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Abstract—In recent years, Convolutional Neural Networks (CNN) have been extensively used in machine learning
algorithms related to images due to their exceptional accuracy. The multiplication-accumulation (MAC) in
convolutional layers makes them computationally expensive, and these layers account for 90% of the total computation.
Several researchers have taken advantage of pruning the weights and activations to overcome high computation
bandwidth. These techniques are divided into two categories: 1) unstructured pruning of the weights can achieve heavy
pruning, but in the process, it unbalances data access and computation processes. Consequently, compression coding
for indexing non-zero data increases, which causes much more memory volume. 2) Structured pruning by the specified
pattern prunes the weights and regularizes both computations and memory access but does not support high pruning
amounts compared to unstructured pruning. In this paper, we proposed Quasi Structured Pruning (QSP) that profits
from the high pruning ratio of unstructured pruning. The load balancing property in structured pruning has also been
included in the QSP scheme. Implementation results of our accelerator using VGG16 on a Xilinx XC7Z100 indicate
616.94 GOP/s and 1437.7 GOP/s at just 7.8 watts power consumption for dense and sparse mode, respectively.
Experimental results show that the accelerator is 1.38x, 1.1x, 2.77x, 2.87x, 1.91%, and 1.18x better in terms of DSP
efficiency than previous accelerators in dense mode. As well, our accelerator has achieved 1.9x, 2.92x, 1.67x, and 1.11x
higher DSP efficiency besides 4.52x, 5.31x, 10.38x, and 1.1x better energy efficiency than other state-of-the-art sparse
accelerators.
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l. INTRODUCTION

Convolutional Neural Network (CNN) has created
an extraordinary revolution in deep learning and
artificial intelligence applications such as machine
vision, image classification, and sound detection. In
recent years, CNNs have become a consistent method
for learning and detecting problems [1], [2]. However,
the advantages of engaging CNNs are challenged by
the scope and complexity of computations and
significant data volume. Recently, accelerators have
become a crucial part of the real-time inference for
CNNs. Accelerators based on GPUs, ASICs, and
FPGAs have been investigated to attain heavy
computation capability. FPGA-based accelerators have
been used in [3-5] due to their reconfigurability,
parallel and pipeline  computation aptitude,
performance, and efficient power consumption. Since
hardware resource restrictions (computation resources
and memory) are a potential adversity in realizing
CNNs, specialization of accelerator structure is
considered to maximize computation potency and
power efficiency [6-9].

Recent research suggests compression methods that
reduce the weight density of the network and
subsequently achieve high inference speed. These
strategies include computation load reduction by
pruning the weights of CNN and weight quantization.
[10] expressed that dropping the network weights to
10% by pruning slightly affects accuracy. Weight
quantization and representing weights with low bit
widths can reduce storage bandwidth and computation
complexity. Binary Neural Networks (BNN) [11] have
afforded an extreme discount on inference time and
power dissipation through concise bit representation to
+1land -1.

The pruning exploiting space can be discussed in
two approaches: 1) structured pruning and 2)
unstructured pruning. Unstructured pruning can prune
up to 90% of network weights [10, 12] but brings load
imbalance and computation irregularity problems. In
addition, non-zero indexing overhead and memory
access hierarchy devastation derived from unstructured
pruning does not approve of improving accelerator
performance. In contrast, structured pruning [13-15]
pursues a pruning process with a definite pattern that
produces balancing on the load for hardware adaption.
A software-based approach is contributed in this
manner where the weights diminish first, and then the
accelerator will be designed as particular for the
adopted pruning strategy. Although the load-balancing
nature of structured pruning is hardware-friendly,
weight pruning practically does not exceed 60% in this
method. Weight pruning requests proper criteria to
retain accuracy when removing weights during the
pruning. Weight valuation by the absolute magnitude
criterion has been applied in [10] and [16] which
removes the lowest elements by considering the
desired pruning through layer-wise and model-wise
comparison, respectively. [17] has inspected various
pruning criteria and proved that random pruning has
respectable and competitive alongside other schemes.
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The CNNs are constructed by variant layers:
convolutional layer, pooling layer, activation
functions, and fully connected layer (FC). The
consistent truth is that convolutional layers have a
conquering contribution to CNN computation
complexity. Hence, fast convolution techniques such
as FFT convolution [8], [18], [19], and Winograd [20]
have developed to speed up computation alongside
pruning methods. Nevertheless, once an accelerator
wants to be designed, designating a conventional or
fast convolution algorithm to complete the
convolutional layer computations depends on the
pruning strategy.

