regularized covariance matrix,
i.e., C,, + oI is used instead of C,,. d; = d(p;, q;) is
the anomaly score of pixel x; with spatial coordinate
of (p;, q;), which can be used as a weight for output of
the Gabor filter as follows:

Gyw(pi,qi) = d(pi, q) X G(pi, q1) (8

where G(p;, q;) and G, (p;, q;) are the Gabor feature
and the weighted Gabor feature, respectively in the

pixel position (p;, q;)-

IIl.  EXPERIMENTS

A. Datasets, competitors and parameter settings

Three hyperspectral images are used for super
resolution experiments. The first dataset is the Indian
Pines collected by Airborne Visible-Infrared Imaging
Spectrometer (AVIRIS) in 1992 over Northwestern
Indiana. It has 145x145 pixels and 224 spectral bands
in wavelength of 0.4 to 2.5 um. After discarding water
absorption channels, 200 spectral bands are selected.
The spatial resolution of it is 20 m by pixel. The second
and third hyperspectral images with 115 original
spectral channels are acquired by the Reflective Optics
System Imaging Spectrometer (ROSIS) with 1.3 m by
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pixel. After discarding the noisy channels, 103 and 102
bands are remained for Pavia University and Pavia
center datasets, respectively.

The original Pavia University dataset has 610x340
pixels and Pavia center has 1096715 pixels. A sub
image of Pavia University with size of 200 x 130
containing 7 land cover classes and a sub image of

Edge

r Y

HR HSI patch LR HSI patch
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Pavia center with size of 202x152 containing 5 land
cover classes are used for doing experiments. 50% data
samples are used as training and the remained samples
are used as testing set in each dataset. 50% of data is
equal to 10513 samples in Indian, 13000 samples in
Pavia University and 15352 samples in Pavia center
dataset.

HR HSI pixel

» ConvRD |,é

ConvRD }.é,q_.l ConvRD |.é—q..| ConvRD I_,

—

uoissaIfoy

Anomaly weighted Gabor

(z) Surjood afereay
(p) pa10auuod Ajng

@ Additional layer

3 Concatenation layer

Figure 1. Fig. 1. Blockdiagram of the proposed AGCNN and AEGCNN networks.

TABLE I. THE SUPER RESOLUTION RESULTS FOR INDIAN DATASET.

MSSIM (1) PSNR (+0) SAM (0) ERGAS (0) RMSE (0) uIQl (1)
CNN 0.57 33.63 9.11 0.61 3.66 0.82
RES 0.66 33.46 7.65 0.53 3.17 0.91
ECNN 0.54 33.38 9.09 0.66 3.97 0.82
GCNN 0.71 35.58 7.39 0.33 1.98 0.95
EGCNN 0.69 35.36 7.44 0.35 2.10 0.94
AGCNN 0.74 35.34 7.67 0.36 2.15 0.95
AEGCNN 0.74 35.29 7.44 0.35 212 0.95

TABLE II. THE SUPER RESOLUTION RESULTS FOR PAVIA UNIVERSITY DATASET.

MSSIM (1) PSNR (+00) SAM (0) ERGAS (0) RMSE (0) ulQl (1)
CNN 0.46 7.34 6.38 3.65 58.87 0.55
RES 0.77 13.02 5.24 1.59 24.93 0.92
ECNN 0.44 7.28 6.35 3.76 60.57 0.53
GCNN 0.51 8.10 6.17 3.27 51.99 0.60
EGCNN 0.44 7.51 6.33 3.66 59.23 0.49
AGCNN 0.80 13.62 5.11 1.47 23.15 0.91
AEGCNN 0.81 13.78 5.04 1.37 21.89 0.93

TABLE Il TABLE 3. THE SUPER RESOLUTION RESULTS FOR PAVIA CENTER DATASET.

