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Abstract—This paper presents a new Proportionate Normalized Least Mean Square (PNLMS) adaptive algorithm
using a soft maximum operator for sparse system identification. To provide a high rate of convergence, soft maximum
operator is employed along with a weighting factor, which is proportional to an estimation of output mean square
error (MSE). Simulation results show the superiority of the proposed algorithm over its PNLMS-based counterparts.
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. INTRODUCTION

In the last two decades, adaptive filters have
achieved wide applications in many signal processing
areas [1]. One important area is sparse system
identification, which is employed in many applications
including channel estimation [2], [3], echo cancelation
[4], [5]. In a sparse system, only a few coefficients of
the impulse response are active (non-zero) and many
of its coefficients are almost inactive (zero or near
Zero).

In  the identification of sparse systems,
conventional adaptive filters could be improved, so
that the convergence rate is increased while the
computational load even decreases. To this end, sparse
adaptive filters have been proposed to exploit the
sparsity of the filter coefficients [6], [7], [8]. As a
special case, the Normalized Least Mean Square
(NLMS) adaptive algorithm which employs a unique
step-size for all filter coefficients has a slow
convergence rate in identification of sparse impulse
responses. To mitigate such deficiency, the

Proportionate NLMS (PNLMS) algorithm has been
proposed which updates each filter coefficient
individually proportional to its magnitude [9]. In
addition, some other proportionate adaptive algorithms
have been suggested to further improve the
performance of NLMS. One of such algorithms is
Improved PNLMS (IPNLMS) which employs a
combination of proportionate and non-proportionate
updating [4], [10]. Moreover, in [11], a p-law PNLMS
(MPNLMS) algorithm has been proposed which
calculates an approximation of optimal proportionate
step-size.

Another variant of PNLMS algorithm, so-called
Individual Activation Factor PNLMS (IAF-PNLMS),
employs an individual activation factor for each
adaptive filter coefficient, as opposed to a global
activation factor in the standard PNLMS algorithm
[12]. The IAF-PNLMS algorithm achieves a better
distribution of the adaptation energy over the filter
coefficients than the standard PNLMS does. Thereby,
for systems exhibiting high sparseness, this approach
achieves faster convergence, outperforming both the
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PNLMS and IPNLMS algorithms. A different class of
PNLMS algorithms has also been suggested in [13]
which takes into account the sparseness measure of
the estimated impulse response via a modified
coefficient update function and adapts dynamically to
the level of sparseness using a new sparseness-
controlled approach.

In the weight update process, on the other hand,
one can exploit sparsity with a sparsity promoting
regularization term [14-16]. The method in [14] is
based on minimizing a regularized MSE criterion. The

proposed method in [15] employs a 1° norm in
combination with Least Mean Square (LMS)
algorithm which results in an improved version of

LMS, so-called |°-LMS. Moreover, |° norm sparsity
promoting regularization term was employed with
PNLMS algorithm in [16].

In addition to I° norm, I* norm penalty has also
been utilized in conjunction with PNLMS to improve
both convergence speed and excess MSE of adaptive
filter [17]. Besides, the relation between basis pursuit (

I* norm optimization) and NLMS algorithm has been
investigated in [18] which lead to a new version of
PNLMS. Recently, a non-uniform norm ( P —norm

like) constraint LMS algorithm has also been proposed
[19]. Differently, Maximum a Posteriori (MAP)
estimation formulation permits the study of a number
of prior distributions which naturally incorporate the
sparse property of filter coefficients [7]. Consequently,
a MAP-LMS adaptive filter [7] and further, a
compressed sensing block based MAP-LMS have
been introduced [20].

The convergence speed of the PNLMS algorithm,
though very high initially, however, slows down at a
later stage, even becoming worse than NLMS. In
[25_], this problem is addressed by introducing a
penalty of constructed 11 norm of the coefficients in
the PNLMS cost function which favors sparsity. This
helps in the shrinkage of the coefficients, especially
the inactive taps, thereby arresting the slowing down
of convergence.

In [21], a family of block-sparse PNLMS adaptive
algorithms is proposed that improve the performance
of identifying block-sparse systems. They are based on
the optimization of a mixed norm of the adaptive
filter’s coefficients.

