
An Efficient Application Deployment in Fog

Masomeh Azimzadeh

Department of Computer Engineering

 Science and Research Branch, Islamic Azad

University

 Tehran, Iran

masomeh.azimzadeh@srbiau.ac.ir

Ali Rezaee

Department of Computer Engineering

 Science and Research Branch, Islamic Azad

University

 Tehran, Iran

alirezaee@srbiau.ac.ir

Somayyeh Jafarali Jassbi

Department of Computer Engineering

 Science and Research Branch, Islamic Azad

University

Tehran, Iran

s.jassbi@srbiau.ac.ir

Mehdi Esnaashari

Faculty of Computer Engineering

 K. N. Toosi University of Technology University

 Tehran, Iran

esnaashari@kntu.ac.ir

 Received: 15 May 2023 – Revised: 2 August 2023 - Accepted: 28 August 2023

Abstract—Fog computing emerged to meet to the needs of modern IoT applications, such as low latency, high security,

etc. To this end, it brings the network resources closer to the end user. The properties of fog computing, such as

heterogeneity, distribution, and resource limitations, have challenged application deployment in this environment.

Smart service placement means deploying services of the IoT applications on fog nodes in a way that their service quality

requirements are met and fog resources are used effectively. This paper proposes an efficient application deployment

method in fog computing using communities. In contrast to previous research, the proposed method uses more factors

than topological features to distribute network capacity more evenly between communities. This results in efficient use

of network resources and better fulfillment of application requirements. In addition, according to our argument, using

multiple criteria to prioritize applications will lead to better deployment and more effective use of resources. For this

purpose, we use the number of application requests besides the deadline factor for application prioritization. Extensive

simulation results showed that the proposed method significantly outperforms the state-of-the-art methods in terms of

meeting deadlines, decreasing delays, increasing resource utilization, and availability by about 17, 33, 7, and 11 percent,

respectively.

Keywords: Fog Computing, Application Deployment, Evolutionary Computation.

Article type: Research Article

© The Author(s).

Publisher: ICT Research Institute

 Corresponding Author

 [
 D

O
I:

 1
0.

61
18

6/
itr

c.
15

.3
.3

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 1 / 12

https://orcid.org/0000-0002-0832-4902
https://orcid.org/0000-0002-6007-7929
https://orcid.org/0000-0002-0072-5349
https://orcid.org/0000-0001-7874-2563
http://dx.doi.org/10.61186/itrc.15.3.31
http://ijict.itrc.ac.ir/article-1-569-en.html

I. INTRODUCTION

To meet the needs of the end user fog computing
emerged at the edge of the network. The main purpose
of this technology is to support the specific needs of
delay-sensitive applications, such as augmented reality
and IoT applications, which generate large amounts of
data. Service management is a challenging task of fog
computing because of the characteristics of the fog
environment, such as resource limitations,
heterogeneity, and dynamism of the environment on the
one hand, and the complex and multi-component nature
of the IoT applications on the other hand.

Application service deployment as an important
field of service management means the proper
placement of services on fog nodes. An efficient
application deployment must meet the quality of service
and use fog resources efficiently. One approach in this
field to face the challenges of service placement is
organizing the fog nodes as communities. Newman’s
theory considers the modularity of complex systems in
such a way that detecting important structural patterns
in a network causes a deeper understanding of a system.
So, this theory has motivated many studies in complex
networks, such as fog computing [3-6].

The research in the community detection field
categorizes approaches from different perspectives. For
example, community detection algorithms could be
classified into three categories: node-based, group-
based, and network-based. With the node-based
method, the basis for creating communities can be
based on characteristics such as reachability and
membership grade. In the group-based methods,
characteristics such as group density are the basis for
creating communities, and in the network-based
community identification methods, the entire network
is divided into separate sets of nodes. Network
connections are global in these algorithms. Newman’s
theory falls into the third category [7]. Another view of
community recognition approaches is the creation of
separate or overlapping communities [8-9]. For
example, Xie et al. introduce an algorithm to determine
relationships between individuals, groups, and
observable interactions. They use this relationship to
create overlapping communities [9].

The service placement methods proposed in the fog
computing field consider node density and topology as
the primary criteria for community building [10-14].
Just paying attention to the topology leads to the
forming of unbalanced communities. Unbalanced
communities introduce complexity and delay in
deciding how to place them. An application’s services
distribution in different communities leads to increasing
communication delays and decreasing availability.
Considering network capacity from different aspects
lead to the acquisition of more knowledge about the
environment and the creation of high-quality
communities.

 This paper proposes a method called Community
based Fog Service Placement (CFSP). The focus of this
method is the balanced distribution of the network
capacities between communities based on the genetic
algorithm. For this purpose, the network capacity is
considered from three aspects: 1) the amount of fog
node resources, including the amount of Random

Access Memory (RAM), Central Processing Unit
(CPU), and storage space, 2) the number of fog nodes,
and 3) the topology and network connections.

Creating balanced communities leads to speeding
up decision-making regarding the placement of multi-
component applications related to multiple requests in
the environment. Also, by placing each multi-
component application in a single community, the delay
between the services of an application is reduced and
their availability is increased. The policy of the CFSP
method in the deployment step is placing of service in
the nearest community to the end user. In this way, the
delay between the end user and the requested
application is reduced and leads to a better supply of
deadline and response time.

To improve the CFSP method, some enhancements
are made in both phases of creating deployment
infrastructure and application service deployment. To
improve the phase of creating deployment
infrastructure, a version called CFSP.v1 is being
developed. In this version, more connection and
adjacency criteria are used to create communities. This
leads to faster convergence of the genetic method
towards the high-value communities with higher
connectivity. Also, this approach causes the creation of
overlapping communities. So, they can share some
services or resources, which help to use resources more
efficiently. We must mention that in the CFSP method
the communities were separate and did not overlap.

In the application service deployment phase,
application prioritization is improved. In this version of
the CFSP method, called CFSP.v2, the number of
application requests is taken into account in addition to
the application deadlines. This policy prioritizes
applications with shorter deadlines and more requests.

We should note that different versions of the
method have an evolutionary nature. The CFSP.v1
version improves the community creation process of
the base method, CFSP, and the CFSP.v2 improves the
application prioritization of the CFSP.v1. That is to
say, the CFSP.v2 is the best method among the others.

The innovations of the proposed method include:

• Development of an efficient application deployment
approach: In the CFSP method, communities are
formed based on the genetic method, considering
various parameters that affect a balanced
distribution of network capacities. This approach
results in the efficient use of resources and an
increase in service quality. The CFSP method places
all services of an application in the nearest
community, so it improves the availability and
response time of applications.

