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Abstract—In recent years, Convolutional Neural Networks (CNN) have been extensively used in machine learning 

algorithms related to images due to their exceptional accuracy. The multiplication-accumulation (MAC) in 

convolutional layers makes them computationally expensive, and these layers account for 90% of the total computation. 

Several researchers have taken advantage of pruning the weights and activations to overcome high computation 

bandwidth. These techniques are divided into two categories: 1) unstructured pruning of the weights can achieve heavy 

pruning, but in the process, it unbalances data access and computation processes. Consequently, compression coding 

for indexing non-zero data increases, which causes much more memory volume. 2) Structured pruning by the specified 

pattern prunes the weights and regularizes both computations and memory access but does not support high pruning 

amounts compared to unstructured pruning. In this paper, we proposed Quasi Structured Pruning (QSP) that profits 

from the high pruning ratio of unstructured pruning. The load balancing property in structured pruning has also been 

included in the QSP scheme. Implementation results of our accelerator using VGG16 on a Xilinx XC7Z100 indicate 

616.94 GOP/s and 1437.7 GOP/s at just 7.8 watts power consumption for dense and sparse mode, respectively. 

Experimental results show that the accelerator is 1.38×, 1.1×, 2.77×, 2.87×, 1.91×, and 1.18× better in terms of DSP 

efficiency than previous accelerators in dense mode. As well, our accelerator has achieved 1.9×, 2.92×, 1.67×, and 1.11× 

higher DSP efficiency besides 4.52×, 5.31×, 10.38×, and 1.1× better energy efficiency than other state-of-the-art sparse 

accelerators. 

Keywords: Load balance, convolutional neural network (CNN), hardware accelerator, zero-skipping, quasi-structured 

pruning (QSP).  
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I. INTRODUCTION  

Convolutional Neural Network (CNN) has created 

an extraordinary revolution in deep learning and 

artificial intelligence applications such as machine 

vision, image classification, and sound detection. In 

recent years, CNNs have become a consistent method 

for learning and detecting problems [1], [2]. However, 

the advantages of engaging CNNs are challenged by 

the scope and complexity of computations and 

significant data volume. Recently, accelerators have 

become a crucial part of the real-time inference for 

CNNs. Accelerators based on GPUs, ASICs, and 

FPGAs have been investigated to attain heavy 

computation capability. FPGA-based accelerators have 

been used in [3-5] due to their reconfigurability, 

parallel and pipeline computation aptitude, 

performance, and efficient power consumption. Since 

hardware resource restrictions (computation resources 

and memory) are a potential adversity in realizing 

CNNs, specialization of accelerator structure is 

considered to maximize computation potency and 

power efficiency [6-9]. 

Recent research suggests compression methods that 

reduce the weight density of the network and 

subsequently achieve high inference speed. These 

strategies include computation load reduction by 

pruning the weights of CNN and weight quantization. 

[10] expressed that dropping the network weights to 

10% by pruning slightly affects accuracy. Weight 

quantization and representing weights with low bit 

widths can reduce storage bandwidth and computation 

complexity. Binary Neural Networks (BNN) [11] have 

afforded an extreme discount on inference time and 

power dissipation through concise bit representation to 

+1 and -1. 

The pruning exploiting space can be discussed in 

two approaches: 1) structured pruning and 2) 

unstructured pruning. Unstructured pruning can prune 

up to 90% of network weights [10, 12] but brings load 

imbalance and computation irregularity problems. In 

addition, non-zero indexing overhead and memory 

access hierarchy devastation derived from unstructured 

pruning does not approve of improving accelerator 

performance. In contrast, structured pruning [13-15] 

pursues a pruning process with a definite pattern that 

produces balancing on the load for hardware adaption. 

A software-based approach is contributed in this 

manner where the weights diminish first, and then the 

accelerator will be designed as particular for the 

adopted pruning strategy. Although the load-balancing 

nature of structured pruning is hardware-friendly, 

weight pruning practically does not exceed 60% in this 

method. Weight pruning requests proper criteria to 

retain accuracy when removing weights during the 

pruning. Weight valuation by the absolute magnitude 

criterion has been applied in [10] and [16] which 

removes the lowest elements by considering the 

desired pruning through layer-wise and model-wise 

comparison, respectively. [17] has inspected various 

pruning criteria and proved that random pruning has 

respectable and competitive alongside other schemes.  

The CNNs are constructed by variant layers: 

convolutional layer, pooling layer, activation 

functions, and fully connected layer (FC). The 

consistent truth is that convolutional layers have a 

conquering contribution to CNN computation 

complexity. Hence, fast convolution techniques such 

as FFT convolution [8], [18], [19], and Winograd [20] 

have developed to speed up computation alongside 

pruning methods. Nevertheless, once an accelerator 

wants to be designed, designating a conventional or 

fast convolution algorithm to complete the 

convolutional layer computations depends on the 

pruning strategy. 

As a result of the abovementioned arguments, 

structured pruning is hardware-friendly due to its data 

computation balancing. Still, it has a limited sparsity, 

while unstructured pruning confirms a heavy pruning 

level at the cost of more complexity, coding burden, 

and unbalancing on load. We proposed Quasi 

Structured Pruning (QSP) to obtain a colossal pruning 

expanse close to unstructured pruning that assures 

computation load balancing and regular memory 

access hierarchy. In addition, this pruning approach 

does not demand compression coding complexity and 

process management burden on the hardware. On the 

other hand, this is a genuinely right case that the 

pruning process by a conventional method which 

prunes the weights in a software environment by CPU 

and then the hardware accelerator employs them for 

inference, takes much time for preparation. In this 

work, an accelerator block has been designed for 

pruning the network weights based on the QSP 

approach on the hardware, which addresses the vast 

elapsed time by the pruning process. This block 

minimizes the time of pruning with negligible resource 

utilization. This paper presents a load-balanced 

accelerator that performs efficiently in dense and 

sparse networks. The main contribution of the paper 

will be as follows: 

 

 Proposed QSP modifies load imbalance 

defect of unstructured pruning and covers its 

accessible pruning amount. 

 A simple weight coding has been projected to 

comprehend the accelerator to skip 

computations for zero values without 

complicated procedures and pressure on 

hardware. 

 Weight-shared computation flow has been 

proposed by establishing two parallelism 

approaches that promise performance 

efficiency for dense and sparse modes. 

 Active Pruning Block accelerates the QSP-

based pruning process on the chip. 

 

The paper is organized as follows: Section II 

reviews related works; Section III presents proposed 

accelerator architecture; Section IV is focused on 

Volume 17- Number 3 – 2025 (19-33) 

 

20 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n 

20
25

-1
1-

17
 ]

 

                             2 / 15

http://ijict.itrc.ac.ir/article-1-730-en.html


analyzing accelerator performance and extending 

results and comparisons; Section V is the conclusion. 