In this paper, in order to increase the convergence
rate of PNLMS, we modify the standard PNLMS
algorithm. To do this, a weighted soft maximum
operator is introduced and employed instead of a hard
maximum operator. The motivation behind this idea is
to consider the effect of coefficients in the whole
duration of convergence, especially for iterations in
which some coefficients are less than the predefined
activation thresholds. This procedure improves the
performance of the PNLMS algorithm.

We further weight the terms in the soft maximum
so that the weighting factor is decreased throughout
the convergence of algorithm. The decreasing of the
weighting factor is linearly proportional to the

estimated MSE. Finally, we show the superiority of
our proposed algorithm using numerical simulations.
Il.  FAMILY OF PNLMS ADAPTIVE FILTERS
Suppose the input signal at discrete time index N
is X(Nn) and sparse impulse response of the unknown
system is W, =[W, o, W, ;,..., W, y_;]" where N is

the length of the impulse response. As a result, the
system output is

y(n) =wgx(n) @)

where x(n) =[x(n),x(n=1),...,x(n—N +D] s
the tap-input vector. Moreover, the desired signal is
d(n)=y(n)+v(n) where Vv(n) is the
measurement noise. The noise V(N) is assumed to be
a zero-mean white Gaussian noise with variance o-v2

and uncorrelated with the input signal. The error signal
is defined as

e(n) =d(n)—w" (N)x(n) 2

where w(n) = [w, (n), w,(n),..., w_,(M]" s the
estimated impulse response at time index N .
A wide range of adaptive filter algorithms,

including PNLMS, employs the following update
formula [4]:

HG(n)e(n)x(n) 3
X" (MG(n)x(n) +¢

where G(n) =diag{g,(n), g,(n)...., gy, (N} is
the gain matrix, £ > O is the step-size parameter that
control the convergence rate of the algorithm, and
¢ >0 is a regularization parameter that prevents the
division by zero.

w(n+1)=w(n)+

Equation (3) is a recursive equation derived using
minimization of a cost function which leads to the
minimization of the estimated MSE [27, 28]. To

conduct the weight update, an initialize for w(n =0)
is required, e. g. w(0) =0,,,. Then (3) is repeated to

some steps N which is typically large, so that the
estimated MSE converges to a steady state. The main
idea of the proportionate updating is to assign different
step sizes to different coefficients based on their
optimal magnitudes. The bigger the magnitude, the
larger the step-size assigned [26]. The diagonal
elements of gain matrix determine the individual step-
sizes of each filter coefficient.

For the standard NLMS algorithm, G(n) =1,

which means all active and inactive coefficients have
the same step-size. As a result, a slow convergence
rate can be achieved in identification of sparse
systems. In contrast, the active coefficients of PNLMS
have larger step-sizes than inactive coefficients, to
achieve a faster convergence. In the following, we
describe a variety of the PNLMS algorithms in detail
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and then we will propose a new PNLMS adaptive
filter.
A. Standard PNLMS

In the standard PNLMS algorithm, the gain
elements are defined as [12]

g, (=2 (4)

Z(”i (n)

where 1=0,1,..,N—=1 and ¢, (n) is the
proportionality function which is
@ (n) = max(f(n),|w;(n)|) (5)

and f (n) is the activation factor defined as
f(n) =z max(s,||w(n)|l..) 6

in which ||[w(n)||,, 7, and J are infinity norm,
activation parameter, and initialization parameter,
respectively [12]. Parameter 6 permits starting the
adaptation at N = 0 when all filter coefficients are
initialized to zero [12]. Parameter 7 prevents an
individual coefficient from freezing when its
magnitude is much smaller than that of the largest
coefficient [10], [12].

B. IPNLMS

In IPNLMS, a combination of proportionate and
non-proportionate update is employed. The gain
elements, therefore, are [4]

g (m=""1arr UM

ST ()
2N [w(n) |l +&

where relative weighting between proportionate and
non-proportionate is controlled by a parameter

—1<r<land g is a small positive constant that
prevents division by zero [4].