• Improvement of the CFSP method in the
deployment infrastructure phase: Community
formation is improved with the creation of more
connected and overlapping communities in the
CFSP.v1 version, resulting in better resource
sharing and utilization.

• Extension of the CFSP method in the application
service deployment phase: To prioritize applications
for delivery, in addition to using the deadline as a
prioritization factor in the CFSP.v2 version, the

Volume 15- Number 3 – 2023 (31 -42)

32

 [
 D

O
I:

 1
0.

61
18

6/
itr

c.
15

.3
.3

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 2 / 12

http://dx.doi.org/10.61186/itrc.15.3.31
http://ijict.itrc.ac.ir/article-1-569-en.html

number of application requests is also taken into
account. This results in placing more applications
and increasing their Quality of Service (QoS).

In this paper, the proposed CFSP method is
described and evaluated. The rest of this paper is
organized as follows: In Section II, a brief literature
survey is presented. The proposed method is described
in Section III. In Section IV, the proposed method is
evaluated using extensive simulation studies. Finally,
Section V concludes the paper.

II. LITERATURE REVIEW

The proposed methods in the field of fog service
placement fall into two categories. In the first category,
only some optimizations are made for the deployment
of the applications on fog nodes, but the node
distribution in the network or the network topology is
ignored [17-20]. The second category organizes the
placement infrastructure by grouping nodes in the first
phase, and deploying applications on top of them in the
second phase [10-14][21-25]. The grouping of nodes is
based on criteria such as distance from a central node or
placement in a service domain, etc. [10-14] [22, 24]. In
community-based approaches, nodes are clustered
based on connection density and organized as
communities [21, 24, 25].

A. Policy based application service deployment

Abbasi et al. [17] develop a genetic algorithm for
workload allocation in a fog-cloud. They try to improve
energy consumption and reduce delays. Reddy et al.
[18] by intelligent sleep and wake-up cycles of the fog
nodes, follow the energy minimization at the fog layer.
So, they respond to requests with a minimal number of
active fog nodes. Natasha and Guddeti [19] present a
multi-objective optimization solution for service
placement in the fog environment. Their objectives
were to minimize service delay, cost, and energy
consumption. Al-Tarawneh [20] uses a genetic
algorithm to place application modules on fog devices.
To do this, they consider the criticality levels of the
applications and the security requirements. Vijouyeh et
al. [27] formulate the placement and routing problem
using an Integer Linear Programming (ILP) approach to
deploy applications in the infrastructure network and
direct traffic from end devices to deployed applications.
The primary goals were to meet different user
requirements and to maximize the profit of the
infrastructure provider. Sriraghavendra et al. [28]
propose a method to use fog resources while meeting
time constraint of applications. They use a genetic
algorithm for service placement in the fog environment.
This research analyzes the response time of service
placement in different layers and decides about the
service placement of IoT applications in different layers
of the fog-cloud architecture.

B. Group based application service deployment

Yousefpour and Ishigaki [13] group fog nodes
based on the operational domain or specific needs of
applications. They propose a delay-minimizing
collaboration and offloading policy for fog capable
devices that aims to reduce the service delay for IoT
applications. Skarlat et al. [10] cluster the nodes as fog
colonies for service placement. They formalize an
optimization problem to provide delay-sensitive

utilization of available fog-based computational
resources. Kimovski et al. [22] use the graph theory for
service placement. They define a fog architecture, to
increase the speed of decision-making and provide
adaptive resource management. Lera et al. [24] model
the environment through centrality indices to determine
the fog devices that are close to the sensors to enhance
resource usage criterion. Skarlat et al. [12, 26] use fog
colonies to allocate fog resources to IoT services. They
consider colonies as micro data centers made up of an
arbitrary number of fog cells. Baranwal and Vidyarthi
[29] propose a service placement method based on the
selection of some fog orchestrator nodes. They use
distributed fog orchestrator nodes to allocate computing
resources fairly among the fog nodes to improve the
quality of service (QoS). Elkhatib et al. [11] also apply
micro-cloud computing capabilities to deliver fog
services to reduce latency.

C. Community based application service deployment

Filiposka et al. [25] propose the first method for
using the community for resource management. They
use hop count between virtual machines to reduce the
distance between them. The aim is to improve
communication efficiency and reduce power
consumption. Lera et al. [23] apply the features of the
complex network to organize the communities of fog
nodes for service placement. The betweenness
centrality measure is used to create a set of well-
connected devices to improve service availability.
Velasquez et al. [21] create groups of nodes based on
the possibility of sharing gateway load between the
nodes. To do this, they rank the nodes to form
communities that contain nodes with the highest
transition probability.

III. PROPOSED METHOD

This section introduces the proposed method. For
this purpose, the environment definition is presented in
Subsection A. This section describes the architecture
and other components of the environment. After that,
the proposed CFSP method and its enhanced versions
are presented in Subsection B.

A. The environment definition

Fig. 1 shows the architecture of the proposed CFSP
method in three layers: 1) IoT, 2) fog and 3) Cloud. The
user requests come into the environment from the IoT
layer. Communities are created in the Fog layer, which
sits on top of the IoT layer to form the placement
infrastructure to deliver the services. The resources in
the cloud layer, which is above the fog layer, are used
in situations where the fog resources do not meet user
needs. Several gateways were considered for
communication and information exchange between
different layers.

We consider the fog environment as a graph G with
the fog devices as nodes, denoted by the FN set, and the
connections between the devices as edges, denoted by
the EN set (Equation 1).

Volume 15- Number 3 – 2023 (31 -42)

33

 [
 D

O
I:

 1
0.

61
18

6/
itr

c.
15

.3
.3

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 3 / 12

http://dx.doi.org/10.61186/itrc.15.3.31
http://ijict.itrc.ac.ir/article-1-569-en.html

Figure 1. Architecture of the proposed CFSP method

G=(FN,EN) (1)

According to Equation 2, FN contains all fog nodes
(fni) that exist in a fog environment.

FN = {fn1,fn2,…,fnm} (2)

The edges of the graph are also defined as EN in
Equation 3. Each edge (enij) is a connection between
two fog nodes fni and fnj.

EN = { enij | i,j𝝐[1,m] , i≠j , enij = <fni,fnj> } (3)

Communities are also considered subgraphs whose
union forms the main graph. Equation 4 represents a set
of k communities.