II. RELATED WORKS 

A. Pruning 

Accelerator designing based on network 

optimization frameworks has been regarded in many 

works. For instance, [21] has introduced a framework 

to combine software optimization and hardware for 

sparse CNNs. As mentioned in section I, structured and 

unstructured pruning approaches have developed 

recently. Unstructured Pruning: [12] has achieved 

plenty of pruning rates by appointing a threshold 

parameter and eliminating values less than the 

threshold. Although this method inaugurates a chapter 

of entrancing to mobile applications by offering weight 

reductions of up to 13× for VGG16 without any 

damage to the accuracy, it demands access to column 

indexes in CSR format to locate the required inputs. On 

the other side, load unbalancing of Processing 

Elements (PE) and the case mentioned earlier has 

formed an efficiency descent. Compression formats 

such as CSR [22] and CSC [23] to signify non-zero 

values when sparsity is applied on both weight and 

activation bother the hardware for handling the 

computation flow. One of the significant drawbacks of 

unstructured pruning is the imbalance of 

computational loads to PEs since the reduction of 

weights occurs asymmetrically and eventuates 

disruption in data scheduling. The idle time of some 

PEs owing to load imbalance issues does not make it 

possible for the accelerator to utilize maximum 

resources in run-time and begets decreasing 

computational efficiency. [24] has proposed dynamic 

scheduling that balances the PE loads by placing 

multiplexers on the input and output of PEs. This 

operates through managing the multiplexer control 

states that decide which FIFO should inject into which 

specific PE. In addition, the multiplexer control states 

in the output of each PE steer the partial results in their 

path to accumulation. However, this idea demands 

high power consumption for efficient utilization of 

PEs. Structured Pruning: recent research has 

revealed that structured pruning can aid the accelerator 

to skip computations for zeroes in processing cores 

conveniently and improves performance and energy 

efficiency. To obviate the irregularity of pruning, [25] 

suggests channel-wise, filter-wise, and shape-wise 

pruning that obeys specific patterns in the pruning 

process (Fig. 1). Similarly, [26] proposes a shape-wise 

pruning that prunes similar spatial points along channel 

kernels and applies this method to regulate the memory 

access hierarchy and enhance computation efficiency 

of PEs.  

Filter-Wise 

Pruning

Filter 1

Filter 2

Channel-Wise 

Pruning

Filter 1

Filter 2

Shape-Wise 

Pruning

Filter 1

Filter 2

 

Figure 1.  Filter-Wise, Channel-Wise, and Shape-Wise pruning 
[26], depicted from left to right 
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Figure 2.  Convolutional layer including input feature map, filters 

and output feature map 

 

B. Loop Executing Optimization 

The convolutional layer with significant 

multiplication-accumulation in a few operations loops 

should accelerate with loop unrolling techniques. A 

convolutional layer operates by convolving a filter 

with the dimension of Nwx, Nwy, Nic, and Noc as 

kernel width, kernel height, number of input channels, 

and number of output channels, respectively, on an 

input feature map with a dimension of Nix, Niy, and 

Nic where Nix and Niy demonstrate input width and 

input height, respectively, and produces an output 

feature map with a size of Nox, Noy, and Noc where 

Nox and Noy represent output width and output height,  

respectively. A relation between the input and output 

feature map is always steady, which will be as follows: 

 

Algorithm 1 Convolutional Layer Computation 

Input: Input activation Iy,x,ci
, Weight Wky,kx,ci,co

 

and Bias Bco
 

Output: Output Activation Oy,x,co
 

1: for co from 1 to Noc do 

2:    for x from 1 to Nox do 

3:       for y from 1 to Noy do 

4:          for ci from 1 to Nic do

5:             for kx from 1 to Nwx do 

6:                for ky from 1 to Nwy do 

7:                   

Partial_Sum+=IS×y+ky,S×x+kx,ci
×Wky,kx,ci,co

  

8:          Oy,x,co
+=Partial_Sum+Bco
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   Nix=Nwx+S(Nox-1)  ,  Nox=(Nix-Nwx+S)/S      (1) 
   Niy=Nwy+S(Noy-1)  ,  Noy=(Niy-Nwy+S)/S      (2) 

Where S is stride, and zero-padding has been 

included in Nix and Niy. Fig. 2 illustrates 

convolutional layer characteristics. Algorithm 1 

introduces a convolutional layer in loop format. To 

compute a convolution layer, lines 1 to 6 must be 

executed. As the computation of these loops serially 

takes a long time, loop unrolling and parallelism 

techniques are essential to accelerate the loops. Loop 

unrolling repeatedly has been used in State-Of-The-Art 

accelerators. To better classify these accelerators, in 

Algorithm 1, line 1 is called loop-1, lines 2 and 3 are 

called loop-2, line 4 is called loop-3, and lines 5 and 6 

are called loop-4. In [9] loops 1, 2, and 4, [6] loops 2 

and 4, [27] loops 1 and 3, and [28] loops 3 and 4 have 

been unrolled. However, these loop-unrolling 

strategies have been explicitly considered for dense 

networks and do not bring adequate efficiency for 

sparse networks. Unrolling of loops 3 and 4 alongside 

sparse-wise data flow has been offered in [26], making 

it conceivable to employ both parallelism and zero-

skipping in shape-wise format simultaneously. Loop 

tiling methods to diminish frequent access to external 

memory and maintain the under-computation data on 

internal buffers often apply in the accelerators, leading 

to higher performance and efficiency. [26] and [7] 

demonstrate that optimization in off-chip memory 

access and data-sharing ability on weights and 

activations have been practicable by the loop tiling 

technique.  

An efficient state-of-the-art accelerator should pass 

these qualifications: 1) loop unrolling and tiling must 

satisfy different kernel sizes and strides in widely used 

CNN networks; 2) the designed structure should be 

scalable and flexible to adjust for corresponding 

hardware with limited resources; 3) accept both dense 

and sparse modes; 4) establishing proper pruning 

approach to speed up the accelerator performance; 5) 

choosing loop unrolling and tiling techniques based on 

determined pruning approach to profit from zero-

skipping abundantly. 

III. PROPOSED ACCELERATOR 

A. Loop Unrolling and Tiling Strategy 

The proposed accelerator benefits from two 

parallelism approaches. These approaches promise 

performance and energy efficiency in dense and sparse 

modes. Moreover, according to the proposed pruning, 

the zero-value computation skipping scheme is 

acknowledged throughout parallelism approaches. 

Afterward, loop tiling can be illuminated based on 

parallelism. 