C. MPNLMS

The MPNLMS algorithm employs a f -law
function in definition of the activation factor and
proportionality ~ function  which are  defined,
respectively, as [11]

@ (n) = max(f(n), F(lw;(n)) 8)
f(n) =zmax(s,[| F(w(n))L.) )
where

Fw) =[F(w, ), F(w,[),...F(wy_ ] and

F(.)is a f -law logarithmic function as [11]
_ In(@+ 1w (M) )

F(w (M) = s )

where f=1/¢ in which £ is a small positive

number and its value is chosen based on the
measurement noise level [11].

(10)

International Journa

f.(0) = 0.01/N [12].
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Figure 1: Values of weighted soft-max operator in
terms of 4

D. IAF-PNLMS

In IAF-PNLMS, individual coefficients have their
own activation factor defined as [12]

fim=ylw[+0A-7)e(n-1) @1

where 0 < <1 and activation factors are initialized
with a small positive constant, typically,

IJICTR Volume 8 - Number 3- Summer 2016

THE PROPOSED ALGORITHM

The main idea of our proposed algorithm is to
employ a soft maximum operator, instead of
maximum operator defined in (5), to improve the
performance of PNLMS. It is notable from (5) that the
result of maximum operator is common and
independent from the magnitude of individual
coefficients, for those filter coefficients which are less
than  the  predefined activation  thresholds.
Consequently, in some iterations, the PNLMS
performance is similar to the NLMS algorithm which
has a common step-size for all coefficients. As a
result, a low rate of convergence is derived for a
sparse impulse response. In soft maximum, however,
the effect of the coefficients is always considered,
even in the initial iterations.

A. Soft maximum operator
The soft maximum of two variables is defined

T T T

softmax(x,y),
A=0.5 ©

Magnitude
w

5 10 15 2(
Point number

Figure 2: Comparison of max and soft-max operators
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as[21]
soft max(x, y) = log {exp(x) + exp(y)} . (12)

The soft maximum function has desirable properties
such as infinitely differentiability and convexity [21].
It is also notable that, when the difference between
two variables is large, the amount of soft maximum
approaches that of the maximum operator. We also
extend the concept of soft-max operator as follows:

p=log{aexp()+(-Dexp(y)} (@)
where @ is the weighted soft-max operator of X and
y, and 0<A<1 is a weighting factor. For

A =0.5, the weighted soft-max behaves as a scaled
soft-max.

As will be shown in the following, the benefit of
the weighted soft-max operator is that with selecting

A >0.5, effect of X on the soft-max result is
increased, either X is minimum or maximum. On the

other hand, selecting A < 0.5, result of soft-max is
closer to Y than those for A =0.5. We will later
show that this property makes an additional control of
coefficient update during the convergence; hence a
better convergence performance is achieved.

In order to visualize the effect of weighted soft-
max operator, we first consider X =0.5 and y =3
as minimum and maximum values, respectively. Fig.
1 illustrates the effect of A on the result of soft-max

operator. The result of soft-max for A = 0.5is also
shown in this figure. As can be seen, the result with

A =0.5 which is equal to 2.386, tends the
maximum. As can be seen, assuming A = 0.5, the
value of weighted soft-max operator is ¢ =2.386 ,
which tends the maximum value Y .

those for A =0.5 |, either X is minimum or

maximum. On the other hand, choosing A < 0.5, the
effect of ¥ on the soft-max result is increased. As a

result, unlike max operator which its value is equal to
the amount of maximum, the value of soft-max is a
function of both maximum and minimum values.

B. Weighting factors for the proposed algorithm

To further improve the performance of the
adaptive algorithm, time-varying weighting factors
A(n) and 1—A(Nn) are assigned to |Wi(n)| and
f(n) , respectively. Therefore, the weighted soft
maximum is proposed instead of a maximum, as

@ (n)

= log {2(n) exp(| w; (n) [)+ (L— A(n))exp(f (n))}
(14)

fori=0,1..,N-1.

As will be explained in the next section, to
expedite the convergence of algorithm, the weighting

factor A(N) could be a decreasing function with time
such that when the active coefficients W; (n) reach to
the final values, all proportionality functions ¢; (Nn)
approach the amount of f (n).