Com = {Com1,Com2, …, Comk} (4)

According to Equation 5, each community is a
subgraph of the main graph that includes a set of nodes
(CFi) and a set of edges (CEi).

Comi= {(CFi,CEi)| CFi ⸦ FN , CEi ⸦ EN} (5)

Equation 6 represents the nodes of the CFi
community. This community contains cfi nodes as a
subset of fog nodes.

 CFi = {cfi1, cfi2, …, cfis} (6)

Also, Equation 7 shows the links between the nodes
of each community.

CEi = { ceij | i,j𝝐[1,s] , i≠j ,ceij = <cfi,cfj>j} (7)

In the problem space, besides the fog graph and
communities, a set of applications and their
corresponding requests are defined. Each application
may be requested by several users. Therefore, in
Equation 8, the set of applications comprising p
numbers of Ai is defined.

 Applications = {A1, A2, A3, …, Ap } (8)

Each Ai includes multiple services related to each
other according to Equation 9.

 Ai = {s1, s2, s3,…, sr} (9)

Equation 10 shows a request set of all applications,
which is considered r requests. According to this
equation, each request in the environment is associated
with one application (Ax).

Requests = {(Ri, Ax) | Ax is Requested by Ri , i 𝝐 [0, r]} (10)

B. Proposed CFSP method: Community based Fog

Service Placement

In this section, the proposed CFSP method is
described in terms of two phases: 1) creating
deployment infrastructure and 2) application service
deployment. Then, the enhanced versions of these two
phases are presented as the CFSP.v1 version and the
CFSP.v2 version.

1. Phase1: Creating deployment infrastructure

In the proposed method, the genetic algorithm is
used to form communities. Within the framework of the
CFSP method, each problem solving chromosome
contains a set of communities. So, the aggregation of
chromosomes means that the population is a set of
solutions for creating communities. To initialize the
chromosomes, each gene is randomly assigned a
community identifier. After that, this initialized set of
chromosomes enters the genetic cycle and the best ones
are chosen as fathers. The father's chromosomes
undergo crossover and mutational operators to produce
new chromosomes as children. It should be noted that
two-point crossover and one-point mutation operators
are applied for this purpose. A set of the best
chromosomes from fathers and children is then used to
create the next population. The mentioned process
continues until the best chromosome is reached, which
represents the best set of created communities.

• Crossover operation

Volume 15- Number 3 – 2023 (31 -42)

34

 [
 D

O
I:

 1
0.

61
18

6/
itr

c.
15

.3
.3

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 4 / 12

http://dx.doi.org/10.61186/itrc.15.3.31
http://ijict.itrc.ac.ir/article-1-569-en.html

Two-point crossover operator is used as the first
process for creating children. For this purpose, the
population is divided into two equal parts, and in each
stage, one chromosome is randomly selected from each
part of the population. Then two intersection points are
randomly selected. In this way, each chromosome can
be divided into three sections. Finally, the contents of
the chromosomes are shifted in the three selected
sections.

• Mutation operation

Mutation operator is also applied as second
operation for creating children. For this purpose, one
point is randomly selected on each chromosome. Then
the community identifier of this position is replaced by
a randomly selected community identifier.

• Fitness function

As already mentioned, the phase of deployment
infrastructure creation is about using network capacities
efficiently. For this purpose, the network capacity
parameters are defined in three categories:

1) Resource Allocation (RA): the average amount of

resources allocated to each community

2) Node Distribution (ND): average number of nodes

distributed among communities

3) Community Connectivity (CC): ratio of connected

nodes of a community to the total number of

community nodes.
To distribute the network capacity evenly among

the communities, network capacity parameters are used
in the fitness function, which we will describe below.

To calculate the average resources assigned to each
community, the average RAM, CPU, and storage of
each community are calculated respectively according
to Equation 11, Equation 12, and Equation 13,
respectively. The ratio of the resource of a resource type
which was allocated to a community to the total
resources of the same type was estimated by each of
these equations.

 Comi
𝑅𝐴𝑀 =

∑ cfij
𝑅𝐴𝑀

|CFi|

𝑗=0

∑ fnm
𝑅𝐴𝑀

|𝐹𝑁|

𝑚=0

 (11)

 Comi
𝑇𝐵 =

∑ cfij
𝑇𝐵

|CFi|

𝑗=0

∑ fnm
𝑇𝐵

|𝐹𝑁|

𝑚=0

 (12)

 Comi
𝐼𝑃𝑇 =

∑ cfij
𝐼𝑃𝑇

|CFi|

𝑗=0

∑ fnm
𝐼𝑃𝑇

|𝐹𝑁|

𝑚=0

 (13)

Finally, the average of resources used by each
community is calculated according to Equation 14.

𝑅𝐴 =
∑ (𝑤 𝑅𝐴𝑀

∗Comi
𝑅𝐴𝑀+𝑤𝑇𝐵

∗Comi
𝑇𝐵+𝑤𝐼𝑃𝑇

∗ Comi
𝐼𝑃𝑇

|𝐶𝑜𝑚|

𝑖=0
)

|Com|

 (14)

The node distribution is the second parameter for
the balanced distribution of the network capacity. To
estimate this parameter, we first calculate a balance
criterion in Equation 15 by dividing the total number of
nodes by the number of communities to get the balance
criterion (α+). Then the node distribution is calculated
by computing the sum of the ratio of the number of
nodes in each community to the balance criterion and

then dividing it by the number of communities
(Equation 16).

 α+ =
|𝐹𝑁|

|𝐶𝑜𝑚|
 (15)

 ND =
∑

𝐶𝑜𝑚𝑘
α+

|𝐶𝑜𝑚|

𝑖=0

|Com|
 (16)

The largest connected component is found to check
the connectivity of a community, then the membership
rate of the assigned nodes of the community in the
connected component is calculated. If a community
does not contain a connected component, we ignore it
as a community. Also, having more assigned nodes in
the connected component increases the score of that
community. Therefore, we calculate the ratio of the
number of connected nodes in a community to the total
number of those community nodes. Then the results of
all communities are summed and divided by the number
of communities (Equation 17).

𝐶𝐶 =
∑

|𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑−𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝐶𝑜𝑚𝑘)|

𝐶𝑜𝑚𝑘

|𝐶𝑜𝑚|

𝑖=0

|Com|
 (17)

Finally, the fitness function is calculated according
to Equation 18 as a weighted combination of three
parameters: 1) the average of allocated resources, 2) the
average number of assigned nodes, and the rate of
community connectivity.

