[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

IJICTR

International Journal of Information &

Communication Technology Research Volume 16- Number 2 - 2024 (25 -33)

Deep Reinforcement Learning-based
Exploration of Web Applications

Amin Milani Fard
Department of Computer Science

Amir Jahangard Rafsanjani*
Department of Computer

Mohammadreza Abbasnezhad
Department of Computer

Engineerin Engineering New York Inst. of Technology
Yazngnivergit Yazd University Vancouver, BC, Canada.
Yazd. Iran Y Yazd, Iran. amilanif@nyit.edu

abbasnezhad.m.r@stu.yazd.ac.ir jahangard@yazd.ac.ir

Received: 15 May 2023 — Revised: 16 November 2023 - Accepted: 13 March 2024

Abstract—Web application (app) exploration is a crucial part of various analysis and testing techniques. However, the
current methods are not able to properly explore the state space of web apps. As a result, techniques must be developed
to guide the exploration in order to get acceptable functionality coverage for web apps. Reinforcement Learning (RL)
is a machine learning method in which the best way to do a task is learned through trial and error, with the help of
positive or negative rewards, instead of direct supervision. Deep RL is a recent expansion of RL that makes use of neural
networks’ learning capabilities. This feature makes Deep RL suitable for exploring the complex state space of web apps.
However, current methods provide fundamental RL. In this research, we offer DeepEx, a Deep RL-based exploration
strategy for systematically exploring web apps. Empirically evaluated on seven open-source web apps, DeepEx
demonstrated a 17% improvement in code coverage and a 16% enhancement in navigational diversity over the state-
of-the-art RL-based method. Additionally, it showed a 19% increase in structural diversity. These results confirm the
superiority of Deep RL over traditional RL methods in web app exploration.

Keywords: Deep Reinforcement Learning, Exploration, Model Generation, Web Application.

Article type: Research Article

© The Author(s).
Publisher: ICT Research Institute

Object Model (DOM) [2] dynamically. That gives web
apps different states and gives users better response and
interaction.

l. INTRODUCTION

Web applications (apps) are an important part of our
daily lives because they help us in many ways. A recent

[DOI: 10.61186/itrc.16.2.25]

survey [1] found that there are over 1 billion web apps.
Web apps are developed using various technologies and
multiple programming languages, such as JavaScript,
HTML, CSS, and PHP. In an event-driven architecture,
the structure of the web apps changes in response to
events, such as clicks. In other words, web apps
frequently use JavaScript to modify the Document

* Corresponding Author

International Journal of Information & Communication Technology Research

Numerous web app analysis, understanding, and
testing methods rely on automated black-box
exploration of web apps [3]-[8]. Exploration of web
apps can reduce the complexities associated with
analyzing the complex source code of web apps. In
other words, the exploration methodologies exercise the
User Interface (Ul) elements to explore the state space
of a web app. To create a behavior model of the web

https://orcid.org/0009-0008-8929-6552
https://orcid.org/0000-0003-2638-5722
https://orcid.org/0000-0003-0816-0597
http://dx.doi.org/10.61186/itrc.16.2.25
http://ijict.itrc.ac.ir/article-1-604-en.html

IJICTR

[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

[DOI: 10.61186/itrc.16.2.25]

app, events are triggered on web elements
automatically, and possible Ul state changes are tracked
during exploration. This inferred model, represented by
a State Flow Graph (SFG) [9], is subsequently utilized
for a variety of purposes. The efficacy of web app
analysis and testing activities is highly dependent on the
efficacy of the SFG developed during web app
exploration.

To adequately cover its state space [10], there are
many web app exploration methodologies. The goal of
generic exploration methods, like Crawljax [9], is to
fully explore the state space of a web app. The state
explosion problem [11] is a drawback to exhaustive
exploration. In reality, the majority of web apps have
such a vast state space that exhaustive exploration is
impossible. In addition, generic techniques have a
tendency to become mired in unimportant parts of web
apps, which leads to inadequate coverage of the app’s
functionality because there is no feedback to direct the
exploration.

Guided exploration is an alternative to generic
exploration that helps alleviate the state explosion
problem in web apps by deriving a partial SFG through
directing exploration towards areas of interest to
achieve adequate coverage of the app’s functionalities.
FeedEx [12] utilizes parameters to take into account
many facets of the exploration. It supervises and directs
the exploration at runtime using the parameters.
Similarly, Keyjaxtest [13] explores a web app to derive
a partial SFG by employing specific keywords that
characterize particular app functionalities. Familiarity
with the web app is necessary for guided techniques.
For instance, if the user is not familiar with the required
phrases, Keyjaxtest might not accurately explore the
functionality of the web apps. When presented with a
new web app, this constraint renders the guided
exploration strategy ineffective. The fact that dynamic
exploration approaches automatically examine new
apps is also one of their main benefits [14].

Recent studies [15] on Reinforcement Learning
(RL) [16] have demonstrated that it is capable of
learning a policy to explore web apps. RL is a machine
learning method that learns from positive or negative
task rewards without a labeled training set. Therefore,
it represents a method for dynamically constructing an
appropriate exploration strategy based on past
successes or failures. Even though RL has been used to
solve the problem of exploring web apps [15], so far
only the most basic type of RL, tabular RL, has been
used to explore web apps. Tabular RL maintains a table
of state-action values. Deep neural networks replaced
tabular methods with Deep learning methods, in which
the action-value function is learned from a neural
network’s past good and bad attempts. When the state
space is huge (such as when there are many events and
states within a web app), deep RL has proven to be
much superior to tabular RL [17], [18]. In this way, we
say that the state space of web apps is a great place to
use Deep RL instead of tabular RL for successful
exploration.