As a result of the abovementioned arguments,
structured pruning is hardware-friendly due to its data
computation balancing. Still, it has a limited sparsity,
while unstructured pruning confirms a heavy pruning
level at the cost of more complexity, coding burden,
and unbalancing on load. We proposed Quasi
Structured Pruning (QSP) to obtain a colossal pruning
expanse close to unstructured pruning that assures
computation load balancing and regular memory
access hierarchy. In addition, this pruning approach
does not demand compression coding complexity and
process management burden on the hardware. On the
other hand, this is a genuinely right case that the
pruning process by a conventional method which
prunes the weights in a software environment by CPU
and then the hardware accelerator employs them for
inference, takes much time for preparation. In this
work, an accelerator block has been designed for
pruning the network weights based on the QSP
approach on the hardware, which addresses the vast
elapsed time by the pruning process. This block
minimizes the time of pruning with negligible resource
utilization. This paper presents a load-balanced
accelerator that performs efficiently in dense and
sparse networks. The main contribution of the paper
will be as follows:

e Proposed QSP modifies load imbalance
defect of unstructured pruning and covers its
accessible pruning amount.

e Asimple weight coding has been projected to
comprehend the accelerator to skip
computations for zero values without
complicated procedures and pressure on
hardware.

o Weight-shared computation flow has been
proposed by establishing two parallelism
approaches that promise performance
efficiency for dense and sparse modes.

e Active Pruning Block accelerates the QSP-
based pruning process on the chip.

The paper is organized as follows: Section Il
reviews related works; Section |1l presents proposed
accelerator architecture; Section IV is focused on
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analyzing accelerator performance and extending
results and comparisons; Section V is the conclusion.

1. RELATED WORKS

A. Pruning

Accelerator  designing based on  network
optimization frameworks has been regarded in many
works. For instance, [21] has introduced a framework
to combine software optimization and hardware for
sparse CNNs. As mentioned in section I, structured and
unstructured pruning approaches have developed
recently. Unstructured Pruning: [12] has achieved
plenty of pruning rates by appointing a threshold
parameter and eliminating values less than the
threshold. Although this method inaugurates a chapter
of entrancing to mobile applications by offering weight
reductions of up to 13x for VGG16 without any
damage to the accuracy, it demands access to column
indexes in CSR format to locate the required inputs. On
the other side, load unbalancing of Processing
Elements (PE) and the case mentioned earlier has
formed an efficiency descent. Compression formats
such as CSR [22] and CSC [23] to signify non-zero
values when sparsity is applied on both weight and
activation bother the hardware for handling the
computation flow. One of the significant drawbacks of
unstructured  pruning is the imbalance of
computational loads to PEs since the reduction of
weights occurs asymmetrically and eventuates
disruption in data scheduling. The idle time of some
PEs owing to load imbalance issues does not make it
possible for the accelerator to utilize maximum
resources in run-time and begets decreasing
computational efficiency. [24] has proposed dynamic
scheduling that balances the PE loads by placing
multiplexers on the input and output of PEs. This
operates through managing the multiplexer control
states that decide which FIFO should inject into which
specific PE. In addition, the multiplexer control states
in the output of each PE steer the partial results in their
path to accumulation. However, this idea demands
high power consumption for efficient utilization of
PEs. Structured Pruning: recent research has
revealed that structured pruning can aid the accelerator
to skip computations for zeroes in processing cores
conveniently and improves performance and energy
efficiency. To obviate the irregularity of pruning, [25]
suggests channel-wise, filter-wise, and shape-wise
pruning that obeys specific patterns in the pruning
process (Fig. 1). Similarly, [26] proposes a shape-wise
pruning that prunes similar spatial points along channel
kernels and applies this method to regulate the memory
access hierarchy and enhance computation efficiency
of PEs.
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Figure 1. Filter-Wise, Channel-Wise, and Shape-Wise pruning
[26], depicted from left to right
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Figure 2. Convolutional layer including input feature map, filters
and output feature map

Algorithm 1 Convolutional Layer Computation
Input: Input activation I, .., Weight ka,kxﬂci,%
and Bias B,

Output: Output Activation Oy, ..

1: for ¢, from 1 to N, do

2: forxfrom1toN,, do
3:  foryfrom1toN,, do

4: for ¢; from 1 to N;, do
5: for k, from 1 to N, do
6: for k, from1to N, do
7
Partial_Sum+=lg. i swxriye;* Wiy kycico
8: Oy ¢, T=Partial_Sum+B,

B. Loop Executing Optimization

The convolutional layer with  significant
multiplication-accumulation in a few operations loops
should accelerate with loop unrolling techniques. A
convolutional layer operates by convolving a filter
with the dimension of Nwx, Nwy, Nic, and Noc as
kernel width, kernel height, number of input channels,
and number of output channels, respectively, on an
input feature map with a dimension of Nix, Niy, and

Nic where Nix and Niy demonstrate input width and
input height, respectively, and produces an output
feature map with a size of Nox, Noy, and Noc where
Nox and Noy represent output width and output height,
respectively. A relation between the input and output
feature map is always steady, which will be as follows:
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Nix=Nwx+S(Nox-1) , Nox=(Nix-Nwx+S)/S (1)
Niy=Nwy+S(Noy-1) , Noy=(Niy-Nwy+S)/S  (2)