𝑓(𝑥) = 𝜆1 ∗ 𝑅𝐴 + 𝜆2 ∗ ND + 𝜆3 ∗ 𝐶𝐶 (18)

2. Phase2: application service deployment

In this phase, applications are prioritized according
to deadlines. Then, an application with the minimum
deadline is selected and the nearest community to the
user with sufficient resources is found for service
placement. In Algorithm 1, the placement method is
presented.

Algorithm 1: Application Placement

Input: genetic based communities, Applications, Requests

Output: Application placement results, List of ranked communities

• 1)

• 2)

• 3)

• 4)

• 5)

• 6)

• 7)

• 8)

• 9)

• 10)

• 12)

• 13)

• 14)

• 15)

• 16)

• 17)

• 18)

• 19)

• 20)

• 21)

• 22)

• 23)

• 24)

• # Prioritize applications based on their deadline in ascending order

• PA  Prioritize (applications, key = deadline, ascending)

• # Place each application request in a suitable community

• for appId in PA do:

• # Extract the list of Application’s requests with appId key

• appReqs = Requests (appId)

• for Reqi in appReqs do:

• Placed =False
• # Calculate community distance for each user/ request

• ComRank = comm-distance (Reqi , communities,

• key=neighbors)

• for Com j in ComRank do:

• if appId in Com j then:

• Placed = True

• Break;

• # Compare required resources with current resources

• if currentResource (Comj) > = requiredResource (appId)

• then:

• placeApp (Comj)

• UpdateComResources (Comj)

• Placed = True

• Break;

• Return placeApp, ComRank

 According to line 2, the applications are sorted in
ascending order by the deadline. Then, from the list of
sorted applications, each application is selected in turn
(line 4) and the list of its requests is extracted (line 6).
Next, according to lines 7 to 10, a list of the ranked

Volume 15- Number 3 – 2023 (31 -42)

35

 [
 D

O
I:

 1
0.

61
18

6/
itr

c.
15

.3
.3

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 5 / 12

http://dx.doi.org/10.61186/itrc.15.3.31
http://ijict.itrc.ac.ir/article-1-569-en.html

communities must be extracted for each request of the
selected application. So, the neighborhood distance
with different communities is calculated for each
request and then a list of communities is ordered
according to the neighborhood distance (line 10).
Neighborhood distance means the number of hops from
the requester to the community. In the next step, we first
check for each candidate community whether a version
of the application has already been made available
there. If the version is available, the requestor is given
access to it. Also, the placement process for this request
ends. These steps are shown in lines 13 to 16. If the
existing version is not available to the user, the amount
of available capacity in the candidate community is
compared to the resource requirements of the selected
application. If there are enough resources, the
application is placed in that community and according
to lines 18 to 23 the community resources are updated.
Otherwise, the next closest community in the list is
selected and the previous steps are repeated. Lines 11 to
20 show these steps.

3. Enhancement of Phase1

In the problem definition, each chromosome is
viewed as an array with the index of each element
corresponding to the identifier of a fog node. In the
CFSP method, a random community identifier is
assigned to each chromosome gene, leading to a time-
consuming convergence to a solution in the genetic
cycle. To solve this problem, the CSFP.v1 version uses
the connectivity information of the fog graph. To do
this, the identifier of one of the corresponding neighbors
of the fog node is assigned to each chromosome gene.
This neighbor is randomly selected from the neighbors
of this node. Algorithm 2 represents an improved
initialization method. The input of this algorithm is the
connection graph of fog nodes, and the output is the
initialized chromosomes. In this algorithm, the entire
population is initialized. To do this, the following steps
are performed for each chromosome of the population.

Algorithm 2: Chromosome Initialization

Input: topology (G)

• Output: Initialized chromosomes

• 1) # Assign a random neighbor identifier to genes in each chromosome

• 2) for each chromosome in population do:

3) for fn in G.Fn do:

• 4) nodeId = identifier (fn)

• 5) # Find a list of neighbors of the fn

• 6) Neighbors = Find_neighbors (fn)

• 7) #select a neighbor of fn from neighbor list

• 8) rand_Id = Select_ random (Neighbors)

• 9) # Fill the content of gene with random neighbor

• 10) Chromosome[nodId] = rand_Id
• 11) # Find more frequent identifiers of and set then as headers

• 12) Comm_heads = Frequent-nodes (Chromosome)

13) # Form some clusters based on community header

• 14) j=0

• 15) for comhead in Comm_heads do:

• 16) Community [j] = Find-neighbors (comhead)

• 17) j = j + 1

• 18) # check if all nodes are assigned to a community

• 19) for fn in G.Fn do:

• 20) if fn not in Community then:

• 21) Near_comm = Find_nearest_community (Community)

• 22) Add (fn, Near_comm)

• 23) Return initialized chromosomes

 For each gene (identifier of the candidate nodes), its
neighbors are searched according to line 6 and listed in

the array named Neighbors. Then, according to line 8,
the identifier of a neighbor is randomly selected from
the Neighbors list. Then the content of the
corresponding gene of the candidate node is filled with
the identifier of the selected neighbor (line 10). These
steps are repeated for all genes of the chromosome.
After the initialization of the chromosome, the most
frequent neighboring nodes in the chromosome are
chosen as the community head. This is shown in lines
11 and 12. In the next step, according to lines 14 to 18,
clusters of communities are formed around each of
these central nodes. Finally, in this step, an attempt is
made to map all existing nodes to some heads (lines 19
to 22).

The output of this algorithm is fed into the genetic
cycle of the proposed CFSP method. Finally, after
applying the relevant operators, a solution to the
problem is extracted, including a set of balanced
communities.

4. Enhancement of Phase2

After identifying a chromosome as a solution that
represents a set of communities, it's time to place each
application on the communities. The placement
process is improved in the CFSP.v2 version by
considering the number of requests criterion as an
additional parameter for prioritizing applications.

Algorithm 3 shows how application prioritization
is improved in the CFSP.v2 method. According to lines
2 to 6 of this algorithm, for each application, the criteria
deadline (dl) and the number of requests (nr) are first
calculated. After that, the initial list of applications in
the Initial_priority list is sorted in descending order
based on the number of requests (line 7).

