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Abstract—Utilizing 10T technologies for monitoring large-scale smart facilities such as power, water and gas distribution
networks has been the subject of many studies recently. The aim is to detect anomalous events in the network due to
elements’ failure, bad designs, attacks or abuses of the network and alert the network operators in a timely manner. As
the centralized cloud-based approaches are impractical in time-critical and real-time anomaly detection applications
due to 1) high sensor-to-cloud transmission latency 2) high communication cost and 3) high energy consumption at the
sensor nodes, the distributed anomaly detection methods based on Deep Neural Networks (DNN) have been applied in
past studies vastly. In these methods, in order to detect anomalies in real-time, copies of the anomaly detection model
are placed at the sensor nodes (rather than placing one at the cloud node) reducing the sensor-to-cloud transmissions
significantly. Nevertheless, new normal samples collected at the sensor nodes still need to be transmitted to the cloud
node at predefined intervals to re-train the distributed anomaly detection DNNs. In order to minimize these sensor-to-
cloud transmissions during the retraining process, in this paper, two well-known lossless coding algorithms: Huffman
Coding and Arithmetic Coding were studied and it was observed that the Huffman and Arithmetic Coding were able
to reduce the transmission traffic up to 50% and 75% respectively using two 10T benchmark datasets of pipeline
measurements. Besides, the Huffman Coding shown to be computationally feasible on resource limited sensors and
resulted in up to 10% saving in energy consumption on each sensor resulting in longer network longevity. Moreover,
the experimental results showed that the auto-encoder DNN could outperform the one-class SVM in the iterative
distributed anomaly detection method.
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. INTRODUCTION

Utilizing the 10T technologies for monitoring the
large-scale smart city facilities such as intelligent
transportation systems, utility distribution networks
(power, water and gas distribution networks), waste
collection and sewage collection networks has been the
subject of many studies recently [1-3]. The aim is to
detect anomalous events and incidents such as faulty
elements, bad designs, attacks or abuses of the network
and alert the operators in a timely manner. For
monitoring the smart cities’ infrastructures such as
pipelines, these facilities are equipped with 10T devices
and wireless sensors in order to measure local metrics
as the raw data and process and transmit them to the
edge of the network and subsequently to the cloud for
further analysis [2]. Unexpected and unusual events in
the environment such as element failures, attacks or
abuses may cause measurements that lie far from the
normal pattern of data and are called anomalies [4]. In
other words, anomalies are unusual observations that
differ from the majority of the data and anomaly
detection is the process of identifying and reporting
anomalous patterns [2]. There are three approaches in
anomaly detection: (1) supervised; which requires
labelled dataset; labels are either ‘normal’ or
‘abnormal’ (2) Unsupervised; in which labels are not
needed and statistical methods are applied to spot
outlying parts of data as anomalies and (3) Semi-
supervised; where training data needs to be labelled,
however only the normal data is used for the training
[2]. Auto-encoder neural networks and one-class
Support Vector Machines(SVM) are used in this
approach [5]. Semi-supervised methods have shown
very promising results in 10T applications and we have
used them in this study as well.

With respect to the computation infrastructure, the
anomaly detection task could be performed either at the
cloud node (centralized architecture) or at the loT
sensors (distributed architecture). The former, in which
the anomaly detection model is placed at the cloud
node, involves high sensor-to-cloud transmission
latency which is not acceptable particularly in time-
critical and real-time 10T applications. Moreover, due
to continuous transmission of sensor measurements to
the cloud over the wide area network, the cloud-based
model incurs high communication costs. In contrast, in
the distributed architecture, the copies of Deep Neural
Network (DNN) anomaly detection model are placed
at the 10T sensors, to reduce the transmission costs and
also to achieve desirable response time in anomaly
detection process. However, there are two important
challenges in the distributed anomaly detection models
that needs to be addressed: (1) Training the anomaly
detection model with the normal data could not be done
on the sensor nodes due to the limited computational
capacity on sensors and (2) the initial training dataset
is very small and limited. To address the first
challenge, the training process is performed on the
cloud node and the model parameters are provided to
the sensor nodes; however as mentioned in the second
challenge, due to limited number of normal samples at
the beginning, this process is repeated as new normal