1) Loop Unrolling 

Parallelism Approach 1 (PA1) is shown in Fig. 3, 

where one weight from one input channel of the filter 

kernel is shared along Py pixel in the same column 

from the input feature map. In each computation cycle, 

these activations and weights are multiplicated as 

parallel. Therefore, Py is the parallelism coefficient in 

PA1, representing the number of parallel pixels under 

computation in an identical x location of the input 

feature map. Since Py parallel multiplication generates 

Py separate partial results in the output feature map that 

must be accumulated serially, accumulating these 

partial results entails inaugurating Py accumulator. 

Parallelism Approach 2 (PA2) is shown in Fig. 4, 

where Pic weight in different input channels of the 

filter kernel with identical (x, y) locations are 

multiplicated with Pic pixel in the identical (x, y) 

locations along the activation channels. Hence, Pic 

parallel multiplication along the input channel exposes 

the necessitation of placing an adder tree to accumulate 

their results. The proposed parallelism containing PA1 

and PA2 is shown in Fig. 5.  
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Figure 3.  Parallelism Approach 1. 
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Figure 4.  Parallelism Approach 2. 
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Figure 5.  The proposed parallelism with PA1 and PA2 
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Figure 6.  Loop tiling adapted to the parallelism approaches. 
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2) Loop Tiling 

Consistent with PA1 and PA2, data required for 

computing based on these approaches must be 

prepared on the chip. A clever tiling strategy would 

acquire minimum transfers among external memory 

and on-chip buffer to lessen off-chip memory access, 

consequently abating power consumption and latency. 

As can see in Fig. 6, input feature map tiling with a size 

of Tix×Tiy×Tic, filter tiling with a size of 

Twx×Twy×Tic, and output feature map tiling with a 

size of Tox×Toy×Toc is assumed. Pipeline 

computation besides PA1 and PA2 to achieve PE 

efficiency requires constituting suitable tile sizes. To 

address these, the input feature map tile size has been 

selected as follows: 

                 {
Tix=Nix 

Tiy=Nwy+S(Py-1) 
Tic=Pic 

                                   (3) 

Tix=Nix creates the pipeline computation possibility to 

form the output tile equal Tox=Nox. As well, Toy=Py 

obtains by similarity relation of line 2 in (3) and (2). 

Parallelism approaches have not been applied for 

parallel computation along the output channel. 

Accordingly, Toc is equal to 1, and remained 

dimension of the filter tile is designated to be 

Twx=Nwx, Twy=Nwy, and Tic=Pic. These 

specifications ensure that the PE arrays continue 

computation without idle cycles. 

B. Accumulation Scheme and Convolution Process 

To address PA2 requirements, the adder tree with fan-

in of Pic sums the partial results from an array of PE. 

This array realizes the PA2 strategy. Each operating 

cycle computes one spatial weight in the kernel means 

that after passing Nwx×Nwy cycles, convolution for a 

region in the input feature map will be finished. Then, 

the kernel slides along the x-direction on the input 

feature map with respect to the convolution stride and 

generates partial results concerning the output feature 

map. The accumulation scheme in Fig. 7 has been 

constructed to sustain pipeline computations for kernel 

weights and the x-direction of the output feature map. 

The proposed accumulator contains three adder stages, 

a Partial Sum Temp (PST) buffer, and an accumulator 

controller. Stage 1 accumulates partial results of 

convolving spatial weights on an area of the input 

feature map in Nwx×Nwy cycles. Since Pic≤Nic, after 

each Nwx×Nwy cycle, obtained results are just for Pic 

channel and not completed. 

Hereupon, ⌈Nic/Pic⌉  appoints the number of 

computation phases to finalize the output result. 

Therefore, the PST buffer preserves incomplete results 

in each phase. The held results in the PST buffer and 

corresponding results in the current phase of 

computation accumulate by stage 2. In addition, the 

PST buffer saves the partial result generated by sliding 

the kernel in the x-direction. In other words, each 

address of the PST buffer is dedicated to one pixel of 

the output feature map with the same row. The number 

of PST buffer addresses should be compatible with 

different Nix in all network layers. The following 

equation has been founded to meet the compatibility: 

      Nix_Max=Max(Nix(L))                                 (4) 

where Nix_Max  is the number of PST buffer 

addresses, and L is the variable representing different 

network layers. When all computation phases are 

completed, stage 3 accumulates the filter bias with the 

final result. The accumulator controller with an address 

signal and a reset signal assists the convolution process 

in the accumulator. The address signal handles PST 

buffer addresses for writing/reading data to/from 

corresponding addresses. On the other hand, the reset 

signal applies at the first operating cycle of the new 

region process to ensure the remaining data in the 

previous cycle does not contribute to accumulating in 

stage 1.  

Fig. 8 illustrates an instance of a convolutional 

process by the proposed scheme. The accelerator 

parameters, including Py and Pic, have been assumed 

to be 1 and 2, respectively. 
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Figure 7.  Accumulation scheme including accumulator and adder 

tree. 
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Figure 8.  Computation of a convolutional layer by proposed 

accelerator. 

The convolution of an input feature map with a size 

of 5×5×4 and a filter with a dimension of 3×3×4 with 

stride=1 has led to the output feature map of 3×3×1. As 

Pic=2 is fewer than Nic=4, the computation phases are 

divided into ⌈Nic/Pic⌉=2 phases. In phase 1, PE1 and 

PE2 process the kernels of channel 1 and channel 2, 

respectively. In cycles 1 and 19, similarly, the reset 

signal has been applied to refresh the accumulation 

operation of stage 1 since these cycles are the 

beginning of the new region process. After elapsing 

nine cycles, the convolution result for two filter kernels 

on one region of the input feature map is obtained and 

should write to its address in the PST buffer. In phase 

2, PE1 and PE2 calculate the kernels of channel 3 and 

channel 4, respectively. As this phase is the last 

processing phase to get the final results of the output 

feature map, the corresponding address of the region 

under computation in the PST buffer must be read 

before coming to the ninth cycle of the region. For 

example, O1,1
1  and O1,3

1  have been computed by 

accumulating Psum1 and Psum3 from the PST buffer 

with the achieved output result of stage 1 in cycles 36 

and 54, respectively. Stage 2 accumulates these values 

and guides them to stage 3 for finalizing. As a result, 

the proposed accumulator utilizes three adders that 

diminish LUTs practically. 

C. Quasi Structured Pruning 

The network sparsity based on weight pruning 

extraordinarily optimizes performance and efficiency. 