Algorithm 3: Application Prioritization

Input: Applications, Requests

Output: Prioritized Applications

• 1)

• 2)

• 3)

• 4)

• 5)

• 6)

• 7)

• 8)

• 9)

• 10)

• 11)

• 12)

• 13)

• 14)

• 15)

• 16)

• 17)

• 18)

• 19)

• # For application in application’s list, calculate two metrics (dl, nr)

• for appId in applications do:

• req_list = requests (appId)

• # Calculate the number of application’s requests

• nr (appId) = len (req_list)

• dl (appId) = deadline (appId)

• Initial_priority = Sort (applications, key= nr, descending)

• Final_priority = []

• for appId in Initial-priority do:

• appId_min = Minimum (applications, key = deadline)

• dl_rate = dl (appId_min) / dl (appId)

• nr_rate = nr (appId_min) / nr (appId)

• if (wdl* dl_rate + wnr* nr_rate) < = threshold then:

• Final-priority.append (appId)

• Initial-priority.remove (appId)

• else:

• Final_priority.append (appId_min)

• Initial_priority.remove (appId_min)

• Return Final_priority

In the next step, a decision is made on the final
priority list of applications and stored in Final_priority.
To do this, an application with the lowest deadline is
searched and extracted from the list (line 10), called the
minimum deadline application. Then, according to line
11, the ratio of the deadline of the minimum deadline
application and the first application in the
Initial_priority list (candidate application) is
calculated. This ratio is also calculated for the number
of requests for these two applications, as shown in line
12.

Volume 15- Number 3 – 2023 (31 -42)

36

 [
 D

O
I:

 1
0.

61
18

6/
itr

c.
15

.3
.3

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 6 / 12

http://dx.doi.org/10.61186/itrc.15.3.31
http://ijict.itrc.ac.ir/article-1-569-en.html

According to line 13, the weighted combination of
these two criteria is then calculated and compared with
the decision threshold value. If the value of this
combination is less than the threshold, the candidate
application is added to the Final_priority list and
removed from the initial list. This is shown in lines 14
and 15. As in 17 and 18, the application with the lowest
deadline is added to the Ininal_priority list and
removed from the Initial_priority list.

IV. EXPERIMENTAL EVALUATION

In this section, a brief explanation of the simulation
environment is given first in Subsection A. Then the
evaluation criteria are explained in Subsection B. In
Subsection C the evaluation and comparison results of
the methods are presented.

A. Simulation Environment

To evaluate the proposed method the YAFS
simulation software is used. This software is a fog
environment simulator and has been used in related
works. YAFS also has graph-based features and
supports critical features of fog environments. It is also
open source and its source code is accessible [36]. Table
I shows the setting of the parameter’s value of links,
nodes, and applications, according to the Partition
method [23].

TABLE I. Parameter setting of Fog

Description Value Parameter

Bandwidth(bit/s) 6*106-6*107 BW Link

Propagation time

(ms)

3-5 PD

Numbers 100 Fog Node

Resources (MB) 10-25 RAM

Speed (Instr/ms) 100-1000 IPT

Terabyte (0.2-100) TB

Deadline (ms) 2600-6600 Deadline (ms) Application

Service (number) 2-10 Service(number)

res. Units 1-6 Resource

size (bytes) 1,500,000–

4,500,000

Packet

Other parameters related to the CFSP method are
listed in Table II.

TABLE II. Parameter setting of proposed CFSP method

Description Value Parameter

Resource

Allocation

weight

0.4 𝜆1 Fitness

Function

Node

Distribution

weight

0.25 𝜆2

Community

Connectivity

Weight

0.35 𝜆3

Deadline factor 0.85 wdl
 Application

prioritization Number of

requests factor

0.15 wnr

Decision

parameter for

prioritization

0.9 threshold

In this research, the workload consists of the
number of applications and their corresponding
execution requirement. This workload has been
borrowed from [23]. However, in [23] authors have
considered a fixed workload (20 applications), whereas
in this manuscript, we have changed the range of
workload from 10 to 80 applications in different
evaluations. The detailed specification of the workload
is given in Table I.

Other parameter related to the CFSP method are
listed in Table II. The values of the parameters in Table
II have been chosen empirically and based on several
evaluations.

B. Evaluation Metrics

An efficient application deployment method should
lead to efficient use of resources and meet the needs of
applications. Therefore, we evaluate the efficiency of
the proposed method from the following two aspects:
resource usage and meeting application’s needs.

To evaluate the method from the resource usage
aspect, we consider some metrics, such as the average
resource usage, placed application usage and the rate of
application placement in the cloud.

In addition, to evaluate from the aspect of meeting
application’s need, we use some other metrics such as
the delay, the deadline and, the availability. The
deadline metric determines the rate of applications that
receive responses before the deadline, the delay metric
indicates the average time that a requester waits for
receiving a response from an application, and the
availability metric shows the availability of applications
for their requesters.

1. Average Resource Usage:

The amount of resource use is evaluated as the
average amount of resources used by different
communities. To do this, the average memory, storage,
and processing speed of each community are calculated.
Equation 19 shows the average amount of memory used
by a community, Equation 20 shows the average
amount of storage space used, and Equation 21 shows
the average amount of processing speed of the
community. In these equations, ucf𝑖𝑗 means the amount

of resource usage of node fij. Finally, the average
resources used by all formed communities or the
average used resources are calculated as presented in
Equation 22.

𝑢𝐶𝑜𝑚𝑖
𝑅𝐴𝑀 =

∑ 𝑢𝑐𝑓𝑖𝑗
𝑅𝐴𝑀

|𝐶𝐹𝑖|

𝑗=0

∑ 𝑓𝑛𝑚
𝑅𝐴𝑀

|𝐹𝑁|

𝑚=0

 (19)

𝑢𝐶𝑜𝑚𝑖
𝑇𝐵 =

∑ 𝑢𝑐𝑓𝑖𝑗
𝑇𝐵

|𝐶𝐹𝑖|

𝑗=0

∑ 𝑓𝑛𝑚
𝑇𝐵

|𝐹𝑁|

𝑚=0

 (20)

𝑢Comi
𝐼𝑃𝑇 =

∑ ucfij
𝐼𝑃𝑇

|CFi|

𝑗=0

∑ fnm
𝐼𝑃𝑇

|𝐹𝑁|

𝑚=0

 (21)

 𝜑 =
∑ (𝑤 𝑅𝐴𝑀

∗uComi
𝑅𝐴𝑀+𝑤𝑇𝐵

∗uComi
𝑇𝐵+𝑤𝐼𝑃𝑇

∗uComi
𝐼𝑃𝑇

|𝐶𝑜𝑚|

𝑖=0
)

|Com|

 (22)

Volume 15- Number 3 – 2023 (31 -42)

37

 [
 D

O
I:

 1
0.