MSSIM (1) PSNR (+00) SAM (0) ERGAS (0) RMSE (0) uIQl (1)
CNN 0.51 10.41 6.04 2.44 37.49 0.67
RES 0.75 13.98 4.69 1.46 22.43 0.92
ECNN 0.58 12.54 6.08 1.89 29.00 0.76
GCNN 0.65 13.60 5.24 157 24.05 0.86
EGCNN 0.64 13.17 5.74 1.66 24.92 0.83
AGCNN 0.85 16.45 3.93 0.78 11.91 0.98
AEGCNN 0.83 16.29 3.94 0.90 14.00 0.97

For doing experiments, the original hyperspectral
images are considered as HR images and the down
sampled versions of them are considered as LR images.
The downsampling is implemented by applying an
antialiasing filter followed by downsampling along
both the vertical and horizontal dimensions with the
scaling factor of 2. The bicubic interpolation is used for
resizing the image. A 11x 11 lowpass filter with
Hamming window is used to avoid aliasing.

So far, various versions of CNN and residual (RES)
learning based networks have been proposed for
hyperspectral image super resolution [22]-[25]. So, a
specific version of CNN and RES are used as the
competitors here. In addition to CNN and RES,
different cases of the suggested framework called as
edge based CNN (ECNN) and Gabor based CNN
(GCNN) are also experimented to show impact of each
part of the proposed framework. In this work, to have
a fair comparison among the proposed method and the
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competitors, the same base structure for all deep
learning methods are used for doing experiments. The
proposed methods (AGCNN and AEGCNN) are
compared with CNN, residual network (RES), ECNN,
GCNN and EGCNN. To have a fair comparison
between the networks, the same structure is used for all
of them as shown in Fig. 1. In other words, the
experimented CNN has the same structure of Fig. 1
without any injected feature cubes through addition or
concatenation layers; RES has the general structure
shown in Fig. 1 where the original input patch is added
to the output of each ConvRD block. In ECNN, the
edge feature cube is added to the output of the ConvRD
blocks; and in GCNN, the conventional Gabor feature
are concatenated to the output of the ConvRD blocks.
EGCNN uses both edge and conventional Gabor
feature cubes.

The input of all networks are the patch images with size
of 5x5. In the anomaly weighted Gabor filters, L = 7
is used as size of the local window. The appropriate
values of patch size and local window size can be
obtained through doing experiments for each dataset.
In this work, to avoid parameter settings for each
dataset, the patch size of 5x5 and local window of L =
7 are chosen for all hyperspectral images. According
to done experiments, these parameters’ values are
relatively appropriate for both AVIRIS dataset with
spatial resolution of 20m by pixel and ROSIS datasets
with a spatial resolution of 1.3m per pixel. These
parameters are chosen as a tradeoff between accuracy
and complexity. With selection of a small patch or
local window, low spatial information are contributed
in the super resolution process and with considering
large patch or local window, redundant or non-related
spatial information may be included in the decision
process. In addition, larger window size leads to
increasing the complexity burden.
LR

Figure 2. Fig. 2. The super resolution images for Indian dataset.
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& =107*is used as the regularization parameter.
m = 3 principal components of the hyperspectral
images are used for Gabor feature extraction. The
Adam optimizer is used for training of the networks
with 20, 30 and 50 epochs for Indian, Pavia University
and Pavia center datasets, respectively.

B. Performance assessment with super resolution
metrics

To assess quality of the generated high resolution
images, the following quantity measures are used:
mean structural similarity index (MSSIM), peak signal
to noise ratio (PSNR), spectral angle mapper (SAM),
Error relative dimensionless global error in synthesis
(ERGAS), root mean square error (RMSE), and
universal image quality index (UIQI). The obtained
results for Indian, Pavia University and Pavia center
datasets are reported in Tables 1-3, respectively where
the ideal value of each measure is represented in the
parentheses. A sample band of the reconstructed
hyperspectral images are also shown in Figs. 2-4. The
following conclusions can be found from the achieved
results:

1- In all datasets, CNN obtains the lowest
performance in terms of all evaluation
measures. It represents that the convolutional
kernels are not lonely enough for extraction
of the image details.