Volume 16- Number 1 — 2024 (11 -19)

samples are detected by the model copies at sensors
[5]. In this iterative training process, the new normal
data samples collected at the sensors are transmitted to
the cloud node to be used for the next training round.
Here, the third challenge arises: (3) minimizing the
incurred cost of transmitting the normal data samples
from sensors to the cloud node for retraining purpose.
This challenge is addressed in this paper. It is notable
that the distributed and iterative anomaly detection
model explained above is superior to the cloud-based
model as it significantly lowers the anomaly detection
latency due to the local DNNs replicated over the 10T
sensors. As the DNN is trained at the cloud-node and
not at the sensors, no extra operational and
maintenance cost is needed in the distributed model.
Moreover this model reduces the overall sensor-to-
cloud transmission costs due to the fact that only the
normal measurements are sent to the cloud at retraining
intervals.

Two further reducing the sensor-to-cloud
transmissions, in this paper the effect of applying two
well-known lossless coding algorithms: Huffman
Coding (HC) and Arithmetic Coding (AC) [6] on
minimizing the communication traffic between sensors
and cloud node are studied and an energy efficient
distributed anomaly detection model is proposed. The
contributions of this paper are summarized as follows:

e Augmenting the previous distributed anomaly
detection models by adding a coding module
to achieve energy efficiency.

e Comparing two well-known coding schemes
based on their communication and
computation costs in the context of loT
applications in processing the pipeline
sensory measurements.

e Analyzing the impact of deploying two
coding-schemes on the sensors from the
energy consumption point of view.

e Studying the effect of two important semi-
supervised learning models: auto-encoder
DNN and one-class SVM on the overall
accuracy of the distributed anomaly detection
model.

e Conducting extensive experiments using two
real-world 10T datasets in the area of gas
industry.

The rest of this paper is organized as follows:
section Il presents the related works; the proposed
model and coding schemes are explained in section Ill;
the evaluation method, the experimental results and a
discussion on the results are presented in section 1V;
and finally section V concludes the paper.

Il.  RELATED WORKS

The previous studies in the area of anomaly
detection in 10T systems are categorized into
unsupervised, supervised and  semi-supervised
methods [2, 7]: In [8] an unsupervised and scale-able
K Nearest Neighbor (KNN) based method for anomaly
detection in WSN was proposed to protect the network
from faults and attacks. In this study, to cope with the
lazy learning problem of the conventional KNN
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algorithms a new hyper-grid based KNN method was
presented to be used in online anomaly detection
process. In [9] a distributed anomaly detection
algorithm based on isolation forests is proposed for
WSNs. Here a global detector model is built using the
local detectors propagated by the neighboring sensors.
This method applies the lightweight statistical isolation
trees to detect anomalies rather than non-linear
powerful methods such as neural networks. In [10] the
application of hierarchical anomaly detection in
detecting anomalous incidents in water distribution
networks (WDN) has been studied. First, by using an
unsupervised ellipsoidal clustering algorithm the
model of sensory data is created and subsequently the
outlying clusters are detected using a distance-based
method. The performance of the algorithms is very
dependent on the selected window size of the
clustering algorithm that should be chosen carefully.
Moreover, no energy saving mechanism has been
presented in this study.

With respect to the supervised anomaly detection
methods, in [11] a supervised time-series anomaly
detection method based on Long Short Term Memory
(LSTM) neural network has been proposed. LSTM
networks are a variant of Recurrent Neural Networks
(RNN) that are very effective in predicting future
values based on past history of the data and hence they
are useful in anomaly detection in the time-series data
such as Vehicular Traffic Flow data. LSTM models are
known as effective replacement for semi-supervised
models such as auto-encoders in detecting anomalies.
They are trained with time-series of normal
measurements and then are used to detect outlying
patterns. However, energy efficient transmission of
normal subsequences to the cloud node to be used for
training next models still remains a challenge. In [12]
a Federated Learning (FR) based model is proposed to
create a neural network anomaly detection model. In
FR, each edge node creates its own local neural
network model representing the local patterns of data
and then transmits the model parameters to the server
node to be aggregated with the parameters received
from other edge nodes in order to create a combined
model. The newly created consolidated model then is
transferred back to the edge nodes for the next round.
The downside of applying FR in the loT systems is the
incurred computational cost of training the neural
network on the resource-limited 10T sensors.