C. Experimental validation of the proposed

algorithm

To validate the steps of our proposed soft-max
PNLMS (SM-PNLMS) algorithm, we conduct some
simulation experiments. In the first experiment, we
evaluate the performance of SM-PNLMS employing

time-invariant A(N) = A . Similar to [12], the input

In addition, the result of weighted SoTt-max 15
dependent on the amount of A such that for
0.5< A <1, it is closer to the maximum while for
0<21<0.5, it tends more to the minimum. For
extremes A =0and 4 =1, the results of soft-max

are equal to the minimum and the maximum values,
respectively.

We further consider X and Y as two scalar

variables having 21 values shown in Fig. 2. In this
figure, from left to right, X has twenty one increasing
values from 0 to 6 while Y has twenty one decreasing
values from 6 to 0. The results of max operator are
shown with an extra value of 0.2 to distinguish from
X -and Y -points. The results of soft-max operator are

also shown for A =0.5and 4 =0.85. As can be
seen, the results with A = 0.5tend the amounts of
maximum of X and Y, especially in cases where the

maximum is much bigger than the minimum. As
opposed to the max operator, the result of soft-max, is
affected from both maximum and minimum. The

results of soft-max for A = 0.85 are closer to X than

signal is assumed to be correlated unity-variance
AR(2) as follows,

x(n) = b, x(n-1) +b,x(n—2) +u(n) (15)

where b, =0.4, b, =-0.4, and u(n) is a white
Gaussian noise with variance auz =077 . In
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Figure 3: Validation of the proposed algorithm
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Figure 4: Variation of misalignment with respect to

the amount of ¢

addition, £z =0.5and the measurement noise V(n)

is white Gaussian with variance o’ =107 to

achieve SNR=30 dB. The sparse impulse response is
assumed with length N =100 and includes only

four active coefficients at locations {1,30,35,85}
with values equal t0{0.1,1.0,—0.5,0.1}.

For evaluation, the normalized misalignment
measure (in dB) is employed as [12]

K(n) =20 |Og 10 ” Wo _W(n) ”2

The resulted normalized misalignment errors are
averaged over 100 independent trials. Fig. 3 illustrates
five misalignment curves which are derived from
NLMS, standard PNLMS, and the proposed algorithm
with time-invariant weighting factors
A=0.01,0.50.99 . The performance of NLMS
and PNLMS are shown for comparison. It is notable
from Fig. 3 that employing weighting factor
A =0.99 results in the highest convergence rate
with the maximum steady-state misalignment error.
On the other hand, employing A = 0.01 results in a
slow convergence, close to that of the NLMS. In
addition, the performance of the proposed algorithm
with 4 = 0.5 is close to that of PNLMS.

D. Modified version of the proposed algorithm

As shown in Fig. 3, values of A(n) close to one,
results in a higher convergence rate while lower values
of A(n) cause the algorithm to achieve a less steady-
state error. As a result, to expedite the convergence,
one can reduce the weighting factor A(Nn) gradually

such that all the proportionality functions ¢;(n)

approach the scalar f(n). As f(n)is the same for

all coefficients, in such a case, the SM-PNLMS
behave similar to the NLMS algorithm. As can be seen
from Fig. 3, the NLMS algorithm achieves the
minimum steady-state misalignment error. Therefore,
we expect the SM-PNLMS algorithm achieves a low
steady-state error, once the amount of A(n) becomes

low (near zero). In order to decrease the weighting

Value of ),

0 500 1000 1500 2000
No. of iteration

Figure 5: Variation of A(N) with respect to the
value of &

factor, we initially employ the following linear
function:

A(n) = aA(n-1) (17)

where O << a <1 is a constant which should be
close to one such as to decrease the weighting factor
slowly in accordance with the convergence time.

Fig. 4 illustrates the variation of misalignment for
various amounts of « . A small ¢ (still near one)
means a fast transition of A(n) from one to zero,
while a bigger o very close to one means slow

) 16
A 12

| JY&Eish \ofi48)8. - Rhenvaridicdannhed Q) evith

respect to ¢ are shown in Fig. 5.