DeepEx (Deep Reinforcement Learning-based
Exploration of Web Apps), the first Deep RL solution
for automated web app exploration, is presented in this
article. DeepEx uses a Deep neural network to figure

Volume 16- Number 2 — 2024 (25 -33)

out the best way to explore by looking at what has
already been tried. Due to the use of a Deep neural
network, the system is both highly scalable and capable
of managing the complex functionalities of web apps.
DeepEx was used to evaluate a benchmark of seven
different web apps. In the benchmark, DeepEx’s
performance was compared to that of the other web app
exploration techniques like QExplore [15] and FeedEx
[12]. The experimental findings supported the claim
that Deep RL beats tabular RL in the exploration of web
apps, with deepEx obtaining better code coverage with
more navigational and structural diversity.

The following is a summary of this paper's
contributions:

e The first exploration strategy built on Deep
RL that we suggest is called DeepEXx.

e We give an empirical assessment of the
proposed method. Our approach outperforms
existing ones, according to the results.

The rest of this paper is structured as follows:
Introductions to web app exploration and Deep RL are
provided in Section 2. Section 3 reviews related work.
In Section 4, we will discuss our exploration strategy,
which is based on Deep RL. The fifth section provides
an empirical evaluation of our proposed methodology
for seven web apps. The paper concludes in Section 6,
which also provides ideas for additional research.

1. BACKGROUND

This part gives background information on web app
exploration in order to make a model of how it works.
In addition to this, it explains the fundamental
principles of Deep RL, which are necessary to
comprehend the rest of the work.

A. Behavioral Model

Web apps that offer better user interaction are now
widely available [1] thanks to the development of web
and browser technology. In order to alter the Ul in
reaction to runtime events, web apps modify the DOM
[2]. During runtime, these incremental modifications
lead to dynamically produced states. As a result, DOM
that is created dynamically can serve as a representation
of a Ul state, and a state transition can be described as
a change in DOM. To model these Ul state transitions
in a web app, the following SFG [9] is defined, where
nodes represent the dynamic DOM states of the web
app and edges represent the event-based transitions
between them:

State-flow graph SFG for a web app is a labeled
directed graph with the notation (r, V, E):

e ris the root node and represents the original
state of the web app after it has been fully
loaded into the browser.

e Visa collection of vertices that represent the
states. Each v € V represents a runtime DOM
state in the web app.

o E, we refer to the set of directed, labeled
edges between vertices as events. Each
(v, v,),. € E indicates a change between two
nodes vy, v, if and only if the event e in v,
leads to v,.

e SFG may contain multi-edges and be cyclic.

International Journal of Information & Communication Technology Research

http://dx.doi.org/10.61186/itrc.16.2.25
http://ijict.itrc.ac.ir/article-1-604-en.html

[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

[DOI: 10.61186/itrc.16.2.25]

Volume 16- Number 2 — 2024 (25 -33)

By creating events, such as clicking on DOM
components, users can communicate with a web app. A
DOM element is referred to as a clickable element if it
has an attached event listener or if it is clickable in
general, like element < a >. The actions (such as
clicking on clickables) can activate the associated event
handler functionality and ultimately change the state of
the web app. Therefore, by investigating event-driven
DOM transitions in web apps, the SFG can be
automatically derived.

Since an SFG captures dynamic Ul states and event-
based transitions between them, it is assumed to be the
web app’s behavioral model. Event sequences in the
SFG typically exercise a web app’s functionality.
Therefore, the SFG has a wide variety of uses in web
app analysis, comprehension, and testing. For instance,
testers can automatically generate test cases by
extracting event sequences from the SFG. Generally
speaking, web app exploration can help with activities
such as invariant-based testing [3], cross-browser
compatibility testing [4], mutation testing [5],
automated test case generation [6], model-based testing
[7], test dependency analysis [8].

B. Deep RL

A model-free RL technique called Q-learning [19] aims
to learn a policy for any Markov decision process by
identifying the best possible policy, m, to maximize the
expected cumulative reward for a series of actions. Q-
learning is based on trial-and-error learning, in which
an agent interacts with the environment and assigns Q
values, which are approximated values, to each state-
action pair.

As depicted in Fig. 1, the agent interacts iteratively
with the environment. Assuming S and A are the sets of
all states and actions, at each iteration t, the agent
selects and executes an action a, € A based on the
current state s, € S. s; and a, represents the state and
action at time t, respectively. After performing the
action, the agent can observe a new state s;,; € S. In
the meantime, an instant reward r, = R(s;, a;) is
received. This is the immediate reward for doing action
a; in state s,. The agent will then use the Bellman
equation [20] to update the Q value, as follows:

Q(spar) « Qs ar) +ax (e +y=*
r{gii(Q(St+1:at+1) = Q(spar)) 1)

« is a learning rate between 0 and 1 and y is a discount
factor between 0 and 1 in this equation. After being
learned, these Q values can determine the optimal
behavior in each state by selecting the action a, =

argmax Q (s, a;).
at

Action a¢

|

DQN

% Environment

L
Tstalr St State sy

Agent v

Reward 1

Figure 1. Deep RL overview

International Journal of Information & Communication Technology Research

IJICTR

Deep Q-Networks (DQN) are used to scale
traditional Q-learning to larger state and action spaces
[17], [18]. Q(s;, a;) are stored and visited in a Q-table
for traditional Q-learning. It can only manage state and
action spaces with low dimensions. As shown in Fig. 1,
DQN is a multi-layered neural network that outputs Q
values for each action a; in a given state s;, i.e.,
Q(s; a;). DQN can scale more complicated state and
action spaces because a neural network can input and
output high-dimensional state and action spaces. In
contrast to a Q-table, a neural network can generalize Q
values to previously unobserved states. It employs the
following loss function [17], [18] to modify the neural
network in order to reduce the error:

2
loss = (7”1: + y* r{gaXQ(sHl, ars1) — Q(se, at)) 2
+1

In other words, the neural network is trained to predict
the value of Q as follows, given the input (s;, a;):

Q(spa) =n+ y* Igltii(Q(st+1'at+1) (3)

In a training sample, therefore, the input is (s;, a;) and
the output is the corresponding Q value, which can be
calculated as r; + y * max Q(S¢41, Qry1)-

at+1

1l. RELATED WORK

In the research that has been done on the topic, various
strategies for improving the efficiency of exploring web
apps have been offered. We will briefly go through the
current state-of-the-art solutions and how their
shortcomings call for a new way of exploring web apps.