Where S is stride, and zero-padding has been
included in Nix and Niy. Fig. 2 illustrates
convolutional layer characteristics. Algorithm 1
introduces a convolutional layer in loop format. To
compute a convolution layer, lines 1 to 6 must be
executed. As the computation of these loops serially
takes a long time, loop unrolling and parallelism
techniques are essential to accelerate the loops. Loop
unrolling repeatedly has been used in State-Of-The-Art
accelerators. To better classify these accelerators, in
Algorithm 1, line 1 is called loop-1, lines 2 and 3 are
called loop-2, line 4 is called loop-3, and lines 5 and 6
are called loop-4. In [9] loops 1, 2, and 4, [6] loops 2
and 4, [27] loops 1 and 3, and [28] loops 3 and 4 have
been unrolled. However, these loop-unrolling
strategies have been explicitly considered for dense
networks and do not bring adequate efficiency for
sparse networks. Unrolling of loops 3 and 4 alongside
sparse-wise data flow has been offered in [26], making
it conceivable to employ both parallelism and zero-
skipping in shape-wise format simultaneously. Loop
tiling methods to diminish frequent access to external
memory and maintain the under-computation data on
internal buffers often apply in the accelerators, leading
to higher performance and efficiency. [26] and [7]
demonstrate that optimization in off-chip memory
access and data-sharing ability on weights and
activations have been practicable by the loop tiling
technique.

An efficient state-of-the-art accelerator should pass
these qualifications: 1) loop unrolling and tiling must
satisfy different kernel sizes and strides in widely used
CNN networks; 2) the designed structure should be
scalable and flexible to adjust for corresponding
hardware with limited resources; 3) accept both dense
and sparse modes; 4) establishing proper pruning
approach to speed up the accelerator performance; 5)
choosing loop unrolling and tiling techniques based on
determined pruning approach to profit from zero-
skipping abundantly.

IIl.  PROPOSED ACCELERATOR

A. Loop Unrolling and Tiling Strategy

The proposed accelerator benefits from two
parallelism approaches. These approaches promise
performance and energy efficiency in dense and sparse
modes. Moreover, according to the proposed pruning,
the zero-value computation skipping scheme is
acknowledged throughout parallelism approaches.
Afterward, loop tiling can be illuminated based on
parallelism.

1) Loop Unrolling

Parallelism Approach 1 (PA1) is shown in Fig. 3,
where one weight from one input channel of the filter
kernel is shared along Py pixel in the same column
from the input feature map. In each computation cycle,
these activations and weights are multiplicated as
parallel. Therefore, Py is the parallelism coefficient in
PA1, representing the number of parallel pixels under
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computation in an identical x location of the input
feature map. Since Py parallel multiplication generates
Py separate partial results in the output feature map that
must be accumulated serially, accumulating these
partial results entails inaugurating Py accumulator.

Parallelism Approach 2 (PA2) is shown in Fig. 4,
where Pic weight in different input channels of the
filter kernel with identical (x, y) locations are
multiplicated with Pic pixel in the identical (X, Yy)
locations along the activation channels. Hence, Pic
parallel multiplication along the input channel exposes
the necessitation of placing an adder tree to accumulate
their results. The proposed parallelism containing PA1
and PA2 is shown in Fig. 5.

Filters ic,0c1
. Wiier
Input Feature Map. Z fic |
ri,c1 :@
NG ficr |
4 r2,c1
g ; Noc ict __|
Niy |r3,c1 :@ Py
Nic s — ict | ¢
Z Irpy,c1 :@
wa[ J

—

Nwx

Figure 3. Parallelism Approach 1.
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Figure 4. Parallelism Approach 2.
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Figure 5. The proposed parallelism with PA1 and PA2
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Figure 6. Loop tiling adapted to the parallelism approaches.
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2) Loop Tiling

Consistent with PA1 and PA2, data required for
computing based on these approaches must be
prepared on the chip. A clever tiling strategy would
acquire minimum transfers among external memory
and on-chip buffer to lessen off-chip memory access,
consequently abating power consumption and latency.
As can see in Fig. 6, input feature map tiling with a size
of TixxTiyxTic, filter tiling with a size of
TwxxTwyxTic, and output feature map tiling with a
size of ToxxToyxToc is assumed. Pipeline
computation besides PA1 and PA2 to achieve PE
efficiency requires constituting suitable tile sizes. To
address these, the input feature map tile size has been
selected as follows:

Tix=Nix
Tiy=Nwy+S(Py-1) 3)
Tic=Pic

Tix=Nix creates the pipeline computation possibility to
form the output tile equal Tox=Nox. As well, Toy=Py
obtains by similarity relation of line 2 in (3) and (2).
Parallelism approaches have not been applied for
parallel computation along the output channel.
Accordingly, Toc is equal to 1, and remained
dimension of the filter tile is designated to be
Twx=Nwx, Twy=Nwy, and Tic=Pic. These
specifications ensure that the PE arrays continue
computation without idle cycles.