However, structured or unstructured pruning has some  

strengths and weaknesses that engender challenges to 

fully utilizing the leverages of the pruning. This paper 

offers a Quasi Structured Pruning method, which 

powers from structured and unstructured pruning 

advantages. In this method, two fundamental 

principles are admitted: 1) each filter can possess its 

pruning rate; 2) in each filter, the channels can adopt 

different zero positions only by noticing an equal 

number of zeros along channels. Two irregularities 

created by these guidelines aid grow the pruning rate 

in the convolutional layer. Fig. 9 shows an instance of 

QSP-based pruning for a filter with Nwx=Nwy=3, 

Nic=4, and Noc=2. Filter 1 and 2 have pruning rates of 

5 and 6, respectively. Even so, each channel benefits 

different zero locations with respect to the pruning rate 

of its filter. According to restrictions by shape-wise 

pruning [26] in terms of the identical location of non-

zero weights per channel, QSP eliminates this 

boundary to realize vast pruning capacity. 

1) Weight Status Coding 

Sparse accelerators widely use compression coding 

and non-zero indexing. This option cuts memory 

storage, but code/decoding of the data brings a 

redundant involvedness burden on the accelerator 

hardware. This work has endeavored to considerably 

discount resource utilization and hardware complexity 

to reach higher clock frequency besides lower power 

consumption. Thus, a simple coding called Weight 

Status Coding (WSC) has been used to simplify 

detecting non-zero weights in hardware. As revealed in 

Fig. 10, a WSC with Nwx×Nwy bits determines the 

status of each weight in the kernel. When a location has 

a non-zero weight, logic equals 1; when it has a zero 

value, logic equals 0. 

2) Load Balancing 

The load imbalance nature of unstructured pruning 

induces a lack of maximum PE utilization efficiency, 

which emanates from idle cycles in some of them. 

Furthermore, organizing data flow to PE will be extra 

complicated. The QSP-based pruning, PA1, and PA2 

constitute an accelerator with a balanced load. To 

express this feature, Fig. 11 has depicted a convolution 

layer process for an input feature map dimension of 

5×5×2 and the filter dimension of 3×3×2×2 with 

stride=1. 
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Figure 9.  QSP-based pruning for a filter with Nwx=Nwy=3, 

Nic=4, and Noc=2. 
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Figure 10.  WSC for a 3×3 kernel.  
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Figure 11.  Load balancing and zero-skipping based on QSP. 
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The accelerator configuration has also been assumed to 

be Pic=2 and Py=1. Since Pic equals Nic, each filter 

has just one computation phase and does not require 

holding partial results in the PST buffer. So, stage 2 has 

been ignored. Filter 1 and 2 have a pruning rate of 5 

and 6, respectively. Filter 1 has two input channels 

with non-zero weights equal to four, which balances 

the effective operating cycle of the channels against 

each other. Cycles corresponding to zero weights have 

been ignored in PE1 and PE2 equally in terms of the 

number by a data flow. The proposed data flow will be 

introduced later, which brings collaboration to 

leverage the benefits of cycle equality in parallel PEs. 

Filter 1 and 2 have spent 12 and 9 cycles to obtain three 

output pixels, respectively. Meanwhile, Filter 1 and 2 

have been computed serially and ensure that different 

pruning rates of filters have not affected the process. 

Based on the details above, parallel processing 

elements are permanently fed by identical load volume 

that guarantees PE utilization and computation 

efficiency. 

D. Accelerator Architecture 

Fig. 12 demonstrates the overall architecture of the 

proposed accelerator. An array of Processing Units 

(PU) erects the central core of the convolutional 

computation. According to Fig. 12, Py PUs 

simultaneously produce Py row of the output feature 

map, which emphasizes PA1. An array of PEs with a 

length equal to Pic as multiplier units has been 

equipped in PU. An adder tree, an accumulator based 

on the accumulation scheme, a normalization, and a 

ReLU have also been embedded in PU. Input 

activation from Pic input channel is stored in Pic Input 

Feature Map (IFM) buffer. Similarly, Pic kernel is 

stored in Pic weight buffer. 

Gatherer block puts the convolutional results of Py PUs 

in one column and writes them on Output Feature Map 

(OFM) buffer. Required data transfers between buffers 

and external memory through DMA. Whenever the 

layer under process needs a pooling operation, OFM 

buffer data feeds into Max-Pooling block, and the 

results will be directed to DMA for storing in external 

memory. Otherwise, Max-Pooling operation will be 

disabled. WSC buffer maintains weight status codes 

related to kernels written in weight buffers. IFM 

Router dispatches data from IFM buffers to PE arrays. 

Address Generator (AG) block gets weight status 

codes from WSC buffer and then creates proper 

addresses for IFM buffers and Weight Buffers. Also, 

IFM Router is controlled by the AG block.  

1) Data Buffering 

According to the projected loop tiling, kernels and 

activations must prepare on the chip. The pattern of 

data storing on buffers is a significant matter that 

characterizes the data flow procedure into PEs. 

a) Weight Storing 

The pattern of storing the kernels in weight buffers 

for an instance of Tic=Pic=2 has been revealed in Fig. 

13. Each spatial weight gets one address in weight 

buffer. The weight buffer depth will be as follows: 

    Weight_Buffer_Depth=2×(Nwx×Nwy)                   (5) 

The selected depth has two aspects: 1) the number of 

addresses to hold all kernel weights equals Nwx×Nwy. 

2) a ping pong buffer has been realized by creating two 

sections in each weight buffer. The buffers are based 

on Dual Port RAM (DPRAM) that enables write and 

read operations independently. Whenever a section is 

under computing (reading state), another can prepare 

the required data (writing state) for the next 

computation phase. Thus, coefficient 2 in (5) is set for 

buffer segmentation. Using (5), memory will be 

allocated in the following manner: 

  WB_Bits=Tic×Weight_Buffer_Depth×WB_Bit_Width      (6) 

Where WB_Bit_Width is the number of bits used to 

represent the weights, and Tic shows the number of 

weight buffers. 
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Figure 12.  The proposed accelerator architecture. 
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Figure 13.  The weigh buffer pattern for an accelerator parameter of 

pic=2. 
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Figure 14.  The IFM buffer pattern for an accelerator parameter of 

Pic=2. 