The state space of web apps is automatically
explored, and an SFG is produced using generic
exploration algorithms like Crawljax [9], which was
proposed by Mesbah et al. In order to thoroughly
explore the state space of web apps, Crawljax uses
generic exploration algorithms such as breadth-first
search, depth-first search, or random search. Due to the
state explosion problem [11], however, such general
exploration algorithms cannot fully explore the state
space of web apps in a finite amount of time. Another
disadvantage of Crawljax is that it can become stuck in
unimportant areas of web apps, leading to insufficient
functionality coverage. The primary reason for this is
that Crawljax's method lacks feedback to guide the
exploration.

There have been guided exploration approaches that
employ heuristic strategies to direct the exploration of
web apps towards areas of interest based on
predetermined objectives. In actuality, guided
approaches explore a web app by limiting the scope of
exploration in order to derive an incomplete model with
adequate functionality coverage, as opposed to a
complete model. Milani Fard and Mesbah [12] came up
with an exploration method called FeedEx that uses
heuristics, such as code coverage, navigational
diversity, and structural diversity, to lead the
exploration. KeyjaxTest, suggested by Qi et al. [13],
uses keywords of defined functionality to direct
exploration towards attaining good coverage of them,

http://dx.doi.org/10.61186/itrc.16.2.25
http://ijict.itrc.ac.ir/article-1-604-en.html

KD wictr

[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

[DOI: 10.61186/itrc.16.2.25]

making it a keyword-guided technique for exploring the
state space of a web app. KeyjaxTest guides the
exploration to find states and transitions that are
important to the defined functionalities by figuring out
how similar the text in the states and the given
keywords are.

Without a prior understanding of the web app,
guided approaches are ineffective for exploring the
state space. For instance, FeedEx’s efficacy depends on
the weights used to combine the parameters, which can
differ between apps and are challenging to predict
before exploration. Similarly, prior to exploration,
KeyajxTest demands not only knowledge of
probabilistic weights but also knowledge of the various
functionalities accessible and their relevant keywords.
To put it another way, KeyjaxTest needs the web app’s
desired functionalities described using keywords. It is
difficult to predict those keywords if the user is
unfamiliar with the web app. However, one of the
primary expectations from dynamic exploration
approaches is that they explore new apps automatically
[14].

Liu et al.”’s GUIDE [14] is a guided approach that
allows the user to provide directives (such as stopping
the exploration of particular states) incrementally. The
user gives GUIDE more and more instructions over

time to explore more and more states and functionalities.

More states are expected to be examined when more
directives are employed. As a result, this solution needs
the use of a human agent and manual effort, making it
unsuitable for web apps.

Similarly, research has investigated the use of RL
for web app exploration. QExplore [15] proposed by
Sherin et al. utilizes RL, allowing it to anticipate and
develop the behavioral model incrementally while
interacting with the web app. QExplore employs Q-
learning [19], a model-free RL method, based on
curiosity reward to accomplish exploration. Similarly,
WebExplor [21] by Zheng et al. is another existing
work that is most relevant to both the RL and web
domain since it uses RL to generate test cases
incrementally while interacting with a web app. Both
QExplore and WebExplor, in contrast to our study, are
based on the most basic type of RL, tabular RL. In
contrast, DeepEx learns the action-value function based
on Deep RL during its interaction with the web app. To
the best of our knowledge, DeepEx is the first Deep RL-
based approach that explore web apps and outperforms
state-of-the-art methods in terms of effectiveness.

V. PROPOSED APPROACH

This section covers DeepEx (Deep Reinforcement
Learning-based Exploration of Web Applications), our
proposed Deep RL-based approach to exploring web
apps. In Fig. 2, we can see the main building blocks of
the proposed approach, which are Browser, DOM
Analyzer, DQN, Action Selector, Calculator, and
Memory.

Volume 16- Number 2 — 2024 (25 -33)

State Flow Web App
Graph

A \
A
Browser <
A 4 A
DOM Action
Analyzer Calculator Selector
A
A 4
Memory
\ 4
DQN

A 4

Figure 2. Fig. 2: Proposed approach Overview

It is the responsibility of Browser to provide a
common interface for communicating with the web
app. It has access to runtime DOMs and the JavaScript
engine. Additionally, Browser executes the actions in
web app states. DOM Analyzer parses the DOM tree
and extracts the state and actions associated with it. The
current state and actions are converted into an input by
DOM Analyzer, which is subsequently sent into the
DQN. DQN receives the web app’s state and its actions.
DQN uses a model of a neural network to figure out Q
values for actions which it then sends to Action
Selector. The next action to execute is selected by
Action Selector based on an Epsilon-Greedy policy
[16]. The browser executes the selected action. The web
app enters a new state. DOM Analyzer monitors
performed actions and resulted states to construct the
SFG incrementally as an output. Using equation (3),
Calculator computes the transition reward and obtains
the Q value. The transition is stored in Memory along
with the state, action, and Q value. DQN learns from a
sampling batch of transitions in Memory to update its
weights. DQN would learn poorly if it merely used
sequential samples of experience from the environment
because of their correlation [17], [18]. This correlation
is broken by sampling Memory at random.