In semi-supervised anomaly detection methods,
opposed to the supervised methods, a model is trained
using only the normal data samples and then is used to
spot outlying samples. Regarding the semi-supervised
anomaly detection category, in [13] a one-class
Support Vector Machine (SVM) is proposed to detect
outliers. Here a hyper-ellipsoid with minimum
effective radius is fit around the normal data. In [14] to
attain a real-time, accurate and also lightweight
anomaly detection mechanism in WSNs, an online
distributed method based on ellipsoidal one-class SVM
has been proposed. They also considered the spatial-
temporal correlations of data and keep their model
updated to reflect the changes in the normal behavior
of data over time. While one-class SVM is a means to
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detect anomalies, in previous studies no comparison
has been conducted with other semi-supervised models
such as auto-encoders. In [5] an iterative and
distributed anomaly detection method using auto-
encoder is presented. The initial auto-encoder model is
built at the cloud node using a small number of training
normal data samples. This initial model then is
transmitted to the sensor nodes to be used for anomaly
detection in the first round. The newly detected
anomalous and normal data at the sensor nodes then are
transmitted back to the cloud to be added to the
previous dataset. At the next round the cloud node re-
train the model using the new (larger) dataset and the
above mentioned process repeats at the successive
rounds. The advantage of this method is that the
training overhead is not posed on the sensors and is
done at the cloud node, however, transmitting the data
samples from sensors to the cloud node poses high
communication cost on the sensor nodes. In [15] to
cope with the noisy training data and also capturing the
spatial-temporal correlations in the normal data a deep
learning-based anomaly detection algorithm was
proposed. By applying a proper regularization method
in a deep convolutional auto-encoder model, the first
challenge is addressed. To address the second
challenge a combination of linear and non-linear time-
series prediction models has been applied. Although
the model has shown promising results, it was not
designed to be executed on a distributed computational
infrastructure.

Following the previous studies in the area of semi-
supervised anomaly detection, in this paper the
distributed iterative methods using auto-encoders
presented previously are augmented by adding a coding
module to the sensor side in order to reduce the
communication cost between sensors and the cloud
node. In addition to the energy efficiency, we also
compared the performance of auto-encoder models
with one-class SVM in this framework when working
on datasets of pipeline measurements in Gas Industry.
A comparison between previous studies is presented in
Table 1.

TABLE I. COMPARATIVE STUDY OF RELATED WORKS
main
Paper| Approach method Objective Dif_ferent_:es
with this
study
Addressing
Hyper-arid the lazy |Non-iterative
[8] | Un-supervised yper-g learning learning
KNN
problem of | scheme
KNN
Lightweight| No energy
[9] | Un-supervised |lsolation Forest| statistical saving
method | mechanism
Scale-able
Hyper- outlier No energy
[10] | Un-supervised ellipsoidal d : saving
. etection :
clustering mechanism
method
measuring
the distance
of predicted No energy
- LSTM neural |values from b
[11] SHCEe networks the actual saving
. mechanism
values in
the time-
series
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No energy
saving
mechanism,
High
computation
cost of
training phase
on sensor
nodes
Non-iterative
learning
scheme ,No
comparative
study with
auto-encoders

Iterative | No energy
[5] [Semi-supervised| Auto-encoder | model of saving
learning | mechanism
lto cope with
the noisy
training
Deep data,
convolutional | capturing

Anomaly
detection
Federated while
Learning keeping the
privacy of
10T data

[12] | supervised

Online,
[13] accurate
and [Semi-supervised|One-class SVM and
[14] lightweight
method

Not designed

[15] [Semi-supervised auto-encoder | the spatial- fordlstrlb_uted
computing
model temporal
correlations
in the
normal data

IIl.  ENERGY EFFICIENT DISTRIBUTED ANOMALY
DETECTION

In this section first, the two important coding
schemes are explained and subsequently the enhanced
energy efficient iterative learning framework for l1oT
environments is presented in details.