B. Accumulation Scheme and Convolution Process

To address PA2 requirements, the adder tree with fan-
in of Pic sums the partial results from an array of PE.
This array realizes the PA2 strategy. Each operating
cycle computes one spatial weight in the kernel means
that after passing NwxxNwy cycles, convolution for a
region in the input feature map will be finished. Then,
the kernel slides along the x-direction on the input
feature map with respect to the convolution stride and
generates partial results concerning the output feature
map. The accumulation scheme in Fig. 7 has been
constructed to sustain pipeline computations for kernel
weights and the x-direction of the output feature map.
The proposed accumulator contains three adder stages,
a Partial Sum Temp (PST) buffer, and an accumulator
controller. Stage 1 accumulates partial results of
convolving spatial weights on an area of the input
feature map in NwxxNwy cycles. Since Pic<Nic, after
each NwxxNwy cycle, obtained results are just for Pic
channel and not completed.

Hereupon, [Nic/Pic] appoints the number of
computation phases to finalize the output result.
Therefore, the PST buffer preserves incomplete results
in each phase. The held results in the PST buffer and
corresponding results in the current phase of
computation accumulate by stage 2. In addition, the
PST buffer saves the partial result generated by sliding
the kernel in the x-direction. In other words, each
address of the PST buffer is dedicated to one pixel of
the output feature map with the same row. The number
of PST buffer addresses should be compatible with
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different Nix in all network layers. The following
equation has been founded to meet the compatibility:

Nix_Max=Max(Nix(L)) 4

where Nix Max is the number of PST buffer
addresses, and L is the variable representing different
network layers. When all computation phases are
completed, stage 3 accumulates the filter bias with the
final result. The accumulator controller with an address
signal and a reset signal assists the convolution process
in the accumulator. The address signal handles PST
buffer addresses for writing/reading data to/from
corresponding addresses. On the other hand, the reset
signal applies at the first operating cycle of the new
region process to ensure the remaining data in the
previous cycle does not contribute to accumulating in
stage 1.

Fig. 8 illustrates an instance of a convolutional
process by the proposed scheme. The accelerator
parameters, including Py and Pic, have been assumed
to be 1 and 2, respectively.
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Reset
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Figure 7. Accumulation scheme including accumulator and adder
tree.
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Figure 8. Computation of a convolutional layer by proposed detecting non-zero weigkts iniardyake. Ay egvealething (19-33)
gecelerator Fig. 10, a WSC with NwxxNwy bits determines the

status of each weight in the kernel. When a location has

a non-zero weight, logic equals 1; when it has a zero

value, logic equals 0.

The convolution of an input feature map with a size
of 5x5x4 and a filter with a dimension of 3x3x4 with
stride=1 has led to the output feature map of 3x3x1. As

Pic=2 is fewer than Nic=4, the computation phases are 2) Load Balancing
divided into [Nic/Pic]=2 phases. In phase 1, PE1 and The load imbalance nature of unstructured pruning
PE2 process the kernels of channel 1 and channel 2, induces a lack of maximum PE utilization efficiency,

respectively. In cycles 1 and 19, similarly, the reset  which emanates from idle cycles in some of them.
signal has been applied to refresh the accumulation  Furthermore, organizing data flow to PE will be extra
operation of stage 1 since these cycles are the  complicated. The QSP-based pruning, PA1, and PA2
beginning of the new region process. After elapsing  constitute an accelerator with a balanced load. To
nine cycles, the convolution result for two filter kernels  express this feature, Fig. 11 has depicted a convolution
on one region of the input feature map is obtained and layer process for an input feature map dimension of
should write to its address in the PST buffer. In phase 5x5x2 and the filter dimension of 3x3x2x2 with
2, PE1 and PE2 calculate the kernels of channel 3and  stride=1.

channel 4, respectively. As this phase is the last _Sht .. G BCH U SRCIIIN
processing phase to get the final results of the output

feature map, the corresponding address of the region i

under computation in the PST buffer must be read = - “oha “oha
before coming to the ninth cycle of the region. For mEE T HEE T T
example, O}, and O}; have been computed by
accumulating Psum1 and Psum3 from the PST buffer === S e ittt
with the achieved output result of stage 1 in cycles 36~ Figure 9. QSP-based pruning for a filter with Nwx=Nwy=3,
and 54, respectively. Stage 2 accumulates these values Ve and Noc=2.