A. Problem Formulation

To use Deep RL, we must first convert the web app
exploration problem to the conventional mathematical
formalization of RL. The web app exploration problem
can be formalized formally as a Markov decision
process, which can be demonstrated by a 4-tuple,
(S, A, P, R). These are described below.

International Journal of Information & Communication Technology Research

http://dx.doi.org/10.61186/itrc.16.2.25
http://ijict.itrc.ac.ir/article-1-604-en.html

[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

[DOI: 10.61186/itrc.16.2.25]

Volume 16- Number 2 — 2024 (25 -33)

1) §: States
Our approach is black-box because it does not access
the App Under Exploration (AUE) source code. It only
uses the Ul of AUE. DeepEx extracts the DOM from
the web app’s current UIL. DeepEx analyzes the DOM
to find clickable elements in the current state. State s,
is represented by (cq,cy,...,cn), Where ¢; are the
clickable elements in s,. Each c¢; is an index that
indicates the element’s position in the DOM tree’s pre-
order traversal.

Fig. 3 illustrates the partial DOM trees of two pages,
DOM 1 and DOM 2, as an example. They are both
made up of elements (body),{(div), (p) and{(a). The
elements that can be clicked (only elements {(a)) are
highlighted.

DOM I’s pre-order traversal
is ((body), (div),(a),{a), {div),{a),(p)), and DOM
2’s is ((body),(div),(p),(p),(div),(a),{a)) . For
simplicity, we replace elements that can be clicked with
1 and those that cannot with 0. They are transformed
into (0,0,1,1,0,1,0) and (0,0,0,0,0,1,1) . To
acquire s; and s,, the respective states of DOM 1 and
DOM 2, we must take into account the positions of
clickable elements, i.e., the positions of number 1. As a
result, s, = (2,3,5) and s, = (5,6).

2) A: Actions

Clickable elements indicate actions. In other words,
clickables and click events in web apps are formulated
as actions in the Markov decision process. Actions are
represented by the index of the clickables in the relevant
state, which is similar to states. In s;, for example, there
are three actions marked by 4; = (2, 3,5). In the same
way, 4, = (5, 6) shows that s, has two actions. In this
paper, we don’t make a difference between actions and
events, because they are the same. In web apps,
clickables suffice to complete the majority of tasks.

3) P:Transition Function
The transition function indicates the state the web app
will enter once an event occurs. We have no control
over it; the AUE decides what it is.

<div>

(2) DOM 1

<div>

(b) DOM 2

Figure 3. Partial DOM trees

International Journal of Information & Communication Technology Research

victTR EXN

4) R:Reward

When DeepEx executes an event, it receives a reward.
We present a mechanism for determining the reward
that complements our exploration approach. The
reward function gives a bigger reward to actions that
change the state a lot. This is a heuristic way to
understand which actions lead to new functionalities.
The intuition is to provide greater rewards for actions
that can result in multiple new actions. In fact, a state
with more new clickables is more likely to result in
additional states and functionalities. The reward
function is defined by the following equation:

[st+1—s¢l
7 = R(S¢, @, Sep1) = ﬁ (4)

The reward function, given two states, s; and s; 1,
estimates the degree of change from s; to s, by
comparing and detecting the number of clickables in
S¢4+1 that were not present in s;, which is described as

|Ses1 — S¢| . The ratio 'S:';_Tt' where |s.,4| is the
t+1

number of clickables in s, , defines the relative
change. This reward function takes into account the
actions that are introduced in s, but are absent in s,.

As an illustration, given s; =(2,3,5) and s, =

(5,6), as previously defined, Ilg;l :%: 0.5 is the

reward of the transition from s; to s,. In fact, the
clickable (6) is not in s;, but in s,, and there are only
two clickables in s,: (5, 6).

B. Algorithm

Algorithm 1 details the DeepEx approach for Deep RL-
based exploration. It takes the AUE, the exploration
time budget, and the maximum number of actions per
episode as input. In fact, we need to turn the exploration
problem into an RL task that is broken up into several
episodes. A series of actions is referred to as an episode.
In other words, each episode consists of multiple steps
or iterations in which an action is conducted. DeepEx
outputs state flow graph SFG. A memory is used to
store samples from previous iterations, each of which
comprises the state, action, and related Q value.
DeepEx begins by initializing memory M (line 1) and
the state flow graph SFG (line 2). Now, exploration
starts and goes on until the time limit is met (lines 3—
20). DeepEXx restarts the web app and navigates to the
homepage (line 4). Line 5 returns the AUE’s initial
state. Line 6 adds the initial sate to the SFG. In each
episode, we limit the number of steps that can be taken
(lines 7-20). The default setting for the episode length
in DeepEx is 25, but it can be changed. Each episode
starts with an action in the initial state.

http://dx.doi.org/10.61186/itrc.16.2.25
http://ijict.itrc.ac.ir/article-1-604-en.html

N~
T
—
e
Te]
AN
o
N
c
o
=
o
S
§=
I3
S
(=]
=
[
A=
=
]
o

[DOI: 10.61186/itrc.16.2.25]

IJICTR

Algorithm 1 DeepEx for Deep RL based exploration
Require: App under exploration AUE, the time budget for explo-
ration, the length of each episode
Ensure: State flow graph SFG
1 M+ 0
% SFG + 0
3: while time budget not completed do
1 reset(AUT')
s¢ +— getState(AUT)
addInitial State(SFG, s;)
7 while the episode not completed do
8: if A random number € [0, 1] < ¢ then
o: a; +— getRandomAction(s;)

10: else

11: a; + getBestAction(s,, DQN)

12: execute(ay, AUT)

13: Sty1 getState(AUT)

14: 1y 4 getReward(s;. si41)