As can be seen from Fig. 4, forar =0.99999 the
algorithm acts similar to the case of time-invariant
A(n) . The reason is because the variation (reduction)

of A(N) -as shown in Fig. 5- is so slow that we could
assume that variation is negligible. On the other hand,
for smaller ¢ , for example ¢ =0.96 , A(n)

dramatically drop to zero and hence, convergence
behavior of the algorithms are close to that of NLMS,
as shown in Fig. 4.

Value of ),

r r r

0 500 1000 1500 20!
No. of iteration

Figure 6: Variation of A(N) with respect to the
value of p
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E. Further modification: A weighting factor based on
an estimation of MSE

As mentioned in (17), the value of A(Nn) and
hence, the performance of algorithm strongly depends
on the parameter ¢ and the starting point A(0)
which is not desirable. In addition, as shown in Fig. 4,
for or's close to one, typically @ =0.99999 | the
steady-state misalignment of the proposed algorithm

is relatively high in comparison to that of the NLMS
and PNLMS algorithms. On the other hand, for a
smaller ¢ , typically 0.96 in our simulation A(n)
drop to zero very fast, before finalizing the
convergence. As a result, the algorithm behaves
similar to the NLMS algorithm, during the
convergence and hence, its convergence rate is
reduced. To mitigate this issue, A(N) could be
reduced gradually with convergence of the algorithm.
To this end, we may correlate the weighting factor
with the MSE of the adaptive filter. When the
algorithm is in initial stages of convergence, the MSE
is high and thus the value of A(n) should be near
one. After decreasing the MSE error floor, the amount
of weighting factor should be decreased.
We estimate the MSE by averaging the square error

e?(n) by a one pole low-pass filter as
e’(n), n=0

YO -y aomety, nso

where 0 << <1 is the forgetting factor and
typically is assumed to be close to one.
We then make A(N) to be a function of the

estimated MSE, so that it could reduce gradually
during the convergence of algorithm. To this end, we
define

() = p(E(N) = & (M) (19)

as scaled and normalized output MSE, where

¢(n) =log () and
0 T 13 T

NLMS

PNLMS

SM-PNLMS

Misalignment (dB)
N
o

0 500 1000 1500 2000
No. of iteration

Figure 7: Comparison of our proposed algorithm with
other PNLMS algorithms
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0 r
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Figure 8: Variation of A(n) in terms of N
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Figure 9: Comparison of our proposed algorithm with
other PNLMS algorithms

& e (N) = max{&(0),---,&(n) } . The parameter
p is a constant which can be chosen such that to be

inversely proportional to the amount of the estimated
steady-state MSE. According to the definition of (19),

£(n) starts from zero and approaches —1 on the
mean. Accordingly, we propose to assign ﬂ(n) as

A(n) = max{0,1+&(n) }. (20)
The summation1+ &(N) in (20) is to set the initial

amount of A(N) to be one. In addition, the max
operation in (20) acts as a hard limitation to restrict
the minimum amount of A(N) to be zero. Therefore

during convergence, A(N) starts from one and

gradually reduces to finally reach to a value near zero
at the end of convergence.

Fig. 6 illustrates the variation of A(Nn) in terms of
n for different values of p for the abovementioned
simulation. The curves are obtained employing

n=0.99.

Our extensive simulations illustrate that the
performance of the proposed algorithm is not highly
sensitive to the amount of p , however, a suitable
choice to achieve a high performance is obtained
when the amount of p is inversely proportional to the

estimated steady-state MSE.
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Table 1: The proposed algorithm

Initialize:  w(0)=0,,,

Stepl:  g(n)=d(n)—w' (N)x(n)
Step 2: 2 =
v(n)= {nyr(]z—lr)] + (01— 7)e’(n),n>0
step3:  £(n) =log,,w(n)
Stepa: £ (n)=max{&(0), -, &(n) }
step5:  g(n) = p(&(n) - &, (N))
step6: 4(n) =max{0,1+&(n) }
Step7: () = log{ A(n) exp(| w, () |
+(1—A(n))exp(f (n) )}

Step 8: g.(n) _ (/’i(n)

Z% (n)
Step9:  G(n) =diag{g,(n), 9,(n),.-, gy 1 ()}

Step 10: w(n+1) = w(n) + TyG(n)e(n)x(n)
X' (MG(n)x(n)+¢&

Step11: Gotostepl

Now, if we replace the weighting factor (17) with
the function of (20) and substitute (20) in (14), an
improved performance for SM-PNLMS is obtained. A
typical result using AR(2) input signal is shown in
Fig. 7.