and guides them to stage 3 for finalizing. As a result,
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strengths and weaknesses that engender challenges to
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offers a Quasi Structured Pruning method, which B "2 | s e | s o Tovithwl [ o [ o | [or ot o
powers from structured and unstructured pruning B [ e [ | [Be Ll =m0t T
advantages. In this method, two fundamental o L P P
principles are admitted: 1) each filter can possess its AR AR CEZ i WMCEZ °

pruning rate; 2) in each filter, the channels can adopt mol b s e o 1o 10 | o fwe?] [C2al®] 96
different zero positions only by noticing an equal W e wr

number of zeros along channels. Two irregularities O“ OZ'ZWM - Wjj§ -

created by these guidelines aid grow the pruning rate
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redundant involvedness burden on the accelerator
hardware. This work has endeavored to considerably
discount resource utilization and hardware complexity
to reach higher clock frequency besides lower power
consumption. Thus, a simple coding called Weight
Status Coding (WSC) has been used to simplify

Filter 2

Figure 11. Load balancing and zero-skipping based on QSP.
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The accelerator configuration has also been assumed to
be Pic=2 and Py=1. Since Pic equals Nic, each filter
has just one computation phase and does not require
holding partial results in the PST buffer. So, stage 2 has
been ignored. Filter 1 and 2 have a pruning rate of 5
and 6, respectively. Filter 1 has two input channels
with non-zero weights equal to four, which balances
the effective operating cycle of the channels against
each other. Cycles corresponding to zero weights have
been ignored in PE1 and PE2 equally in terms of the
number by a data flow. The proposed data flow will be
introduced later, which brings collaboration to
leverage the benefits of cycle equality in parallel PEs.
Filter 1 and 2 have spent 12 and 9 cycles to obtain three
output pixels, respectively. Meanwhile, Filter 1 and 2
have been computed serially and ensure that different
pruning rates of filters have not affected the process.
Based on the details above, parallel processing
elements are permanently fed by identical load volume
that guarantees PE utilization and computation
efficiency.

D. Accelerator Architecture

Fig. 12 demonstrates the overall architecture of the
proposed accelerator. An array of Processing Units
(PU) erects the central core of the convolutional
computation. According to Fig. 12, Py PUs
simultaneously produce Py row of the output feature
map, which emphasizes PAL. An array of PEs with a
length equal to Pic as multiplier units has been
equipped in PU. An adder tree, an accumulator based
on the accumulation scheme, a normalization, and a
ReLU have also been embedded in PU. Input
activation from Pic input channel is stored in Pic Input
Feature Map (IFM) buffer. Similarly, Pic kernel is
stored in Pic weight buffer.

Gatherer block puts the convolutional results of Py PUs
in one column and writes them on Output Feature Map
(OFM) buffer. Required data transfers between buffers
and external memory through DMA. Whenever the
layer under process needs a pooling operation, OFM
buffer data feeds into Max-Pooling block, and the
results will be directed to DMA for storing in external
memory. Otherwise, Max-Pooling operation will be
disabled. WSC buffer maintains weight status codes
related to kernels written in weight buffers. IFM
Router dispatches data from IFM buffers to PE arrays.
Address Generator (AG) block gets weight status
codes from WSC buffer and then creates proper
addresses for IFM buffers and Weight Buffers. Also,
IFM Router is controlled by the AG block.

1) Data Buffering

According to the projected loop tiling, kernels and
activations must prepare on the chip. The pattern of
data storing on buffers is a significant matter that
characterizes the data flow procedure into PEs.

a) Weight Storing

The pattern of storing the kernels in weight buffers
for an instance of Tic=Pic=2 has been revealed in Fig.
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13. Each spatial weight gets one address in weight
buffer. The weight buffer depth will be as follows:

Weight Buffer Depth=2x(Nwx*xNwy) (5)

The selected depth has two aspects: 1) the number of
addresses to hold all kernel weights equals NwxxNwy.
2) a ping pong buffer has been realized by creating two
sections in each weight buffer. The buffers are based
on Dual Port RAM (DPRAM) that enables write and
read operations independently. Whenever a section is
under computing (reading state), another can prepare
the required data (writing state) for the next
computation phase. Thus, coefficient 2 in (5) is set for
buffer segmentation. Using (5), memory will be
allocated in the following manner:

WB_Bits=Tic xWeight _Buffer DepthxWB_Bit Width  (6)
Where WB_Bit_Width is the number of bits used to

represent the weights, and Tic shows the number of
weight buffers.
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Figure 12. The proposed accelerator architecture.
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Figure 13. The weigh buffer pattern for an accelerator parameter of
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b) Input Feature Map storing
An example of input feature map storing in IFM
buffers for Tic=Pic=2 has depicted in Fig. 14. The
determined input tile size in (3) helps to find IFM
buffer width in the following:

IFMB Bit Width=Tiy*xFeature Bits @)