15 Q(8¢, at) = 1 + 7 X maxQ(8e41, ag1) where vy = 0.9
ap+1

16: batch + getMiniBatch(M) U {(s;, a;, Q(s¢, a¢)) }
17: DQN « updateModel(batch, DQN)

18 M MU{(s¢, ae, Q(s¢,a¢)) }

19: Update(SFG, sy, a4, S441)

20: 8¢ — St41
return SFG

Epsilon-Greedy is the policy that DeepEx employs
(lines 8-11). It decides based on a predefined threshold
€ in the interval [0,1] to determine whether it will
explore new actions or exploit its existing knowledge.
In fact, it chooses the action with the highest Q value
based on the DQN (exploitation, Line 11) with a chance
of 1 — £ and a random action (exploration, Line 9) with
a chance of . Randomness is required for an agent to
discover the optimal strategy [22]. We want the DeepEx
to explore as various states as possible at the start of the
testing in order to explore new actions more; thus, a
high value of € should be used. DeepEx is therefore
expected to follow the Q values in order to exploit its
knowledge, so a smaller value of ¢ is expected. By
default, DeepEx starts with 1 to enable maximum
exploration, then decreases its value uniformly during
the first 30 episodes until a final minimum value of 0.2
transforming its behavior towards exploitation.

DeepEx executes the selected action (line 12). In
fact, DeepEx generates the SFG by executing the
appropriate action in the current state of AUE. DeepEx
retrieves the new state (line 13) and computes the
reward (line 14) using equation (4) based on s;, S;41-
DeepEx uses equation (3) to calculate the Q@ value of
action a; in s; with parameters s;, s;,1, a;, and r; (line
15). The discount factor, y, balances how important the
immediate reward is compared to future actions, and a
number of 0.9 maximizes the reward earned over the
whole episode, not just the immediate reward.

DeepEx employs a set of random training samples,
including both the current sample and historical
samples (line 16), to train the neural network (line 17).
Each sample takes (s;, a;) as inputand has Q(s;, a;) as
output. The current transition is saved in memory M,
which stores historical samples from previous iterations
(line 18). The SFG is updated by the new transition
(StSt41)a, € E (line 19). The prior state is then
updated to continue exploration (line 20).

V. EVALUATION

In this part, we show experiments to test how well our
Deep RL method for exploring web apps works. In
other words, the effectiveness of DeepEx in the
exploration of web apps in comparison to other

Volume 16- Number 2 — 2024 (25 -33)

methods that are considered to be state-of-the-art in web
app exploration is our primary research question.

A. Metrics

Code coverage, navigational diversity, and structural
diversity are three metrics that we use to evaluate the
success of our method. According to [12], [13], [15], it
is thought that these metrics represent the features that
an SFG ought to have in order to cover many parts of
the behavior of a web app in an efficient manner.

1) Code coverage

When evaluating the effectiveness of exploration, code
coverage is a useful metric to consider. One goal of
exploring web apps is to run enough code to adequately
cover the app’s functionalities. Code coverage is a
metric that determines the proportion of an app’s lines
of code that are successfully run while the app is being
explored. Code coverage is also a reliable indicator of
test robustness [23]. Similar to [12], [13], [15], each
web app was instrumented to acquire code coverage.

2) Navigational diversity

A web app's navigation structure enables users to move
around it in different ways. Each navigational path
offers a varying level of functionality. A behavioral
model should adequately encompass the web app's
navigational structure. The model should cover web
app navigational branches to do that. The position of the
leaf nodes in the graph is an indication of the diversity
of its event paths (that is, paths from the index node to
the leaves). In order to measure the navigational
diversity of an SFG, we measure the average pair-wise
navigational diversity of leaf nodes (states without any
outgoing edges). This is similar to [12], [13], [15].
Common and uncommon events in SFG routes
determine their diversity.

3) Structural diversity

A webpage’s DOM structure serves as the primary
interface for user interaction. Different DOMs offer
varying levels of functionality. Because of this,
directing the exploration toward a variety of DOM
states can lead to improved coverage of the web app. In
order to accurately represent this structural diversity, an
SFG should include the various DOM structures of the
web app. In the same way as [12], [13], [15], we use the
average pair-wise structural diversity of DOM states in
the derived SFG to measure the structural diversity. The
normalized DOM tree edit distance can be used to
define state DOM diversity. Similar to [12], [13], [15],
we employ the tree edit distance between two ordered
labeled trees, which was proposed [24] and
implemented [25] as the minimum cost of a series of
edit operations that converts one tree into another. The
operations consist of deleting a node and connecting its
children to the parent, inserting a node between a node
and its children, and renaming a node.

B. Setup

DeepEx was implemented in Python on top of
QExplore [15] to assess its effectiveness. QExplore
supports the RL approach. We changed the RL strategy
by replacing it with our Deep RL algorithm. To interact
with the web app, Selenium [26] was utilized. The DQN
was built and executed using Keras [27]. DQN uses a
3-layer fully connected neural network, and Adam to

International Journal of Information & Communication Technology Research

http://dx.doi.org/10.61186/itrc.16.2.25
http://ijict.itrc.ac.ir/article-1-604-en.html

[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

[DOI: 10.61186/itrc.16.2.25]

Volume 16- Number 2 — 2024 (25 -33)

optimize the model with a learning rate of 0.001. Two
state-of-the-art strategies were chosen for a comparison
study. These include QExplore [15] and FeedEx [12]. It
is worth noting that WebExplor [21] focuses on
generating test cases and uses tabular RL as a
foundation. Our research focuses on web app
exploration using Deep RL, which has never been done
previously. Despite having some similarities with
QExplore, WebExplor is not a behavioral model
generator. So, it is not possible to compare DeepEx
directly to WebExplor. Extending our deep RL
technique to develop test cases for web apps and
comparing its effectiveness with that of WebExplor is
an interesting piece of future work that can be done.