Volume 17- Number 3 – 2025 (19-33) 

 

25 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n 

20
25

-1
1-

17
 ]

 

                             7 / 15

http://ijict.itrc.ac.ir/article-1-730-en.html


 

b) Input Feature Map storing 

An example of input feature map storing in IFM 

buffers for Tic=Pic=2 has depicted in Fig. 14. The 

determined input tile size in (3) helps to find IFM 

buffer width in the following: 

   IFMB_Bit_Width=Tiy×Feature_Bits                     (7) 

Where Feature_Bits is the number of bits used to 

represent the activations, and Tiy is for confirming the 

PA1 strategy. Fig. 14 assumes Py=3 and stride=1 by 

using (3) results in Tiy=5. As convolutional layers of 

the considered network may have different Nix, Tix 

should equal Nix_Max in (4) to be compatible with all 

convolutional layers. The ping pong buffer technique 

by DPRAM segmentation has also been used for IFM 

buffers. As a result, IFM buffer depth is: 

     IFM_Buffer_Depth=2×Nix_Max                        (8) 

Using (8), memory allocation to IFM buffers will be as 

follows: 

IB_Bits=Tic×IFM_Buffer_Depth×IFMB_Bit_Width      (9) 

c) output Feature Map storing 

The final results from Py PU being gathered will be 

written in OFM buffer as one address. Figure 15 

illustrates an instance of output feature buffering with 

supposing Py=3. OFM buffer width will be as follows: 

OFMB_Bit_Width=Py×Feature_Bits               (10) 

As Tox equals Nox in the loop tiling, for compatibility 

of different convolutional layers, Tox should be as 

follows: 

           Tox_Max=Max(Nox(L))                                (11) 

Where L shows different convolutional layers of the 

network. The depth of OFM buffer with respect to the 

ping pong buffering method and using (11) is given 

below: 

    OFM_Buffer_Depth=2×Tox_Max                       (12) 

Finally, the allocated memory for OFM buffer using 

(12) is below:  

 OB_Bits=OFM_Buffer_Depth×OFMB_Bit_Width       (13) 

2) Weight-Shared Data Flow to PE 

Data flow to PEs is handled by AG block for weights 

and activations. The weights read from weight buffers 

are routed to PEs as straight, where each weight is 

shared among Py PUs. For the activations, an IF Router 

block scatters the inputs read from IFM buffer between 

PEs. 

d) IF Router 

Fig. 16 determines a sample of IF Router block for 

the accelerator parameters of Pic=2 and Py=3. 

IF_Router_Sub_Block1 and IF_Router_Sub_Block2 

distribute data from IFM Buffer 1 and IFM Buff 2 to 

corresponding PEs, respectively. Each IFM buffer 

address is placed in a partition register with a division 

coefficient equal to Nwy and the partition stride equal 

to the convolution stride. For example, when the 

stride=2, the jump offset of picking the activations and 

putting them in the partition will equal 2. 

Consequently, each partition contains Py sectors. A 

multiplexer (MUX) with Nwy inputs selects among 

partitions by the control state of IFR_S and transfers to 

the distribution register. The distribution register that 

includes Py sectors routes the partition sectors to PEs. 

e) Address Generator and Zero-Skipping 

AG block adopts two modes for accessing data to 

PEs: 1) dense mode operation, in which all cycles 

without ignoring will be done; 2) sparse mode based 

on QSP pruning that will skip addresses for zero 

weights. In sparse mode, the zero-weight locations 

differ in each weight buffer. This comes from the QSP 

kernel irregularity, which demands particular address 

generator subblocks for each weight buffer to generate 

non-zero weight addresses. In addition to the weight 

buffer, the AG subblock generates ignored addresses 

and ignored states for IFM buffer and IFR_S, 

respectively. Hence, Pic AG subblock produces fitting 

characteristics based on WSC codes related to its own 

kernel. Fig. 17 shows an example AG block for Pic=2. 
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Figure 15.   The IFM buffer pattern for an accelerator parameter of 
Py=3. 
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Figure 16.  IF Router containing Pic=2 subblock for Py=3. 
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Figure 17.  AG block with Pic=2 subblock. 
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The AG block is illustrated in Fig. 18 as a data flow 

controller by configuring Pic=2 and Py=3 based on 

weigh buffers in Fig. 13 and IFM buffers in Fig. 14. 

The pruning rate equals five, and for each computation 

area, four-cycle have been ignored. Data flow to PEs is 

controlled by two AG subblocks due to Pic=2. In the 

WSC, the Most Significant Bit (MSB) indicates the 

status of the first computation cycle since it contains 

the first weight of the kernel; accordingly, the Least 

Significant Bit (LSB) shows the last computation 

cycle. The AG subblock skips a computation cycle 

when its cycle status in WSC is zero.  

AG block achieves different strides by varying the 

jump offset of addresses. Moreover, different kernel 

sizes will confirm by altering the number of 

computation cycles in AG block.  

3) Fixed-Point Representation and PE Merging 

The activations and weights in the proposed 

accelerator have been fixed to 8 bits. This item, 

alongside the weight-sharing feature in the proposed 

accelerator, makes it possible to merge a pair of PEs. 

Digital Signal Processing (DSP) units in Xilinx FPGAs 

such as DSP48E1 have a 25×18 multiplier. Recently, 

INT-8 multiplication by DSP has been used to decrease 

DSP utilization in some accelerators [29-31]. 

However, signed multiplication has remained 

ambiguous in these works. Adding 8-bit zeros between 

two 8-bit inputs as one input port of the multiplier and 

multiplicate with an 8-bit weight, such as Fig. 19 (a), 

results in a 32-bit output in which the lower 16 bits and 

the upper 16 bits are the results of multiplying the 

weight by the first and second inputs, respectively. 

This technique works well for unsigned multiplication, 

but various faults will happen when these values are 

signed, such as in Fig. 19 (b). According to Fig. 20, 

Merged-PE has been proposed to eliminate signed 

multiplication problems. Merged-PE is formed by 

merging two PEs from two adjacent PUs with a shared 

weight and different inputs. Input values in Merged-PE 

are converted to absolute values and multiplied 

according to Fig. 19. Conversely, XOR between the 

most significant bit of both inputs and weight will 

control the MUX. The MUX is fed by the positive state 

and negative state of the output. The positive form of 

output is ready Inherently, but the negative state 

obtains by subtracting the positive state from zero. 

With the lowest component, the Merged-PE scheme 

multiplies two signed inputs by a signed weight. 

E. Active Pruning 

The conventional software-based pruning process is 

realized by pruning the pre-trained weights through 

chosen pruning approach and then validates by 

datasets. The pruning process will terminate when the 

considered accuracy obtains in the validation regarding 

the desired pruning rate. Then, the pruned weights will 

be used in the hardware accelerator. This paper offers 

an Active Pruning (AP) block, which accelerates the 

pruning process on the accelerator. The AP block 

prunes the pre-trained weights based on the proposed 

QSP. To lacking overhead on the hardware, random 

pruning has been settled in the AP block. Fig. 21 

introduces the pruning process by the AP block where 

Pic Random Generator (RG) produces Pic WSC for 

kernels intended to begin convolutional operation. 

Pruning rate and threshold accuracy are two inputs of 

the AP block. The AP block operates in four steps: 1) 

WSC codes for Pic channel of the filter generates, then 

will direct to the WSC buffer; 2) datasets applies to the 

accelerator for inference operation; 3) the classification 

result of datasets validates by validation labels; 4) 

validation result determines whether must save WSCs 

in external memory and finish the pruning process or 

return to step 1. Each Pic channel from Nic channel 

may prune at its own pruning rate based on the QSP-

based pruning process in the AP block. For generating 

WSCs, RG blocks just spend Nwx×Nwy cycles, which 

have negligible latency for the pruning process. 