2- Two proposed AGCNN and AEGCNN are two
best methods with a significant difference
compared to other methods. The Gabor features
weighted by defined anomaly scores contain rich
contextual  information  with  highlighting
anomalies in local regions, which are so efficient
for hyperspectral super resolution.

CNN
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CNN

RES ECNN GCNN

EGCNN AGCNN AEGCNN

Figure 3. Fig. 3. The super resolution images for Pavia University dataset.

HR CNN

EGCNN AGCNN AEGCNN

Figure 4. The super resolution images for Pavia Center dataset.
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Figure 5. The training and testing time of super resolution methods.
TABLE IV. THE CLASSIFICATION RESULTS FOR INDIAN DATASET.

No. Name of class # samples Raw CNN RES ECNN GCNN | EGCNN AGCNN AEGCNN
1 Corn-no till 1434 66.32 61.09 78.73 55.02 81.59 81.73 89.19 84.73
2 Corn-min till 834 72.06 49.04 79.26 40.29 81.89 86.21 90.05 86.57
3 Grass/pasture 497 91.55 75.25 90.95 77.87 89.34 90.34 92.76 94.16
4 Grass/trees 747 92.50 76.84 93.57 81.12 96.92 93.44 97.72 96.25
5 Hay-windrowed 489 98.98 95.50 99.80 97.96 99.18 97.55 98.98 98.57
6 Soybeans-no till 968 71.80 39.67 80.17 48.97 80.27 86.26 93.90 88.02
7 Soybeans-min till 2468 47.29 51.13 70.54 40.11 70.91 74.43 82.98 80.43
8 Soybeans-clean till 614 76.87 6.51 76.38 17.43 84.04 83.22 90.88 86.81
9 Woods 1294 79.52 62.52 79.91 75.73 88.18 90.80 96.37 95.98

Bldg-Grass-Tree- 78.95 53.68 86.05 63.16 97.37 94.47 96.32 95.26

10 Drives 380

Average Accuracy (%) 77.58 57.12 83.54 59.77 86.97 87.85 92.91 90.68
Overall Accuracy (%) 70.39 55.52 79.96 55.40 82.88 84.65 90.83 88.23
Kappa Coefficient 0.6638 | 0.4896 | 0.7699 0.4915 0.8037 0.8239 0.8944 0.8644
TABLE V. THE CLASSIFICATION RESULTS FOR PAVIA UNIVERSITY DATASET.
Name of class # samples Raw CNN RES ECNN GCNN EGCNN | AGCNN AEGCNN
Asphalt 317 90.22 74.76 86.75 70.35 89.59 93.69 85.49 96.21
Meadows 617 97.41 99.84 99.51 98.54 99.51 99.51 99.84 99.03
Gravel 966. 78.57 88.61 89.96 74.74 91.41 88.51 97.72 95.96
Trees 263 96.20 96.20 96.96 94.68 97.72 98.10 96.96 95.44
Bitumen 424 96.46 89.62 94.58 88.44 97.17 94.34 94.81 97.64
Self-Blocking Bricks 1641 78.61 48.39 80.62 51.13 89.21 89.34 92.26 94.33
Shadows 293 100.00 99.66 100.00 100.00 100.00 99.32 100.00 100.00
Average Accuracy (%) 91.07 85.30 92.63 82.55 94.94 94.69 95.30 96.95
Overall Accuracy (%) 86.07 75.82 89.14 73.19 93.05 92.48 95.00 96.20
Kappa Coefficient 0.8245 | 0.7013 | 0.8630 0.6673 0.9122 0.9050 0.9365 0.9516
TABLE VI. THE CLASSIFICATION RESULTS FOR PAVIA CENTER DATASET.
Name of class # samples Raw CNN RES ECNN GCNN EGCNN AGCNN AEGCNN
Trees 490 99.80 100.00 99.39 100.00 100.00 100.00 99.39 100.00
Meadows 58 100.00 | 100.00 | 100.00 | 100.00 100.00 100.00 100.00 100.00
Bricks 2001 93.95 98.05 94.25 97.75 97.95 98.90 98.50 98.85
Bare Soil 370 95.68 96.76 99.46 99.73 98.65 96.49 97.30 98.65
Asphalt 477 99.16 99.58 99.37 100.00 100.00 100.00 97.90 99.58
Average Accuracy (%) 97.72 98.88 98.49 99.50 99.32 99.08 98.62 99.42
Overall Accuracy (%) 95.82 98.44 96.38 98.65 98.65 98.97 98.44 99.12
Kappa Coefficient 0.9321 | 0.9742 | 0.9412 | 0.9777 0.9776 0.9829 0.9741 0.9854
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Figure 8. The classification maps for Pavia Center dataset.
3- In Indian dataset, GCNN ranks third after use of edge cube leads to better performance from
AGCNN and AEGCNN while in two other the SAM, ERGAS and RMSE point of view. This