Similar to [15], we utilize an existing open-source
data generator for elements requiring input data (e.g.,
text fields) based on the context of the elements. In fact,
we employ Mocker Data Generator [28], which offers
input data for web app input fields. DeepEx also gives
you the option to manually enter data for some inputs,
such as login and password.

We chose seven open-source web apps to evaluate.
These web apps perform various tasks and belong to
several categories. A web app called Voting [29]
enables communities and groups to vote online. E-
commerce Site [30] is a marketplace where users may
purchase and sell products to one another. A web app
called Hostel [31] handles important operations
connected to running a hostel. NodeBB [32] is an online
forum. Keystone [33] is a content management system.
TimeOff [34] is an employee absence management
system. Petclinic [35] is a web app used to manage a
veterinary clinic. These web apps were selected for
their varying levels of complexity and user interaction
patterns, providing a robust testbed for our Deep RL
testing approach. Each web app features distinct
navigational structures and user interfaces. By choosing
this web apps, we aimed to demonstrate the versatility
and adaptability of our approach across different web
app architectures. The varied nature of these web apps
significantly contributed to assessing the approach's
performance.

Each approach was tested on each subject web app.
We gave each strategy the same 100-minute time limit.
In addition, we repeated each experiment three times
and calculated the average of all the results to confirm
the general trend. The experiments were conducted on
a PC running Windows 10, with a processor of an Intel
Core i7-13700K 3.40 GHz and memory RAM 31.7 GB.
It is noteworthy that the required parameters of the
approaches QExplore and FeedEx were set according to
the recommended defaults in their papers.

C. Results

The effectiveness of DeepEx, QExplore, and FeedEx in
terms of code coverage, navigational diversity, and
structural diversity are compared in Table 1. The table
details the average values obtained from three iterations
of each of the three methodologies within the time
constraint of ninety minutes. In this case, the highest
values are bold.

It is clear from looking at the code coverage column
that DeepEx outperforms both QExplore and FeedEx.
It shows an improvement of 17% and 43% when

International Journal of Information & Communication Technology Research

vicTR ENN

compared to them, respectively. DeepEx obtained
greater code coverage than the other two approaches in
each of the web apps under consideration.

The results show that DeepEx outperformed
QExplore and FeedEx in terms of navigational diversity
across all of the investigated web apps. DeepEx
improved navigational diversity by 16% compared to
QExplore. Similarly, DeepEx improved navigational
diversity by 45% when compared to FeedEX.

According to the structural diversity column, it is
clear that the SFG obtained through DeepEx has more
structural diversity in all subject web apps than those
received through QExplore and FeedEx. DeepEx
scored better than QExplore and FeedEx when it came
to capturing structural diversity in its SFG, with an
improvement of 19% and 49%, respectively.

When comparing DeepEx’s improvements in code
coverage, navigational diversity, and structural
diversity to those of RL and heuristic-based approaches,
it is clear that the Deep RL-based methodology is more
effective in the exploration of web apps. In other words,
one of the primary reasons for the improved results
obtained by DeepEx is that it systematically explores
the web app by directing exploration toward more
effective actions and gaining access to various states
based on the learning capabilities of Deep RL.

Web apps, known for their sophistication and
diverse user interactions, often pose challenges in
exploration. In our investigation of the exploration
capabilities of DeepEx and two alternative approaches,
we delved into the complexities arising from intricate
user interactions. Notably, web app exploration
involves identifying patterns—specific sequences of
actions required to transition between states. This adds
a layer of difficulty as certain functionalities are only
revealed through precise sequences of actions.

For instance, in the Petclinic subject web app , a
crucial functionality, such as “Adding new wisit”,
necessitates a specific sequence: clicking “Find
Owners”, typing the owner’s name, clicking “Find
Owner”, clicking “Add New Visit”, filling details, and
clicking “Add Visit”. Interestingly, none of the other
approaches could detect this functionality. DeepEXx,
leveraging Deep RL guidance, successfully identified
such action sequences not only in Petclinic but also in
other web apps. It's crucial to note that any interruption
in the process results in redirection to another page,
impacting exploration efficacy. Deep RL's ability to
efficiently execute these sequences sets it apart.

Our findings underscore the superiority of the Deep
RL algorithm over RL and heuristic-based approaches.
DeepEXx, powered by Deep RL, outperformed other
methods in replicating human behaviors. This was
particularly evident in generating action sequences
without distractions from prior states or ineffective
actions in high-dimensional spaces. The learning
capabilities of the DQN used in Deep RL facilitated the
efficient production of these behaviors—a feat more
challenging for the RL algorithm with its limited
adaptation capabilities. Our paper shows Deep RL's
effectiveness in learning exploration strategies
contributes to its superior performance in uncovering
intricate functionalities within web apps.

http://dx.doi.org/10.61186/itrc.16.2.25
http://ijict.itrc.ac.ir/article-1-604-en.html

Volume 16- Number 2 — 2024 (25 -33)

) wvictr

[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

[DOI: 10.61186/itrc.16.2.25]

TABLE I. EFFECTIVENESS RESULTS FOR COMPARISON
App Code coverage Navigational diversity Structural diversity
DeepEx | QExplore | FeedEx | DeepEx | QExplore | FeedEx | DeepEx | QExplore | FeedEx
Voting 76.47 | 6350 | 49.14 | 0.86 0.74 0.53 | 0.65 0.53 0.42
E-commerce Site | 86.37 | 74.27 | 66.40 | 0.84 0.71 0.59 0.70 0.62 0.47
Hostel 72.87 | 60.39 | 4941 | 0.79 0.68 0.56 | 0.73 0.64 0.50
NodeBB 66.70 | 54.65 | 43.67 | 0.72 0.63 0.49 0.59 0.49 0.41
Keystone 56.62 | 48.59 | 40.55 | 0.63 0.61 0.53 | 0.68 0.57 0.47
TimeOff 78.62 | 69.59 | 5955 | 0.71 0.59 0.51 0.58 0.47 0.39
Petclinic 64.67 | 56.54 | 4252 | 0.66 0.54 0.39 | 0.53 0.43 0.34
Average 71.76 | 61.08 | 50.18 | 0.74 0.64 0.51 0.64 0.54 0.43
V1. CONCLUSIONS [4] A. Mesbah and M. R. Prasad, “Automated Cross-Browser