F. Computational Latency 

The convolutional layer latency depends on looping 

tiling and loop unrolling parameters. The number of 

multiply for a convolutional layer is as follows: 

  N_Mult=Nwx×Nwy×Nic×Nox×Noy×Noc         (13) 

Since computations are tiled, considering the size of 

input and filter beside tile size will have: 

   N_Tile=⌈
Nwx

Twx
⌉⌈

Nwy

Twy
⌉⌈

Nic

Tic
⌉⌈

Nox

Tox
⌉⌈

Noy

Toy
⌉⌈

Noc

Toc
⌉       (14) 

Where N_Tile is the total number of convolutional tiles 

that should be computed. The proposed accelerator has 

chosen tile size of Twx=Nwx, Twy=Nwy, Tic=Pic, and 

Toc=1 that modifies (14) to following form: 

                        N_Tile=⌈
Nic

Pic
⌉⌈

Noy

Py
⌉

× Noc                           (15) 

On the other hand, maximum parallel multiplication in 

a convolutional layer will be as follows: 

  Max =Pwx×Pwy×Pic×Pox×Poy×Poc      (16) 
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Figure 18.  An instance of proposed dataflow to PEs and 

corresponding AG block outputs 
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Figure 19.  A 24×8 dual multiplication: a) right result for unsigned 

multiplication b) Fault result for signed multiplication. 
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Figure 20.  Internal structure of the Merged PE. 
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Figure 21.  The proposed Active Pruning process. 

 
Figure 22.  Computation efficiency of all convolutional layer of 

VGG16 for a) Pic=32, b) Pic=64, and c) Pic=128. 
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Figure 23.  OEE and DSP usage of different configuration. 
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TABLE I.  COMPARISONS WITH OTHER PRUNING 

METHODS FOR VGG16 CONVOLUTIONAL LAYERS 

 Sparsity(%) Top-1 

Error(%) Deep 

Compression[12] 

67.24 31.17 

Cambricon-S[15] 64.83 31.33 

OMNI[21] 88.70 31.10 

QSP 79.68 30.59 

 

TABLE II.  COMPARISONS WITH STATE-OF-THE-ART DENSE ACCELERATORS USING VGG16 

 
TVLSI’20 

[31] 

TCAD’22 

[32] 

TVLSI’19 

[33] 

TNNLS’22 

[34] 

TCAS-

II’22 [35] 

TCAS-

I’22 [36] 

Proposed 

Imp.I 

XC7Z100 

Proposed 

Imp.II 

 

FPGA XC7K325t ZC706 VX690T VX980T ZC706 Aria 10 XC7Z100 

Frequency(MHz) 200 150 200 150 200 200 240 

Precision 8bit fixed 8bit fixed 16bit fixed 8bit fixed 8bit fixed 8bit fixed 8bit fixed 

DSP Utilization 516(61%) 900(100%) 1436(40%) 3395(94%) 448(50%) 607(36%) 448(22%) 768(38%) 

Logic Utilization(K) 94.7(46%) - 468(67%) 335(54%) 78 (37%) 207(82%) 38.2(13%) 63(22%) 

BRAM 165(37%) 545(100%) 1465(99%) 1492(99%) 168(31%) 769(36%) 202(26%) 271(35%) 

Performance(GOP/s) 354 374.98 407.23 1000 326 352.06 334.26 616.94 

DSP Efficiency 

(GOP/s/DSP) 

0.68 0.42 0.28 0.29 0.73 0.58 0.746 

(0.373a) 

0.803 

(0.401a) 

Power (W) 16.5 - - 14.36 3.338 - 5.117 7.836 

Energy Efficiency 

(GOP/s/W) 

21.45 - - 69.64 97.66 - 65.32 78.73 

a The results normalized to 16-bit precision for fair comparisons with [33]. 
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Division of the tile size by the maximum parallel 

multiplication shows the number of cycles for the 

computation of a tile: 

  Cycle_Tile=⌈
Twx

Pwx
⌉⌈

Twy

Pwy
⌉⌈

Tic

Pic
⌉⌈

Tox

Pox
⌉⌈

Toy

Poy
⌉⌈

Toc

Poc
⌉     (17) 

The proposed accelerator has configured by 

Toy=Poy=Py and Pwx=Pwy=Pox=Poc=1, so (17) 

will correct as follows: 

     Cycle_Tile=Nwx × Nwy × Nox                   (18) 

Eq. (18) is for dense mode. On the opposite, the 

number of QSP-based computation cycles for a tile will 

obtain by the following: 

   Cycle_Tile=(Nwx × Nwy) × Pruning_Rate

× Nox           (19) 

Pruning_Rate will define as dividing the number of 

non-zero weights by the number of zero weights in the 

kernels for the tile. Finally, using (18) for dense mode 

or (19) for sparse mode and using (15), the total 

number of cycles per layer can be calculated as 

follows: 

                   Cycle_Layer=N_Tile

× Cycle_Tile                     (20) 

IV. CONFIGURATION EXPLORATION AND 

EXPERIMENT 

A. A. Experiment Setup 

In this work, we used VHDL for RTL 

implementation of the proposed structure as well as 

Xilinx Vivado 2021.1 for compile of the codes. To 

evaluate the proposed accelerator, we used Xilinx 

XC7Z100 FPGA that includes 277K Look Up Tables 

(LUTs), 2020 DSP slices, and 755 Block RAM 

(BRAM) alongside 4GB DDR3 DRAM as an external 

memory. VGG16 has widely been used to benchmark 

the performance of state-of-the-art accelerators due to 

its complexity of computations and vast data. Hence, 

we exploited VGG16 to evaluate and compare the 

performance of the proposed accelerator in dense and 

sparse modes. A theoretical method has been used to 

estimate the performance and efficiency of different 

accelerator configurations. Three configurations with 

the highest performance and efficiency have been 

selected for comparison. We categorize these 

configurations in the aspect of resource utilization into 

low, middle, and high to demonstrate the scalability 

capacity and performance of the accelerator on low-

resource, mid-resource, and high-resource hardware. 

The Xilinx Power Estimator (XPE) has been used to 

compare power consumption and energy efficiency. 