61
18

6/
itr

c.
15

.3
.3

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 7 / 12

http://dx.doi.org/10.61186/itrc.15.3.31
http://ijict.itrc.ac.ir/article-1-569-en.html

2. Placed application usage:

This metric calculates the number of satisfied
requests that are the answers of using the existing
deployed applications to the total number of requests
shown in Equation 23.

 𝜃 =
∑ R𝑖

𝑎𝑙𝑟𝑒𝑎𝑑𝑦
𝑟

𝑖=0

r
 (23)

R𝑖
𝑎𝑙𝑟𝑒𝑎𝑑𝑦 = {

1 𝑖𝑓 A𝑥 exist in the community
0 𝑖𝑓 A𝑥 not exist in the community

 (24)

Where R𝑖
𝑎𝑙𝑟𝑒𝑎𝑑𝑦

 is defined in Equation 24.

3. Meeting application deadline:

In calculating, the ratio of applications answered
before their deadline to all applications this criterion is
used (Equation 25).

 µ =
∑ 𝑥𝑖

𝑝
𝑖=0

p
 (25)

 𝑥𝑖 = {
1 𝑖𝑓 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡𝑖𝑚𝑒(𝐴i) ≤ 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝐴i)

0 𝑖𝑓 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡𝑖𝑚𝑒(𝐴i) > 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝐴i)
 (26)

Where Equation 26 indicates whether the application
deadline is met or not.

4. availability

The availability metric measures the application
ratio available to the associated request (𝑅𝐴𝑖

) (Equation

27)

ᶲ =
(∑ 𝑅𝐴𝑖

|𝑝|
𝑖=0)

𝑟
 (27)

𝑅𝐴𝑖
= {

1 𝑖𝑓 𝑎𝑙𝑙 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 𝑜𝑓 𝐴𝑖 𝑎𝑟𝑒 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒 𝑓𝑜𝑟 𝑅𝐴𝑖

0 𝑖𝑓 𝑎𝑙𝑙 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 𝑜𝑓 𝐴𝑖 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒 𝑓𝑜𝑟 𝑅𝐴𝑖

 (28)

Where Equation 28 shows application availability
as if the associated request could access all services of
the desired application.

5. Delay

The delay metric is calculated based on two criteria:
1) the Delay between the Requester and the application
(DR) and 2) the Delay between the application’s
Services (DS) (Equation 29).

 Definition 1: delay(DR) is delay between requester and an

application

 Definition 2: delay(DS) is delay between services of an

application

 𝜺 = delay(DR) + delay(DS) (29)

 𝜌(𝑓𝑛i, 𝑓𝑛j) = enij
𝑃𝐷 +

𝑃𝑎𝑐𝑘𝑒𝑡size

𝑒𝑛ij
𝐵𝑊

 (30)

 Where Equation 30 calculates the delay between

two devices on the shortest path between the source

device and the destination device.

C. Experimental results

In this section, the proposed CFSP method is
compared to other methods, such as Partition and ILP.
Partition method [23] is selected from the community-
based placement category as one of recent method in
this category. ILP method is chosen to represent the
policy-based placement category because it is widely
used in related research as an optimization method [29-
35]. In addition, different versions of the proposed
CFSP method are evaluated. The CFSP.v1 version
enhances the proposed CFSP method in terms of the
placement infrastructure aspect, and the CFSP.v2
version improves the proposed CFSP method in terms
of the application services placement aspect.

One of the important success factors of the
placement method is the extent of utilization of the
resources. As Fig. 2 shows, the proposed method is
better than the ILP and Partition methods because of the
creation of communities as placement infrastructure
and the balanced network capacity’s distribution
between them. Also, the CFSP.v2 version consumes
fewer resources and compared to other methods has a
better performance. This topic shows the impact of
improving communities and using multiple criteria to
prioritize applications.

Fig. 3 compares the methods using the existing
placement usage criterion. As the figure shows, the
proposed CFSP method outperformed the ILP and
Partition methods and demonstrated the impact of the
way the communities are created and used. Fig. 3 also
represents that the CFSP.v1 version uses the existing
placements better than CFSP and finally the CFSP.v2
version uses most of the existing placements. This
shows the effect of the improvements made in both
phases on the further development of the proposed
method.

Figure 2. Resource usage rate

Volume 15- Number 3 – 2023 (31 -42)

38

 [
 D

O
I:

 1
0.

61
18

6/
itr

c.
15

.3
.3

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 8 / 12

http://dx.doi.org/10.61186/itrc.15.3.31
http://ijict.itrc.ac.ir/article-1-569-en.html

Figure 3. Existing placement usage

Figure 4. Rate of placement in cloud

Figure 5. Average delay

Figure 6. Meet the deadline

Volume 15- Number 3 – 2023 (31 -42)

39

 [
 D

O
I:

 1
0.

61
18

6/
itr

c.
15

.3
.3

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 9 / 12

http://dx.doi.org/10.61186/itrc.15.3.31
http://ijict.itrc.ac.ir/article-1-569-en.html

Reducing the amount of application placement in
the cloud is an important criterion for evaluating the
performance of the placement method. As shown in Fig.
4, the proposed CFSP method places fewer applications
in the cloud and the improved versions of the method
also have better performance than others. In particular,
the CFSP.v2 version causes significant performance
differences compared to the CFSP method and the
CFSP.v1 version of it.

Fig. 5 shows the performance of methods by the
delay criterion. According to this figure, the CFSP
method has significantly less delay than the previous
methods. In addition, the CFSP.v2 performed better
than other methods, especially as the number of
applications increased.

One of the most important requirements for IoT
applications is to meet their deadline. The proposed
CFSP method performed better on this criterion than
previous methods such as ILP and Partition as shown in
Fig. 6. With the increase in applications, the CFSP.v2
version of the proposed method also provided the
deadline for more applications. Additionally, the better
results of the CFSP.v1 version compared to the CFSP
method show the impact of the way communities are
created.

The failure rate of nodes is changed from 10% to
80% to evaluate the method performance by the
availability criterion. In addition, two scenarios were
considered which are related to the number of
applications were considered. The first scenario refers
to the case where the system faces a normal workload,
i.e., 20 applications. The second scenario is related to
the condition when a higher load has entered the
system, i.e., 50 applications.

Fig. 7 shows the availability rate of applications
under a normal workload. As this figure shows, the
CFSP method has a similar performance to the Partition
method in this criterion, while the improvement of
CFSP.v1 and CFSP.v2 led to the superiority of the
proposed method over the Partition method.