A. Coding Schemes

Two important lossless coding schemes namely
Huffman Coding (HC) and Arithmetic Coding (AC) [6]
were studied in this paper. The former creates codes for
symbols in the text based on the symbol frequencies.
The idea is to have shorter codes for the symbols with
higher occurrence in the text and vice versa. The
concept of HC is illustrated in Fig.1 left where the input
text “test” is coded with binary “101001” using a
particular prefix tree called Huffman Tree. The HC
algorithm first creates the tree where the leaves of the
tree hold the symbols and any path from the root to a
leaf determines the code for the respective symbol. The
tree is created such that the symbols with lower
frequencies are placed in deeper leaves and vice versa.
In contrast to the HC that builds the code table first and
then replaces the symbols in the text with the respective
codes from the code table, in AC the entire source text
is assigned a code arrived at by a rather complicated
process. Methods in AC vary but they all have specific
things in common: the source text is assigned a sub-
interval from [0,1) that represents the source text.
Afterwards, a fraction r in that sub-interval is chosen as
the source code. Fraction r could be either decimal or
binary. The larger the calculated sub-interval is, the
fewer decimal places fraction r will have resulting in
shorter code for the source text. Due to many
multiplications of fractional numbers needed when
coding the long source texts in AC, implementing AC
in practice requires that a precision parameter P be
provided to the algorithm. This precision parameter
determines the max number of digits in the generated
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fractional code. Different implementations of AC vary
in how to choose r and P. The concept of AC is
illustrated in Fig. 1 right where the text “test” is coded
with binary expansion “0.0101101”. As shown in this
figure (step by step from top to bottom), the symbol
frequencies are used to partition the range [0,1) and to
assign a sub-interval to each symbol whose length is
proportional to its frequency. Afterwards, the whole
text is scanned symbol by symbol from left to right and
a sub-interval in the current interval is chosen
corresponding to the current symbol. Finally we arrive
at the sub-interval [0.01011, 0.010111] representing the
whole text. Note that in the final sub-interval the
boundaries are binary fractional numbers. A
representative number within the final sub-interval is
chosen as the code.

B. Proposed Model

The proposed model is based on the iterative
distributed anomaly detection model presented in [5]
that works as follows: An anomaly detection model is
trained at the cloud node with available normal dataset.
The objective is to train the auto-encoder model to
reconstruct the normal data samples (model of the
normal data). Copies of this model then are distributed
among sensor nodes. Sensor nodes apply their model to
discriminate  between normal and anomalous
measurements over predefined intervals. New normal
data collected at the sensor nodes are transmitted to the
cloud node to be added to the normal dataset. The
process repeats from step 1. We have augmented the
abovementioned model by adding a coding module to
be used at step 3. The main function of the coding
module is to compress the normal data so that the
sensor-to-cloud transmissions at step 3 are lowered as
much as possible. By reducing the transmission
volume, not only is the communication costs reduced
drastically but also the energy consumption at the
sensor nodes is saved. Two important lossless coding
algorithms: Huffman Coding (HC) and Arithmetic
Coding (AC) were studied in this paper from the
compression rate and computation cost perspectives
(the results are reported in the Evaluation section). The
architecture of the distributed anomaly detection with
coding module is illustrated in Fig. 2. We also studied
the effect of replacing the auto-encoder with one-class
SVM as the anomaly detector models. As shown in
Fig.2 right, the communication between sensors and the
cloud node which involves both model parameters
(published by the cloud node) and the normal data
samples (published by the sensor nodes) takes place via
a message broker over MQTT protocol which is usual
in 10T applications. As presented in [5] (where auto-
encoder is applied as the anomaly detector model), to
discriminate between normal and anomalous data
vectors at sensor s, vector x(s) is input to the auto-
encoder to obtain output vector x[1(s). Then the
deviation ry(s) is computed:

1 (s) = x(s) — £(s) (Y

The label of x(s) is determined based on the distance
between ry(s) and the mean of r(s) values for the normal
data vectors:
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Figure 1. The coding schemes: (left) HC and (right) AC
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) |:> Vectors
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- one Class
SVM @
Tgigi”\;\'/szﬁn Compressed
Normal Data Coding Module
Vectors R

Figure 2. The distributed anomaly detection Architecture

Where p and ¢ are the mean and mean deviation of
r(s) values for all normal data vectors respectively and
p is a constant parameter. The values of p and o are
computed by the cloud node in successive intervals.
The pseudo-code of the sensor and cloud algorithms are
listed below in Listing 1 and 2 respectively.