 

B. Computation Efficiency 

According to the previously-mentioned contents, the 

proposed accelerator in dense and sparse modes has a 

balanced load, and sparsity does not contribute to 

computation inefficiency. In our work, the 

computation inefficiency comes from the size of the 

input channel and the output feature map height. AP1 

divides Noy by Py, and AP2 divides Nic by Pic. So, the 

computation efficiency of the accelerator will be as 

follows: 

        Comp_Eff =
Nic/Pic

⌈Nic/Pic⌉
×

Noy/Py

⌈Noy/Py⌉
       (21) 

Fig. 22 shows the computation efficiency of the 

VGG16 convolutional layers for different accelerator 

configurations. According to Fig. 22 (a), (b), the 

computation efficiency for the configuration of Pic=32 

and Pic=64 with a different Py is genuinely close. In 

Conv1 of VGG16, the number of input channels (Nic) 

for the first and second layers equals 3 and 64, 

respectively, with a 5% and 95% contribution. Based 

on the first term in (21), the inefficiency difference of 

Pic=32 and Pic=64 is just in the first layer of Conv1, 

where Nic=3 causes better efficiency for Pic=32 than 

Pic=64. Still, this layer has just a 5% contribution of 

the Conv1 and only creates a little difference in 

efficiency between these configurations. For other 

layers, Nic is bigger than Pic=32 and Pic=64 and 

divisible. In the case of Pic=128 based on Fig. 22 (c), 

Conv1 and the first layer of Conv2 have Nic<128, 

which has caused a computation efficiency drop in 

TABLE III.  COMPARISONS WITH STATE-OF-THE-ART SPARSE ACCELERATORS USING VGG16 

 
TCAD’21      

[21] 

TVLSI’20  

[26] 

TVLSI’22    

[37] 

TCAS-I’21 

[38] 

IEEE 

Access’20 

[39] 

Proposed 

Imp.II 

XC7Z100 

Proposed 

Imp.III 

 

Sparsification Type           

(Weight Density) 

Structured-

Like (12%) 

Structured 

(36.75%) 

Unstructured      

- 

Structured 

(13.2%) 

Structured  

(25%) 

QSP                                

(28%) 

FPGA ZC706 ZCU102 XCVU9P ZCU102 XC7Z045 XC7Z100 

Frequency(MHz) 166 200 300 300 150 240 

Precision 16bit fixed 8bit fixed 8bit fixed 8bit fixed 8(4)-16a 8bit fixed 

DSP Utilization - 2520(100%) 512(7%) 654(26%) 450(50%) 768(38%) 1536(76%) 

Logic Utilization(K) - 405(67%) 822(70%) 71.992(26%) 163(75%) 63(22%) 124.2(44%) 

BRAM - 1460(80%) 1024(47%) 851(93%) 512(94%) 271(35%) 527(69%) 

Power(W) 9.6 17.1 - 23.7 12.85 7.836 15.39 

FPS 12.60 92 - 13.54b 14 46.50 63.25 

Peak Performance 

(GOP/s) 

43.70 990.80 307.20 318.22 

 

112.80 475.97 647.13 

Achieved (GOP/s) 389.85c 2846.50c 862.16 418.98c 443.60 1437.70 1957 

Achieved 

(GOP/s/DSP) 

- 1.12 1.68 0.64 0.98 1.87 1.27 

Achieved (GOP/s/W) 40.60 166.46 - 17.68 34.52 183.47 127.16 
a Means that 16-bit for input and output feature maps, 8-bit for weights of CONV layers, and 4-bit for weights of FC layers. 

b 13.54 FPS is calculated according to given latency equal to 73.848ms in the paper. 
c The value is estimated according to the number of frames per second in the paper. 
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Conv1 and Conv2. Since Noy≥14 in all layers, the 

second term of (21) is equal to 1 when Py is 7 or 14, 

which shows maximum computation efficiency by 

these configurations for Py. For Py=28, Py=56, and 

Py=64, Noy is lower than Py in Conv5, Conv4-5, and 

Conv3-5, respectively, which makes the inefficiency 

based on the second term in (21). Thus, computation 

efficiency has been degraded by the difference 

between Noy and Py. 

C. Determine Configuration Using OEE Method 

 The best accelerator configuration with respect to 

resource utilization limits needs to be explored based 

on two criteria comprising computation efficiency and 

performance. Using (13), (18), and (22), we proposed 

a measurement method called Overall Efficiency 

Estimation (OEE) that will be defined as follows: 

    OEE= ∑ [
Comp_Eff(i)

Cycle_Layer(i)
[

N_Mult(i)

∑ N_Mult(j)L
j=1

]]

L

i=1

       (22) 

Where L equals the number of convolutional layers in 

VGG16. The OEE is affected by Comp_Eff per layer, 

the number of computation cycles per layer, and the 

computation contribution of each layer toward overall 

computations. DSP usage will estimate as follows: 

            DSP_Estimated=Pic×⌈Py/2⌉                        (23) 

Where ⌈Py/2⌉ represents Merged-PE scheme. Hence, 

the combination of efficiency and latency in OEE, and 

DSP utilization, clarifies the best configuration of the 

accelerator. Fig. 23 depicts the OEE for different 

accelerator configurations. In addition, DSP usage in 

each configuration using (23) has been mentioned 

above its bar. We have considered three DSP usage for 

implementation, including 448, 896, and 1792 DSP. As 

Fig. 23 shows, for DSP utilization of 448, 896, and 

1792, Pic=64 and Py=14, Pic=64 and Py=28, and 

Pic=128 and Py=28 are the best configurations, 

respectively. For DSP usage of 1796, OEE in Pic=128 

and Py=28 is better than Pic=64 and Py=56, while Fig. 

22 (b) and (c) showed the opposite of that. Therefore, 

this method truly assists in deciding among different 

configurations. 

D. VGG16 QSP-based Pruning 

The QSP-based pruning result for convolutional 

layers of VGG16 is placed in Table l. The result has 

been compared with the topmost pruning methods, 

such as unstructured pruning in Deep Compression 

[12], structured pruning of Cambricon-S [15], and 

OMNI [21]. Deep Compression and Cambricon-S have 

achieved under 70% sparsity, while the dominant 

consumption of the inference time is related to the 

convolutional layers. Pattern-Aware pruning of OMNI 

has concentrated on convolutional layers and achieved 

88% sparsity. Although the QSP-based pruning has 

obtained lower sparsity than OMNI, QSP has a lower 

top-1 error than OMNI and others. QSP with almost 

80% sparsity on convolutional layers has also reached 

1.18× and 1.23× sparsity growth up than Deep 

Compression and Cambricon-S, respectively. We used 

these pruned weights for sparse mode comparison in 

Section IV-E. 

E. Performance Analysis 

This work is focused on gaining sparsity benefits 

and adapting the accelerator to the QSP approach. 

However, it has a deserved performance and efficiency 

in dense mode. Therefore, we present a comparison of 

dense and sparse modes. 