In the situation where the system load has reached
50 applications, the CFSP.v2 version of the proposed
method still maintains its superiority over other
methods (Fig. 8). It must be mentioned that the high
resource degradation limits the planning of their use by
different methods. So that when this failure has reached
50%, the behavior of the methods becomes more
similar.

Figure 7. The availability rate in normal workload condition

Figure 8. The availability rate in high workload condition

Volume 15- Number 3 – 2023 (31 -42)

40

 [
 D

O
I:

 1
0.

61
18

6/
itr

c.
15

.3
.3

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 10 / 12

http://dx.doi.org/10.61186/itrc.15.3.31
http://ijict.itrc.ac.ir/article-1-569-en.html

V. CONCLUSION

In this paper, we proposed a novel Community-
based Fog Service Placement method called CFSP in
the fog environment. This method wells manage
resources and increase the QoS of the IoT applications.

The CFSP method, along with the connection
properties, considered the even distribution of the
resource and fog nodes in the phase of creating the
deployment infrastructure. This resulted in efficient
use of network capacity and meeting the need for more
applications. In addition, the proposed CFSP method
used the number of requests metric along with the
deadline metric for application prioritization in the
application service deployment phase. This is unlike
the previous investigations that they have applied a
single metric for application prioritization. The result
of considering multiple criteria is increasing the QoS
of applications and placing more applications.

Different versions of the method had an
evolutionary nature. The CFSP.v1 version improved
the community creation process of the base method,
CFSP, and the CFSP.v2 improved the application
prioritization of the CFSP.v1. So, the CFSP.v2 had the
highest performance among the others.

The result showed that the proposed CFSP method
totally performs better in various criteria by applying
an appropriate prioritization approach for service
placement and focusing on the optimal use of network
capacity and resources. Extensive simulation results
showed that the CFSP method significantly
outperforms the method related to the state-of-the-art
across various criteria. For example, the proposed
method increased the meeting deadlines by about 17
percent, resource utilization by approximately 7
percent, and availability by about 11 percent.

In future work, we intend to use the community
concept in the condition of fog node mobility. Also, we
will apply more criteria for prioritizing applications.

REFERENCES

[1] Ayoubi, M., Ramezanpour, M., and Khorsand, R., "An

autonomous IoT service placement methodology in fog
computing." Software: Practice and Experience 51, no. 5
(2021): p. 1097-1120.

[2] Shooshtarian, L., Lan, D., and Taherkordi, A. "A clustering-
based approach to efficient resource allocation in fog
computing." In International Symposium on Pervasive
Systems, Algorithms and Networks, p. 207-224. Springer,
Cham, 2019.

[3] Schaub, M.T., Delvenne, J.C., Rosvall, M. and Lambiotte, R.,
2017. The many facets of community detection in complex
networks. Applied network science, 2(1), p.1-13.

[4] Ahuja, M., R. Kaur, and D. Kumar, Trend towards the use of
complex networks in cloud computing environment. Int J
Hybrid Inf Technol, 2015. 8(3): p. 297-306.

[5] Cazabet, R. and G. Rossetti, Challenges in community
discovery on temporal networks, in Temporal Network Theory.
2019, Springer. p. 181-197.

[6] [6] Lei, Y. and S.Y. Philip, Cloud service community detection
for real-world service networks based on parallel graph
computing. IEEE Access, 2019. 7: p. 131355-131362.

[7] Chandusha, K., Chintalapudi, S.R. and Krishna Prasad,
M.H.M., 2019. An empirical study on community detection

algorithms. In Smart Intelligent Computing and Applications ,
p. 35-44, Springer, Singapore.

[8] Wang, W., Liu, D., Liu, X. and Pan, L., 2013. Fuzzy
overlapping community detection based on local random walk
and multidimensional scaling. Physica A: Statistical
Mechanics and its Applications, 392(24), p.6578-6586.

[9] Xie, J., Kelley, S. and Szymanski, B.K., 2013. Overlapping
community detection in networks: The state-of-the-art and
comparative study. Acm computing surveys (csur), 45(4), p.1-
35.

[10] Skarlat, O., S. Schulte, M. Borkowski and P. Leitner. Resource
provisioning for IoT services in the fog. in 2016 IEEE 9th
international conference on service-oriented computing and
applications (SOCA). 2016. IEEE.

[11] Elkhatib, Y., et al., On using micro-clouds to deliver the fog.
IEEE Internet Computing, 2017. 21(2): p. 8-15.

[12] Skarlat, O., M. Nardelli, S. Schulte, M. Borkowski and P.
Leitner, Optimized IoT service placement in the fog. Service
Oriented Computing and Applications, 2017. 11(4): p. 427-
443.

[13] Yousefpour, A., G. Ishigaki, R. Gour, and J. P. Jue, On
reducing IoT service delay via fog offloading. IEEE Internet of
things Journal, 2018. 5(2): p. 998-1010.

[14] Guerrero, C., I. Lera, and C. Juiz. On the influence of fog
colonies partitioning in fog application makespan. in 2018
IEEE 6th International Conference on Future Internet of Things
and Cloud (FiCloud). 2018. IEEE.

[15] Chunaev, P., Community detection in node-attributed social
networks: a survey. Computer Science Review, 2020. 37: p.
100286.

[16] Interdonato, R., et al., Feature-rich networks: going beyond
complex network topologies. Applied Network Science, 2019.
4(1): p. 1-13.

[17] Abbasi, M., E.M. Pasand, and M.R. Khosravi, Workload
allocation in iot-fog-cloud architecture using a multi-objective
genetic algorithm. Journal of Grid Computing, 2020. 18(1): p.
1-14.

[18] Reddy, K., AK Luhach , B. Pradhan, JK Dash and DS Roy, A
genetic algorithm for energy efficient fog layer resource
management in context-aware smart cities. Sustainable Cities
and Society, 2020. 63: p. 102428.

[19] Natesha, B. and R.M.R. Guddeti, Adopting elitism-based
Genetic Algorithm for minimizing multi-objective problems of
IoT service placement in fog computing environment. Journal
of Network and Computer Applications, 2021. 178: p. 102972.

[20] Al-Tarawneh, M.A., Bi-objective optimization of application
placement in fog computing environments. Journal of Ambient
Intelligence and Humanized Computing, 2021. 12(2): p. 1-24.

[21] Velasquez, K., DP Abreu, L. Paquete, M. Curado, and E.
Monteiro. A rank-based mechanism for service placement in
the fog. in 2020 IFIP Networking Conference (Networking).
2020. IEEE.