In this paper, we have proposed DeepEx, an approach
based on Deep RL for the exploration of web apps. A
Deep Q-network agent is employed in this approach to
explore and model the web app through trial and error.
Instead of relying on heuristic principles to find the
appropriate action to discover new states, DeepEX can
learn how to explore web apps on its own. We have
tested DeepEx on seven publicly available web apps
and found that it achieves better results than the current
methods for web app exploration in terms of code
coverage, navigational diversity, and structural
diversity.

In future work, we plan to extend the testing of our
methodology to a wider array of web apps. It is
important to note that the use of apps from various
categories, as well as the consistency of the results in
this study, indicate that our Deep RL-based technique
has some potential usefulness. Despite this, expanding
our subject web apps will allow for a more
comprehensive evaluation to further validate the
effectiveness of DeepEx.

It is crucial to remember that our basic and intuitive
definition of states and reward function produced
encouraging results, indicating its usefulness. However,
we aim to enhance DeepEx by refining the state space
and exploring different reward function strategies
within Deep Q-networks. These enhancements are
directed towards developing more complex state
definitions and reward functions, particularly to
improve adaptability to a more diverse range of web

apps.

Furthermore, we will investigate the efficacy of
testing and analyzing methods for web apps using the
behavioral model created by DeepEx. This includes
examining the efficacy of test suites for web app
regression testing derived from the corresponding state
flow graph.

REFERENCES

[1] “January 2023 Web Server Survey | Netcraft News.”
https://news.netcraft.com/archives/2023/01/27/january-
2023-web-server-survey.html (accessed Apr. 05, 2023).

[2] “What is the Document Object Model?”
https://www.w3.org/TR/WD-DOM/introduction.html
(accessed Jan. 05, 2023).

[3] A. Mesbah, A. van Deursen, and D. Roest, “Invariant-
Based Automatic Testing of Modern Web Applications,”
IEEE Trans. Softw. Eng., vol. 38, no. 1, pp. 35-53, Jan.
2012, doi: 10.1109/TSE.2011.28.

[5]

(6]

[71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

International Journal of Information & Communication Technology Research

Compatibility Testing,” in Proceedings of the 33rd
International Conference on Software Engineering, 2011,
pp. 561-570, doi: 10.1145/1985793.1985870.

S. Mirshokraie, A. Mesbah, and K. Pattabiraman, “Guided
Mutation Testing for JavaScript Web Applications,” IEEE
Trans. Softw. Eng., vol. 41, no. 5, pp. 429444, May 2015,
doi: 10.1109/TSE.2014.2371458.

A. Milani Fard, M. Mirzaaghaei, and A. Mesbah,
“Leveraging Existing Tests in Automated Test Generation
for Web Applications,” in Proceedings of the 29th
ACM/IEEE International Conference on Automated
Software Engineering, 2014, pp. 67-78, doi:
10.1145/2642937.2642991.

M. Biagiola, A. Stocco, F. Ricca, and P. Tonella,
“Diversity-based Web Test Generation,” in Proceedings of
the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the
Foundations of Software Engineering, 2019, pp. 142-153,
doi: 10.1145/3338906.3338970.

M. Biagiola, A. Stocco, F. Ricca, and P. Tonella,
“Dependency-Aware Web Test Generation,” in 2020 IEEE
13th International Conference on Software Testing,
Validation and Verification (ICST), Oct. 2020, pp. 175—
185, doi: 10.1109/1CST46399.2020.00027.

A. Mesbah, A. van Deursen, and S. Lenselink, “Crawling
Ajax-Based Web Applications through Dynamic Analysis
of User Interface State Changes,” ACM Trans. Web, vol.
6, no. 1, Mar. 2012, doi: 10.1145/2109205.2109208.

M. Mirzaaghaei and A. Mesbah, “DOM-Based Test
Adequacy Criteria for Web Applications,” in Proceedings
of the 2014 International Symposium on Software Testing
and Analysis, 2014, pp. 71-81, doi:
10.1145/2610384.2610406.

A. van Deursen, A. Mesbah, and A. Nederlof, “Crawl-
based analysis of web applications: Prospects and
challenges,” Sci. Comput. Program., vol. 97, pp. 173-180,
2015, doi: https://doi.org/10.1016/j.scico.2014.09.005.

A. M. Fard and A. Mesbah, “Feedback-directed
exploration of web applications to derive test models,” in
2013 IEEE 24th International Symposium on Software
Reliability Engineering (ISSRE), Nov. 2013, pp. 278-287,
doi: 10.1109/ISSRE.2013.6698880.

X.-F. Qi, Y.-L. Hua, P. Wang, and Z.-Y. Wang,
“Leveraging keyword-guided exploration to build test
models for web applications,” Inf. Softw. Technol., vol.
111, pp. 110-119, 2019, doi:
https://doi.org/10.1016/j.infsof.2019.03.016.

C.-H. Liu, W.-K. Chen, and C.-C. Sun, “GUIDE: an
interactive and incremental approach for crawling Web
applications,” J. Supercomput., Mar. 2018, doi:
10.1007/s11227-018-2335-4.