§ datasets, RES provides the best performance after improvement can be seen in comparison between
N the proposed methods. AGCNN and AEGCNN.
% 4- In Indian dataset, the use of edge feature cube has 5- In Pavia University, the use of edge cubes
E not positive effect in images reconstructed by degrades performance of ECNN compared to
:3' CNN and GCNN. In other words, generally CNN CNN, and performance of EGCNN compared to
) works better than ECNN and GCNN works better GCNN. But, the results show improvement of
% than EGCNN. But, in the proposed methods, the AEGCNN compared to AGCNN. It can be found
0o
a
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that in Pavia University image, the use of edge
features together with the conventional Gabor
features is not appropriate. But, when they are
used together with the revised Gabor features
weighted by anomaly scores lead to increasing the
spatial resolution and spectral fidelity.

6- In Pavia center dataset, the use of edges is useful
just for improvement of CNN.

The training time and testing time of different methods
are compared together in Fig. 5. The highest training
time is related to EGCNN and AEGCNN while the
lowest training time is related to RES. GCNN,
AEGCNN and EGCNN have the highest running time
in the testing phase. Computations related to
calculating the edges, Gabor feature maps and anomaly
scores lead to increasing the running time.

C. Performance assessment with classification
metrics

To assess performance of different super resolution
methods from the land cover classification accuracy
point of view, the produced hyperspectral images with
increased resolution are given as input of the support
vector machine (SVM) for doing the classification
task. The SVM classifier is implemented in LIBSVM
[29] with polynomial kernel. The classification results
for three datasets are represented in Tables 4-6. Ground
truth map (GTM) beside the classification maps
obtained by raw hyperspectral images and the
hyperspectral images obtained by the super resolution
methods are shown in Figs. 6-8. The following results
can be concluded from the experiments:

1- ECNN and CNN methods provide the least
classification accuracy in Indian and Pavia
University datasets while the raw features and
RES method achieve the lowest classification
accuracy in Pavia center dataset.

2- The best performance is obtained by AGCNN and
AEGCNN in Indian dataset, by AEGCNN and
AGCNN in Pavia University dataset, and by
AEGCNN and EGCNN in Pavia center dataset.

3- Generally, injection of Gabor features together
with edge information or anomaly scores
significantly improves quality of the super
resolution performance, and so, the classification
accuracy.

IV. CONCLUSION

Two Gabor based CNN methods are suggested for
hyperspectral super resolution. The improved Gabor
features weighted by anomaly scores are suggested to
include anomalous pixels as valuable spatial details in
the reconstructed image. The core structure of the
proposed network consists of three convolutional
blocks where each block contains two convolutional
layers followed by ReLu and dropout layers. The edge
feature cube and the weighted Gabor feature maps are
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injected to output of the convolutional blocks through
addition layer and concatenation layer, respectively.
The proposed networks show significant improvement
with respect to CNN, RES, Gabor based CNN and edge
injected versions of them.
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