The cloud node iteratively updates the auto-encoder
model with newly obtained normal samples from the
sensors. Sensors receive the updated model to be used
for next anomaly detection step. In the case of one-class
SVM, the hyper-sphere fitting method which is a
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special form of the hyper-ellipsoidal method has been
applied [13][14].

While True:
Obtain sensor readings x(s)
Use auto-encoder to obtain %(s)
Calculate residual r(s) = x — &;
Label data vector x;
Compress and send x(s) and r(s) to the cloud;
Update model parameters (W, b, 1, o) received from cloud,;

Figure 3. The sensor procedure
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While True:
Receive x(s) from all sensor nodes;
Store x(s) in the training dataset;
If all sensor nodes data are received:
Retrain auto-encoder with the updated training dataset;
Recalculate y, o;
Send updated parameters (W, b, p, o) to all sensors;

Figure 4. The cloud procedure

In the hyper-ellipsoidal method (the general
problem) a hyper-ellipsoid with minimum effective
radius is fit around the majority of data vectors centered
at the origin. This is formulated as an optimization
problem as follows [13]:

Minimize: L(R,§i) = R? + - Y, & (3)
Subject to: Y xT<R*+&,6=0,i=1.n
Where n is the number of sample vectors in dataset,
xi is the i sample vector, R is the effective radius of the
hyper-ellipsoid, &i is the slack factor allowing xi to
reside outside the hyper-ellipsoid for a given R, v is the
regularization parameter in range (0,1) and Y is the
inverse of the samples’ covariance matrix. By replacing
the covariance matrix >, with the unit matrix, the
problem is reduced to the hyper-sphere based scheme.
By solving this minimization problem, the effective
minimum value for R will be obtained for which the
resulting hyper-ellipsoid (or hyper-sphere) covers the
majority of samples. To decide for a given sample z, the
distance of z from the center of hyper-ellipsoid is
computed; if the distance is greater than R, z will be
classified as an anomalous sample.

IV. EVALUATION

The objective of the evaluation has been to study the
effect of applying HC and AC encoding algorithms in
reducing the transmission traffic between sensors and
the cloud node in the proposed architecture. Moreover,
the effect of replacing the auto-encoder with one-class
SVM as the anomaly detector model has been
evaluated. To do the experiments a test-bed consisting
of eight sensor nodes developed using Python
communicating over MQTT using the Mosquitto
broker [16] were used. To constrain the sensor node
resources (CPU and Memory) as well as having an
isolated runtime environment, each sensor was
executed as a Docker [17] container. The HC and AC
coding schemes were implemented using Numpy [18]
and Decimal [19] libraries. The auto-encoder model is
a fully connected neural network that uses Adam
optimizer, Mean Squared Error Loss function
(MSELuoss) and Sigmoid activation function. For the
ECG5000 dataset, the auto-encoder model consists of 7
layers and 140 input-output dimensions, for Gas
dataset, which is a smaller dataset, auto-encoder model
has 5 layers with 16 input-output dimensions. The
learning rate of the model in both cases has been set to
0.0001. The one-class SVM model was implemented
using the sklearn.svm.OneClassSVM python class [20].
This implementation of one-class SVM allowed us to
make the classification either by means of the standard
threshold or a customized threshold. To obtain the best
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accuracy we chose to use the customized threshold
which is controlled by a percentile hyper-parameter s.

A. DataSets

In order to do the experiments two datasets were
used: (1) ECG5000 dataset [21] consisting of 140
attributes and 5000 samples collected during 20 hours
of sensory measurements and (2) a dataset consisting
measurements from Gas pipelines obtained from [22].
Both datasets contain normal and anomalous samples.
The normal samples were used to train the auto-encoder
or one-class SVM models.