[22] Kimovski, D., et al. Adaptive nature-inspired fog architecture.
in 2018 IEEE 2nd International Conference on Fog and Edge
Computing (ICFEC). 2018. IEEE.

[23] Lera, I., C. Guerrero, and C. Juiz, Availability-aware service
placement policy in fog computing based on graph partitions.
IEEE Internet of Things Journal, 2018. 6(2): p. 3641-3651.

[24] Lera, I., C. Guerrero, and C. Juiz. Comparing centrality indices
for network usage optimization of data placement policies in
fog devices. in 2018 Third International Conference on Fog and
Mobile Edge Computing (FMEC). 2018. IEEE.

[25] Filiposka, S., A. Mishev, and C. Juiz, Community-based VM
placement framework. The Journal of Supercomputing, 2015.
71(12): p. 4504-4528.

[26] Skarlat, O., M. Nardelli, S. Schulte, and S. Dustdar. Towards
qos-aware fog service placement. in 2017 IEEE 1st
international conference on Fog and Edge Computing
(ICFEC). 2017. IEEE.

[27] Vijouyeh, L. N., Sabaei, M., Santos, J., Wauters, T., Volckaert,
B., & De Turck, F., Efficient application deployment in fog-
enabled infrastructures. In 2020 16th International Conference
on Network and Service Management (CNSM), 2020, p. 1-9.
IEEE.

Volume 15- Number 3 – 2023 (31 -42)

41

 [
 D

O
I:

 1
0.

61
18

6/
itr

c.
15

.3
.3

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 11 / 12

http://dx.doi.org/10.61186/itrc.15.3.31
http://ijict.itrc.ac.ir/article-1-569-en.html

[28] Sriraghavendra, M., Chawla, P., Wu, H., Gill, S.S. and Buyya,
R., DoSP: A Deadline-Aware Dynamic Service Placement
Algorithm for Workflow-Oriented IoT Applications in Fog-
Cloud Computing Environments. In Energy Conservation
Solutions for Fog-Edge Computing Paradigms, 2022, p. 21-47,
Springer, Singapore.

[29] Baranwal, G. and D.P. Vidyarthi, FONS: a fog orchestrator
node selection model to improve application placement in fog
computing. The Journal of Supercomputing, 2021: p. 1-28.

[30] Baranwal, G. and D.P. Vidyarthi, FONS: a fog orchestrator
node selection model to improve application placement in fog
computing. The Journal of Supercomputing, 2021: p. 1-28.

[31] Gasmi, K., Dilek, S., Tosun, S. and Ozdemir, S., “A survey on
computation offloading and service placement in fog
computing-based IoT”, the Journal of Supercomputing, 78(2),
2022, p.1983-2014.

[32] Heng L, Yin G, Zhao X. Energy aware cloud‐edge service
placement approaches in the Internet of Things
communications. International Journal of Communication
Systems. 2022 Jan 10;35(1):e4899.

[33] Velasquez, K., DP Abreu, M. Curado and E. Monteiro, Service
placement for latency reduction in the internet of things.
Annals of Telecommunications, 2017. 72(1-2): p. 105-115.

[34] Salaht, F., F. Desprez, A. Lebre, C. Prud’Homme, and M.
Abderrahim Service placement in fog computing using
constraint programming. in 2019 IEEE International
Conference on Services Computing (SCC). 2019. IEEE.

[35] Arkian, H.R., A. Diyanat, and A. Pourkhalili, MIST: Fog-based
data analytics scheme with cost-efficient resource provisioning
for IoT crowdsensing applications. Journal of Network and
Computer Applications, 2017. 82: p. 152-165.

[36] Yang, L., J. Cao, G. Liang, and X. Han, Cost aware service
placement and load dispatching in mobile cloud systems. IEEE
Transactions on Computers, 2015. 65(5): p. 1440-1452.

[37] Lera, I.a.C.G., YAFS, Yet Another Fog Simulator.

Masomeh Azimzadeh received

her B.Sc. degree in Software

Engineering from the Kharazmi

University, Tehran, Iran, in 2001,

and the M.Sc. degree in Software

Engineering from the Islamic

Azad University South Branch,

Tehran, Iran, in 2007. Now she is

a Ph.D. student in Software Engineering in the Science

and Research Branch of Islamic Azad University,

Tehran, Iran. Her research interests are in the areas of

Fog Computing, IoT, Learning System and

Information Retrieval.

Ali Rezaee is an Assistant

Professor with the Science and

Research Branch of IAU. He is

the Chair of Distributed Systems

Lab. and Formal Verification lab.

at IAU. He is program leader for

graduate studies in Computer

Engineering in United Arab Emirates Branch of IAU.

Also, He is with Shakhes CPA as the Head of R&D,

Senior Data Scientist and Solution Architect. His main

research interests include Software Architecture,

Formal Modeling and Verification of Dynamically

Reconfigurable Distributed Systems.

Somayyeh Jafarali Jassbi

received the M.Sc. and Ph.D.

degrees in Computer Architecture

Engineering from the Islamic Azad

University Science and Research

branch, Tehran, Iran, in 2007 and

2010 respectively. In 2010, she

joined the Department of

Computer Engineering, Islamic Azad University,

Science and Research Branch. Her current research

interests include Cloud Computing, Internet of Things

(IoT), Wireless Sensor Network and Computer

Architecture. She was head of Computer Department

in 2012. She was also an active member of young

researcher club from 2004. She has written, translated

and published several professional books and papers in

her fields. She is currently an Assistant Professor at

Science and Research Branch of Islamic Azad

University (SRBIAU).

Mehdi Esnaashari received the

B.Sc., M.Sc. and Ph.D. degrees in

Computer Engineering from the

Amirkabir University of

Technology in Iran, in 2002, 2005,

and 2011 respectively. He worked

at Iran Telecommunications

Research Center as an Assistant Professor from 2012

to 2016. Currently, he is an Assistant Professor in

Computer Faculty of K. N. Toosi University of

Technology. His research interests include Computer

Networks, Learning Systems, Soft Computing and

Information Retrieval.

Volume 15- Number 3 – 2023 (31 -42)

42

 [
 D

O
I:

 1
0.

61
18

6/
itr

c.
15

.3
.3

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

Powered by TCPDF (www.tcpdf.org)

 12 / 12

http://dx.doi.org/10.61186/itrc.15.3.31
http://ijict.itrc.ac.ir/article-1-569-en.html
http://www.tcpdf.org