As can be seen, the convergence rate of SM-
PNLMS is better than PNLMS and NLMS so that

Volume 8 - Number 3. Summer 20161J1C TR ILE IR

Igorithms. The results obtained by averaging over 10
independent trials. For all simulations, a colored
speech-like signal is used as input signal. This signal is
obtained by passing a white Gaussian noise through a
low-pass filter which has coefficients

[0.3574, 0.9, 0.3574] [22]. Variance of input is
assumed to be equal to af =1. We evaluate our

proposed algorithm using 7 =0.99 and p =0.25

and compare it with NLMS, PNLMS, IPNLMS and
MPNLMS.

In the first simulation experiment, the sparse
impulse response with length N = 256 is considered.
The  active  coefficients are  located  at

{1,50,100,12 0,200,220 } = with  the  values
{0.1,1.0,-0.5,0.4,-0. 2,1.0}, respectively.

The step-size is equal to 0.95 for all algorithms.
The variation of A(N) in terms of N is shown in Fig.

8. As can be seen, it gradually reduces from its initial
value and after around 2000 iterations; it reaches
below 0.2 which means the algorithm approaches
NLMS after initial convergence. The variations of
misalignment for algorithms are shown in Fig. 9. As
we can see, to achieve — 35 dB, the proposed SM-
PNLMS algorithm requires 4000 iterations, while the
MPNLMS, IPNLMS, PNLMS, and NLMS require
about 5400, 5900, 8800, 14000 iterations, respectively.
As a result, SM-PNLMS, achieves the fastest
convergence rate among the mentioned algorithms.

In the next simulation, we evaluate identification
of a simulated acoustic room impulse response (RIR)
which is derived using image methods [23]. For this
simulation, the dimension of the room s
4™ x4™ x3™ and the locations of the source and

receiver are (1, 0.95, 1.5) meters and
(1.1,1.05,1.53) meters, respectively. Fig. 10 shows

misalignment of SM-PNLMS reachesmlJl
570 iterations while PNLMS and NL

level after 881and 1054 iterations, respectively. Table
1 illustrates the summary of the proposed algorithm.
numerical simulations

In this section, we employ Monte Carlo
simulations to evaluate the performance of the
proposed algorithm and compare it with other

PNLMS

MPNLMS

Misalignment (dB)

0 1000 2000 3000 4000 500
No. of iteration

Figure 11: Comparison of the pro

HY) DAL A AC )

VIt T Ot TN EIvio T oaocoar

impulse response. International joumi

OT ﬁ%ﬁﬂn@'@- Wb ANSRRRRIR 21 gparse

impulse responses.

For simulation, the step-size is considered 1.2 for
all algorithms and other specifications are same as the
previous experiments. Fig. 11 compares the
misalignment of the proposed SM-PNLMS algorithm
ith its counterparts for the above RIR with length
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N =333 . As can be seen, the proposed algorithm
achieves a higher rate of convergence, so that its
misalignment error reach —20 dB after 1400
iterations while it takes 1700, 2200, and 2800
iterations for IPNLMS, MPNLMS, and PNLMS,
respectively.

IV. CONCLUSIONS

We proposed a new Proportionate Normalized
Least Mean Square (PNLMS) adaptive algorithm for
sparse system identification. This algorithm employs a
weighted soft maximum operator along with a variable
weighting factor to achieve a high convergence rate.
We experimentally found a formula for the weighting
factor in terms of the estimated mean square error
(MSE). Finally, we showed the superiority of our
proposed algorithm over its counterparts using
numerical Monte Carlo simulations.
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