Where Feature Bits is the number of bits used to
represent the activations, and Tiy is for confirming the
PA1 strategy. Fig. 14 assumes Py=3 and stride=1 by
using (3) results in Tiy=5. As convolutional layers of
the considered network may have different Nix, Tix
should equal Nix_Max in (4) to be compatible with all
convolutional layers. The ping pong buffer technique
by DPRAM segmentation has also been used for IFM
buffers. As a result, IFM buffer depth is:

IFM Buffer Depth=2xNix_Max ®)

Using (8), memory allocation to IFM buffers will be as
follows:

1B Bits=Tic*IFM_Buffer DepthxIFMB_Bit Width  (9)

C) output Feature Map storing
The final results from Py PU being gathered will be
written in OFM buffer as one address. Figure 15
illustrates an instance of output feature buffering with
supposing Py=3. OFM buffer width will be as follows:

OFMB_Bit Width=Py*Feature_ Bits (10)

As Tox equals Nox in the loop tiling, for compatibility
of different convolutional layers, Tox should be as
follows:

Tox_Max=Max(Nox(L)) (11)

Where L shows different convolutional layers of the
network. The depth of OFM buffer with respect to the
ping pong buffering method and using (11) is given
below:

OFM_Buffer Depth=2xTox_Max (12)

Finally, the allocated memory for OFM buffer using
(12) is below:

OB _Bits=OFM Buffer DepthxOFMB_Bit Width — (13)

2) Weight-Shared Data Flow to PE

Data flow to PEs is handled by AG block for weights
and activations. The weights read from weight buffers
are routed to PEs as straight, where each weight is
shared among Py PUs. For the activations, an IF Router
block scatters the inputs read from IFM buffer between
PEs.

d) IF Router

Fig. 16 determines a sample of IF Router block for
the accelerator parameters of Pic=2 and Py=3.
IF_Router_Sub Blockl and IF_Router Sub_Block2
distribute data from IFM Buffer 1 and IFM Buff 2 to
corresponding PEs, respectively. Each IFM buffer
address is placed in a partition register with a division
coefficient equal to Nwy and the partition stride equal
to the convolution stride. For example, when the
stride=2, the jump offset of picking the activations and
putting them in the partition will equal 2.

Volume 17- Number 3 — 2025 (19-33)

Consequently, each partition contains Py sectors. A
multiplexer (MUX) with Nwy inputs selects among
partitions by the control state of IFR_S and transfers to
the distribution register. The distribution register that
includes Py sectors routes the partition sectors to PEs.
e) Address Generator and Zero-Skipping

AG block adopts two modes for accessing data to
PEs: 1) dense mode operation, in which all cycles
without ignoring will be done; 2) sparse mode based
on QSP pruning that will skip addresses for zero
weights. In sparse mode, the zero-weight locations
differ in each weight buffer. This comes from the QSP
kernel irregularity, which demands particular address
generator subblocks for each weight buffer to generate
non-zero weight addresses. In addition to the weight
buffer, the AG subblock generates ignored addresses
and ignored states for IFM buffer and IFR_S,
respectively. Hence, Pic AG subblock produces fitting
characteristics based on WSC codes related to its own
kernel. Fig. 17 shows an example AG block for Pic=2.
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Figure 15. The IFM buffer pattern for an accelerator parameter of
Py=3.
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Figure 16. IF Router containing Pic=2 subblock for Py=3.

Address Generator

— IFR_S(1)
— IFM Buffer 1
— Weight Buffer 1

|+ IFR_S(2)

— IFM Buffer 2
— Weight Buffer 2

AG_Sub_Block 1

WSC Buffer
Distributor

AG_Sub_Block 2
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The AG block is illustrated in Fig. 18 as a data flow
controller by configuring Pic=2 and Py=3 based on
weigh buffers in Fig. 13 and IFM buffers in Fig. 14.
The pruning rate equals five, and for each computation
area, four-cycle have been ignored. Data flow to PEs is
controlled by two AG subblocks due to Pic=2. In the
WSC, the Most Significant Bit (MSB) indicates the
status of the first computation cycle since it contains
the first weight of the kernel; accordingly, the Least
Significant Bit (LSB) shows the last computation
cycle. The AG subblock skips a computation cycle
when its cycle status in WSC is zero.

AG block achieves different strides by varying the
jump offset of addresses. Moreover, different kernel
sizes will confirm by altering the number of
computation cycles in AG block.