S. Sherin, A. Mugeet, M. U. Khan, and M. Z. Igbal,
“QExplore: An exploration strategy for dynamic web
applications using guided search,” J. Syst. Softw., p.
111512, 2022, doi:
https://doi.org/10.1016/j.jss.2022.111512.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An

Introduction. Cambridge, MA, USA: A Bradford Book,
2018.

http://dx.doi.org/10.61186/itrc.16.2.25
http://ijict.itrc.ac.ir/article-1-604-en.html

[Downloaded from ijict.itrc.ac.ir on 2025-11-17]

[DOI: 10.61186/itrc.16.2.25]

Volume 16- Number 2 — 2024 (25 -33)

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

International Journal of Information & Communication Technology Research

V. Mnih et al., “Playing Atari with Deep Reinforcement
Learning,” CORR, vol. abs/1312.5, 2013, [Online].
Auvailable: http://arxiv.org/abs/1312.5602.

K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A.
A. Bharath, “Deep Reinforcement Learning: A Brief
Survey,” |IEEE Signal Process. Mag., vol. 34, no. 6, pp.
26-38, Nov. 2017, doi: 10.1109/MSP.2017.2743240.

C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach.
Learn., vol. 8, no. 3, pp. 279-292, 1992, doi:
10.1007/BF00992698.

R. Bellman, “On the Theory of Dynamic Programming,”
Proc. Natl. Acad. Sci., vol. 38, no. 8, pp. 716-719, 1952,
doi: 10.1073/pnas.38.8.716.

Y. Zheng et al., “Automatic Web Testing Using Curiosity-
Driven Reinforcement Learning,” in Proceedings of the
43rd International Conference on Software Engineering,
2021, pp. 423-435, doi: 10.1109/ICSE43902.2021.00048.

A. D. Tijsma, M. M. Drugan, and M. A. Wiering,
“Comparing exploration strategies for Q-learning in
random stochastic mazes,” in 2016 IEEE Symposium
Series on Computational Intelligence (SSCI), Dec. 2016,
pp. 1-8, doi: 10.1109/SSCI1.2016.7849366.

R. Gopinath, C. Jensen, and A. Groce, “Code Coverage for
Suite Evaluation by Developers,” in Proceedings of the
36th International Conference on Software Engineering,
2014, pp. 72-82, doi: 10.1145/2568225.2568278.

K.-C. Tai, “The Tree-to-Tree Correction Problem,” J.
ACM, vol. 26, no. 3, pp. 422-433, Jul. 1979, doi:
10.1145/322139.322143.

M. Pawlik and N. Augsten, “RTED: A Robust Algorithm
for the Tree Edit Distance,” Proc. VLDB Endow., vol. 5,
no. 4, pp. 334-345, Dec. 2011, doi:
10.14778/2095686.2095692.

“Selenium.” https://www.selenium.dev/ (accessed Jan. 11,
2022).

“Keras: Deep Learning for humans.” https://keras.io/
(accessed Feb. 28, 2022).

“mocker-data-generator: A simplified way to generate
masive mock data based on a schema.”
https://github.com/danibram/mocker-data-generator
(accessed Aug. 12, 2022).

“Voting System.” https://code-projects.org/voting-system-
in-php-with-source-code/ (accessed Dec. 11, 2022).
“E-commerce Site.” https://code-projects.org/e-
commerce-site-in-php-with-source-code/ (accessed Nov.
15, 2022).

“Hostel Management System.” https://code-
projects.org/hostel-management-site-using-php-source-
code/ (accessed Oct. 14, 2022).

“NodeBB: Node.js based forum software built for the
modern web.” https://github.com/NodeBB/NodeBB
(accessed Jul. 14, 2022).

“keystone: The most powerful headless CMS.”
https://github.com/keystonejs/keystone (accessed Jun. 14,
2022).

“timeoff: Simple yet powerful absence management
software.” https://github.com/timeoff-
management/timeoff-management-application (accessed
Apr. 16, 2022).

“petclinic: Angular version of the Spring Petclinic
Application.” https://github.com/spring-petclinic/spring-
petclinic-angular (accessed May 14, 2022).

Mohammadreza Abbasnezhad
obtained his B.Sc. in Software
Engineering from Vali-e-Asr
University of Rafsanjan in 2014
and his M.Sc. in Software
Engineering from Yazd University
in 2017. He is currently pursuing

his Ph.D. degree in Software

[

vicTR E

Engineering at Yazd University. His research interests
include Al-driven Software Engineering, Software
Testing and Analysis.

Amir Jahangard-Rafsanjani
received his B.Sc. degree in
Software Engineering from Shahid
Beheshti University, Tehran, Iran,
in 2003, and his M.Sc. degree in
Software Engineering from Sharif
University of Technology, Tehran,
Iran, in 2005. He also received his

Ph.D. degree in Software Engineering from Sharif
University of Technology in 2014. He is currently an
Assistant Professor in the Department of Computer
Engineering at Yazd University. His research interests
include Database, Data and Text Mining, and Software
Testing.

Amin Milani Fard recieved his
Ph.D. degree in Software
Engineering from the University of
British Columbia, Canada, in 2017,
and his M.Sc. degree in Computer
Science from Simon Fraser
University in 2010. Additionally,
he received his B.Sc. degree in
Computer Englneermg from Ferdowsi University of
Mashhad, Iran, in 2008. Currently, he serves as an
Assistant Professor of Computer Science at the New
York Institute of Technology's Vancouver campus in
Canada and is a visiting faculty member in
Management Information Systems at Simon Fraser
University, Canada. His research focuses on Software
Engineering and Analysis, Data Security and Privacy,
Artificial Intelligence and Machine Learning.

http://dx.doi.org/10.61186/itrc.16.2.25
http://ijict.itrc.ac.ir/article-1-604-en.html
http://www.tcpdf.org