B. Results

As explained earlier, the distributed anomaly
detection model works iteratively and in each iteration,
sensors perform the anomaly detection process using
the model obtained from the previous iteration from the
cloud node. Afterwards, the sensors apply their current
model to discriminate between normal and abnormal
data and transmit the normal data to the cloud node for
the next iteration training. The cloud node adds the new
detected normal samples (by the sensor nodes) to its
training dataset. However due to the fact that the
accuracy of the detection is not perfect at sensors,
particularly at the initial iterations, there are always
some anomalous samples labeled as normal in this
training dataset. Initially 2% of the normal samples are
used to train the first model. This initial model then is
re-trained gradually with more samples form the sensor
nodes. Over the successive intervals, at each interval
4% of the data (normal and anomaly) are fed into the
models at sensors to detect anomalies and hence the size
of the cloud training dataset over the iterations is
increased. In order to compare the accuracy of the auto-
encoder and the one-class SVM, first we executed each
model several times with different threshold values: p
for the auto-encoder and s for the one-class SVM as
explained in section Ill. The threshold value that
resulted in the highest average F1-Score over iterations
for each model (one-class SVM or auto-encoder) and
each  dataset ~was  selected for  further
comparisons(s=72%,p=0.9). Here, F1-score is the
average of Normal and Anomaly classes F1-scores. The
comparison of average F1-score of auto-encoder and
one-class SVM in two datasets over successive
iterations is presented in Fig.3. It was observed that for
the larger dataset (ECG5000) the auto-encoder model
obviously outperformed the one-class SVM. In contrast
to the deep neural network auto-encoder, the one-class
SVM was unable to learn the complex patterns of
normal data samples in a large dataset like ECG5000.
Moreover, not only could not the one-class SVM
outperform the auto-encoder in the large dataset, but
also its trend of Fl-score values over successive
iterations was not increasing opposed to the auto-
encoder model(in both datasets). The failure of one-
class SVM in reaching higher detection accuracy as the
number of training samples increase in the cloud, makes
this model an improper choice for the iterative learning
framework explained in this paper where few normal
samples are available at early iterations. In the Gas
dataset, the F1-score values of the one-class SVM is
higher, however the trend is still not increasing. This
deficiency of the one-class SVM in gradual anomaly
detection is observed in Fig.4 where the ratios of
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collected normal samples in the cloud node over
iterations are depicted for the Gas dataset. As expected,
this ratio had an obvious increasing trend when using
the auto-encoder model; whereas the trend for the one-
class SVM is not increasing and even it is the reverse.
Regarding the reduction in the transmission traffic, the
number of published characters over MQTT was
compared for three methods namely, HC, AC and the
baseline method and the results are shown in Fig. 5.

ECG5000 Dataset

100
95

85
80
75
70

F1-Score(%)

123 456 7 8 91011121314 1516
Iteration

——SVM —e—AE

Gas Dataset

110

90 |e—g—0—o—o 000900 o

. W

50
30

F1-Score(%)

123 456 7 8 91011121314 1516
Iteration

—e—SVM —e—AE

Figure 5. The F1-Score (Average of Normal and Anomaly
classes) of auto-encoder and SVM models in two datasets.
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123456 7 8 91011121314151617
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100% — = = f— u EEE
50%““““'“"""
0%
123456 7 8 91011121314151617

Iteration
mNormal ®Anomaly

Sample ratio

Figure 6. The percentage of normal data samples at the cloud
node over successive iterations: auto-encoder (top) and one-class
SVM(bottom).

The compression rate is also shown in Fig. 6. The
AC encoding method outperformed the HC and the
baseline algorithms in reducing the transmission traffic
between sensor nodes and the cloud node and it showed
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a higher compression rate when applying on the sensory
measurements in both datasets. As the frequency of
symbols in the transmitted text is almost uniform in
successive intervals, the compression rate of HC was
steady as shown in Fig. 6.