3) Fixed-Point Representation and PE Merging

The activations and weights in the proposed
accelerator have been fixed to 8 bits. This item,
alongside the weight-sharing feature in the proposed
accelerator, makes it possible to merge a pair of PEs.
Digital Signal Processing (DSP) units in Xilinx FPGASs
such as DSP48E1 have a 25x18 multiplier. Recently,
INT-8 multiplication by DSP has been used to decrease
DSP utilization in some accelerators [29-31].
However, signed multiplication has remained
ambiguous in these works. Adding 8-bit zeros between
two 8-bit inputs as one input port of the multiplier and
multiplicate with an 8-bit weight, such as Fig. 19 (a),
results in a 32-bit output in which the lower 16 bits and
the upper 16 bits are the results of multiplying the
weight by the first and second inputs, respectively.
This technique works well for unsigned multiplication,
but various faults will happen when these values are
signed, such as in Fig. 19 (b). According to Fig. 20,
Merged-PE has been proposed to eliminate signed
multiplication problems. Merged-PE is formed by
merging two PEs from two adjacent PUs with a shared
weight and different inputs. Input values in Merged-PE
are converted to absolute values and multiplied
according to Fig. 19. Conversely, XOR between the
most significant bit of both inputs and weight will
control the MUX. The MUX is fed by the positive state
and negative state of the output. The positive form of
output is ready Inherently, but the negative state
obtains by subtracting the positive state from zero.
With the lowest component, the Merged-PE scheme
multiplies two signed inputs by a signed weight.

E. Active Pruning

The conventional software-based pruning process is
realized by pruning the pre-trained weights through
chosen pruning approach and then validates by
datasets. The pruning process will terminate when the
considered accuracy obtains in the validation regarding
the desired pruning rate. Then, the pruned weights will
be used in the hardware accelerator. This paper offers
an Active Pruning (AP) block, which accelerates the
pruning process on the accelerator. The AP block
prunes the pre-trained weights based on the proposed
QSP. To lacking overhead on the hardware, random
pruning has been settled in the AP block. Fig. 21
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introduces the pruning process by the AP block where
Pic Random Generator (RG) produces Pic WSC for
kernels intended to begin convolutional operation.
Pruning rate and threshold accuracy are two inputs of
the AP block. The AP block operates in four steps: 1)
WSC codes for Pic channel of the filter generates, then
will direct to the WSC buffer; 2) datasets applies to the
accelerator for inference operation; 3) the classification
result of datasets validates by validation labels; 4)
validation result determines whether must save WSCs
in external memory and finish the pruning process or
return to step 1. Each Pic channel from Nic channel
may prune at its own pruning rate based on the QSP-
based pruning process in the AP block. For generating
WSCs, RG blocks just spend NwxxNwy cycles, which
have negligible latency for the pruning process.

F. Computational Latency

The convolutional layer latency depends on looping
tiling and loop unrolling parameters. The number of
multiply for a convolutional layer is as follows:

N_Mult=Nwx xNwy xNic x Nox X Noy xNoc (13)

Since computations are tiled, considering the size of
input and filter beside tile size will have:

N Tile= Nwx_ Nwy_ Nic. Nox_ Noy_ Noc 1
- le_[wa][Twy][Tic”Tox”Toy”Toc] (14)
Where N_Tile is the total number of convolutional tiles
that should be computed. The proposed accelerator has
chosen tile size of Twx=Nwx, Twy=Nwy, Tic=Pic, and
Toc=1 that modifies (14) to following form:

e Nic_ Noy

Tile=[5 1151
X Noc (15)

On the other hand, maximum parallel multiplication in
a convolutional layer will be as follows:

Max =Pwx xPwy xPicxPox*Poy*Poc  (16)
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TABLE I. COMPARISONS WITH OTHER PRUNING
METHODS FOR VGG16 CONVOLUTIONAL LAYERS
Sparsity(%0) Top-1
Deep 67.24 31.17
Cambricon-S[15] 64.83 31.33
OMNI[21] 88.70 31.10
QSP 79.68 30.59

[CJry=70Py=14 JPy=26 MM Py=56 [ ] Py=64]

1.0

1.0

o
©
+
[

[

Computation Efficiency
o o
e o
I I
I I

0.24=
Convl Conv2 C

onv3 Conv4 Convs

(@

=
©

Computation Efficiency
o o
IS o

(=)
©
[

Computation Efficiency
o o
'S o
I I

Convl Conv2
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TABLE II. COMPARISONS WITH STATE-OF-THE-ART DENSE ACCELERATORS USING VGG16
TVLSI’20 | TCAD’22 | TVLSI’19 | TNNLS’22 TCAS- TCAS- Proposed | Proposed
[31] [32] [33] [34] 11’22 [35] 1°22 [36] Imp.1 Imp.11
FPGA XC7K325t ZC706 VX690T VX980T ZC706 Aria 10 XC7Z100
Frequency(MHz) 200 150 200 150 200 200 240
Precision 8bit fixed 8bhit fixed 16bit fixed 8bit fixed 8bit fixed | 8bit fixed 8bit fixed
DSP Utilization 516(61%) | 900(100%) | 1436(40%) | 3395(94%) | 448(50%) | 607(36%) | 448(22%) | 768(38%)
Logic Utilization(K) | 94.7(46%) - 468(67%) 335(54%) 78 (37%) | 207(82%) | 38.2(13%) 63(22%)
BRAM 165(37%) | 545(100%) | 1465(99%) | 1492(99%) | 168(31%) | 769(36%) | 202(26%) | 271(35%)
Performance(GOP/s) 354 374.98 407.23 1000 326 352.06 334.26 616.94
DSP Efficiency 0.68 0.42 0.28 0.29 0.73 0.58 0.746 0.803
(GOP/s/DSP) (0.373%) (0.401%)
Power (W) 16.5 - 14.36 3.338 - 5.117 7.836
Energy Efficiency 21.45 - 69.64 97.66 - 65.32 78.73
(GOP/s/W)