 
1) Dense Comparison 

The proposed accelerator will be evaluated in dense 

mode by imp. 1 (Pic=64 and Py=14) and imp. 2 

(Pic=64 and Py=28), which exhibit compact and mid-

level configurations, respectively. Results and 

comparison have shown in Table II. Similar to what we 

proposed in Merged-PE, [35] leverage from SMF-

INT8 that uses from each DSP for implementing two 

INT-8 multiplication and accumulation. However, 

SMF-INT8 uses input activation sharing, while 

Merged-PE uses weight sharing. Of course, [35] shows 

a better energy efficiency that comes by two 

accumulation operations in each DSP, consequently 

LUT reduction, but LUT utilization of imp. 1 is better. 

In addition, imp. 1 has better performance and DSP 

efficiency in an identical DSP utilization. Albeit imp. 

1 has utilized 13%, 50%, and 26% DSP lower than 

[31], [32], and [36], respectively, and also has a 60% 

and 81% lower usage of LUT than [31] and [36], 

respectively, achieved very close performance as well 

as 1.09×, 1.8×, and 1.28× better DSP efficiency toward 

them that shows performance gain of them comes by 

higher usage of DSP than our imp. 1. In addition to 

higher DSP utilization [32] than imp. 1, it has powered 

from non-overlap convolution and the block 

convolution idea so that few convolutional layers can 

be pipeline to decrease transactions between chip and 

memory. Apart from [34], imp. 2 has attained superior 

results than others, whereas 1.74×, 1.64×, 1.51×, 

1.89×, and 1.75× performance speed-up as well as 

1.18×, 1.91×, 2.77×, 1.1×, and 1.38× better DSP 

efficiency against [31], [32], [33], [35], and [36] has 

obtained, respectively. As well, Imp. 2 has a 3.67× 

speed-up in terms of energy efficiency than [31]. While 

[34] has achieved 1.62× better performance than our 

imp. 2, it is reasonable that it is due to the use of 4.42× 

DSP resources relative to our implementation. So, this 

case can be confirmed by the superiority of 1.13× and 

2.77× imp. 2 in energy efficiency and DSP efficiency. 

Since [33] uses 16 bits precision, the DSP efficiency of 

our implementation has been normalized by 8/16 for a 

fair comparison. However, considering DSP efficiency 

equals 0.401, imp. 2 has a 1.41× better DSP efficiency. 

2) Sparse Comparison 

Sparse mode and dense mode do not differ in 

hardware implementation but differ in the operational 

task. Thus, resource utilization of the accelerator in 

dense and sparse modes will be alike. Imp. 2 (Pic=64, 

Py=28) and imp. 3 (Pic=128, Py=28) has been 

selected to compare with other state-of-the-art sparse 

accelerators. The comparison and results of our work 

have declared in Table III. In [37], a peak performance 

evaluation method has been offered to extract the 
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theoretical computation power of sparse accelerators 

and the achieved performance used for evaluating 

computational and performance efficiency to reflect 

the competence of the sparse accelerators. The 

achieved performance equals dividing the inference 

latency by the workload of dense mode. We used these 

evaluation parameters besides achieved energy 

efficiency that introduces the real energy efficiency of 

the accelerators. Imp. 2 has minimum power 

consumption (7.836 W) than other sparse accelerators. 

Furthermore, the energy efficiency of imp. 2 with 

183.47 is the best, so that has 4.52×, 5.31×, 10.37×, and 

1.1× better energy efficiency toward [21], [39], [38], 

and [26], respectively. In terms of peak performance, 

imp. 2 has achieved 10.89×, 4.22×, 1.50×, and 1.55× 

speed-up compared to [21], [39], [38], and [37], 

respectively, as well as the superiority in DSP 

efficiency that corroborates the preponderance of imp. 

2 meaningfully. Imp. 2 has obtained 1.67× superior 

DSP efficiency than [26], which authenticates that 

1.98× peak performance speed-up for [26] caused by 

3.27× higher DSP utilization of them versus imp. 2. 

Imp. 3 as a high throughput implementation, except for 

[26], has shown better energy efficiency toward others. 

In terms of the achieved performance, imp. 3 has 

achieved a speed-up of 5×, 4.4×, and 4.7× than [21], 

[39], and [38], respectively. [37] has a better DSP 

efficiency than imp. 3, but 822K LUT and 1024 

BRAM usage occupy massive space in hardware and 

are not compatible with implementing their structure 

on mid-level or semi-heavy FPGAs. Although [37] has 

achieved 1.47× higher DSP efficiency than imp. 3 at 

the cost of extraordinarily higher utilization of LUT 

and BRAM, which assists in using lower DSP in their 

implementation, nevertheless, imp. 3 has 2.27× speed-

up in terms of the achieved performance. [37] uses 

1.64× more DSP slice, 3.26× more LUT, and 2.77× 

more BRAM than our imp. 3 but acquires just 1.45× 

better achieved performance, and even imp. 3 has 

better DSP efficiency.  

As a result, imp. 2, as a low-power and efficient 

configuration with the capacity to implement on low-

cost hardware, achieves 1.473 TOP/s in terms of 

performance, which has superior energy efficiency and 

greater DSP efficiency among other sparse 

accelerators. Another side, imp. 3, as a high throughput 

approach, reaches 1.957 TOP/s in terms of 

performance by consuming 15.39 W. 

V. CONCLUSION 

In this paper, we proposed QSP-based pruning to 

attain a high pruning rate and establish sparse 

accelerators. QSP-based pruning for VGG16 achieved 

almost 80% sparsity in convolutional layers with an 

accuracy improvement toward other methods. In 

addition, an accelerator block for QSP-based random 

pruning (AP) has been offered, which has not put any 

redundant burden on the hardware. Finally, the 

proposed accelerator structure based on QSP has been 

balanced in PE loads, which does not leave any idle 

time for PEs. The scalability feature of the proposed 

parallelism enables the accelerator to implement on 

embedded or edge-computing platforms. The OEE 

method has been presented to evaluate different 

accelerator configurations before implementation. The 

introduced accelerator in dense and sparse modes 

without change in the structure has a very respectable 

performance. Using VGG16 for evaluation, our most 

optimum implementation (imp. 2) has achieved 1.38×, 

1.1×, 2.77×, 2.87×, 1.91×, and 1.18× better DSP 

efficiency than other state-of-the-art dense 

accelerators. As well, imp. 2 has achieved 1.9×, 2.92×, 

1.67×, and 1.11× higher DSP efficiency besides 4.52×, 

5.31×, 10.38×, and 1.1× better energy efficiency than 

other state-of-the-art sparse accelerators. The proposed 

accelerator has a minimal power consumption equal to 

7.8 W and achieves 616.94 GOP/s and 1437.7 GOP/s 

in terms of performance for dense and sparse modes, 

respectively. 
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