ECG5000 Dataset
16000
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e
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21500
D

N M N—

da
a
o
o o

1 2 3 45 6 7 8 9 10 11 12 13 14 15 16
Iteration
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Figure 7. The number of published characters in successive
intervals for two coding schemes in two datasets
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Figure 8. The compression rate in successive intervals for two
coding schemes in two datasets

In order to compare the computation cost of AC and
HC coding algorithms when used on sensors, they were
executed within resource-limited containers for
different input lengths. The results are shown in Fig. 7-
top. As shown in this figure, the AC scheme had much
higher computation cost in terms of the compression
time due to its more complex algorithm as explained in
section Il1. In contrast, the HC scheme scaled very well
by increasing the input text length when working on the
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sensory data. To compare the total energy consumption
of the baseline and HC methods, the Cooja [23]
simulator was used. Sensors of type “sky mote” were
used to collect the energy consumption during the
simulation time. The results are shown in Fig. 7-bottom.
Due to limitations of the Cooja simulator implementing
the AC method was not possible. Although we already
knew that the computation cost of AC method is much
higher than HC (see Fig. 7-top) and AC is not a proper
coding scheme to be used on resource-limited sensors.
Hence only the HC and baseline schemes were
compared. As shown in this figure, by using the HC
method, sensors could save energy compared to the
baseline method due to much lower data transmission
volume and little computation overhead posed by HC
scheme. The amount of saving in energy rises for longer
sequences of sensory measurements.
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Figure 9. The comparison of: (top) the computation cost of the
encoding schemes and (bottom) HC coding scheme and the
Baseline methods in terms of the total energy consumption in
Sensors.

C. Discussion

Due to the larger training dataset at the cloud node
in later iterations, the auto-encoder model is trained
with more normal samples and hence not only does the
accuracy of the model increase over time but also the
proportion of normal samples at the cloud dataset
increases due to the enhanced ability of the model in
discriminating normal and anomalies. However this
behavior was not observed when using the one-class
SVM. The accuracy of one-class SVM was not rising
with more samples as it seems that the hyper-sphere
which is fit around the majority of samples remains the
same in successive iterations even if new patterns of
normal data emerge. This deficiency of the one-class
SVM makes it improper choice for iterative learning
frameworks. Moreover due to the fact that deep neural
network auto-encoder model takes advantage of non-
linearity and more complex structure compared to the
one-class SVM it could outperform the one-class SVM
in the larger dataset. It was observed (see Fig. 5 and Fig.
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6) that the AC coding method outperformed the HC and
the baseline algorithms in reducing the transmission
traffic between sensor nodes and the cloud node due to
its more complex coding algorithm. Despite the higher
compression rate of the AC method, it showed poor
performance in terms of execution time as shown in Fig.
7-left due to its higher algorithm time complexity
compared to the HC coding when used on resource-
constrained sensors. By using the HC method on
sensors, not only could it reduce the communication
cost up to 50% but also it caused saving in the sensor
consumed energy (as shown in Fig. 7-right) due to less
utilization of the sensor communication interface.

V. CONCLUSIONS

As the centralized cloud-based approaches are
impractical in time-critical anomaly detection loT
applications due to large sensor-to-cloud transmission
latencies, high communication costs and high energy
consumption at the sensor nodes, the distributed
anomaly detection methods based on DNNs are used
as a replacement. In this paper the effectiveness of
applying two well-known lossless coding algorithms,
namely Huffman Coding (HC) and Arithmetic Coding
(AC) in data transmission over 10T infrastructures was
studied within the distributed and iterative anomaly
detection framework. By using auto-encoder DNNs on
two standard benchmarks, the experimental results
showed that HC coding scheme not only reduces the
size of published messaged up to 50% but also poses
negligible computation cost on the sensors and hence
could result in up to 10% energy saving when
implemented on sensors compared to the baseline
method. By replacing the auto-encoder model with one-
class SVM in the iterative framework, the training
process in the cloud was faster but a drop in the
prediction F1-score particularly in larger datasets was
observed. Moreover the one-class SVM was unable to
learn more from samples collected in later iterations. As
the future work, we aim to study the energy-
effectiveness and accuracy of applying the federated
learning in place of the centralized learning model over
the Edge computing infrastructure.
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