2The results normalized to 16-bit precision for fair comparisons with [33].
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TABLE Il COMPARISONS WITH STATE-OF-THE-ART SPARSE ACCELERATORS USING VGG16
TCAD21 TVLSI’20 TVLSI’22 TCAS-121 IEEE Proposed Proposed
[21] [26] [37] [38] Access’20 Imp.11 Imp.I11
Sparsification Type Structured- Structured | Unstructured Structured Structured QspP
(Weight Density) Like (12%) (36.75%) - (13.2%) (25%) (28%)
FPGA ZC706 ZCU102 XCVU9P ZCU102 XC72045 XC7Z100
Frequency(MHz) 166 200 300 300 150 240
Precision 16bit fixed 8bit fixed 8bit fixed 8bit fixed 8(4)-16° 8bit fixed
DSP Utilization - 2520(100%) 512(7%) 654(26%) 450(50%) 768(38%)  1536(76%)
Logic Utilization(K) 405(67%) 822(70%) 71.992(26%) 163(75%) 63(22%)  124.2(44%)
BRAM - 1460(80%) 1024(47%) 851(93%) 512(94%) 271(35%) 527(69%)
Power(W) 9.6 17.1 - 23.7 12.85 7.836 15.39
FPS 12.60 92 - 13.54° 14 46.50 63.25
Peak Performance 43.70 990.80 307.20 318.22 112.80 475.97 647.13
Achieved (GOP/s) 389.85° 2846.50° 862.16 418.98° 443.60 1437.70 1957
Achieved 1.12 1.68 0.64 0.98 1.87 1.27
Achieved (GOP/s/W) 40.60 166.46 17.68 34.52 183.47 127.16

2Means that 16-bit for input and output feature maps, 8-bit for weights of CONV layers, and 4-bit for weights of FC layers.
P13.54 FPS is calculated according to given latency equal to 73.848ms in the paper.
¢The value is estimated according to the number of frames per second in the paper.

Division of the tile size by the maximum parallel
multiplication shows the number of cycles for the
computation of a tile:
Coel T'l—wa Twy_Tic_ Tox_ Toy.  Toc 17
yeke_ ze—[wa] [Pwy] [Pic] [Pox] [Poy] [Poc] (7
The proposed accelerator has configured by
Toy=Poy=Py and Pwx=Pwy=Pox=Poc=1, so (17)
will correct as follows:

Cycle_Tile=Nwx X Nwy X Nox (18)

Eq. (18) is for dense mode. On the opposite, the
number of QSP-based computation cycles for a tile will
obtain by the following:
Cycle_Tile=(Nwx X Nwy) X Pruning Rate
X Nox (19)

Pruning_Rate will define as dividing the number of
non-zero weights by the number of zero weights in the
kernels for the tile. Finally, using (18) for dense mode
or (19) for sparse mode and using (15), the total
number of cycles per layer can be calculated as
follows:

Cycle_Layer=N Tile
X Cycle_Tile (20)

IV. CONFIGURATION EXPLORATION AND

EXPERIMENT

A. A. Experiment Setup

In this work, we used VHDL for RTL
implementation of the proposed structure as well as
Xilinx Vivado 2021.1 for compile of the codes. To
evaluate the proposed accelerator, we used Xilinx
XC72100 FPGA that includes 277K Look Up Tables
(LUTs), 2020 DSP slices, and 755 Block RAM
(BRAM) alongside 4GB DDR3 DRAM as an external
memory. VGG16 has widely been used to benchmark
the performance of state-of-the-art accelerators due to
its complexity of computations and vast data. Hence,
we exploited VGG16 to evaluate and compare the
performance of the proposed accelerator in dense and
sparse modes. A theoretical method has been used to
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estimate the performance and efficiency of different
accelerator configurations. Three configurations with
the highest performance and efficiency have been
selected for comparison. We categorize these
configurations in the aspect of resource utilization into
low, middle, and high to demonstrate the scalability
capacity and performance of the accelerator on low-
resource, mid-resource, and high-resource hardware.
The Xilinx Power Estimator (XPE) has been used to
compare power consumption and energy efficiency.

B. Computation Efficiency

According to the previously-mentioned contents, the
proposed accelerator in dense and sparse modes has a
balanced load, and sparsity does not contribute to
computation inefficiency. In  our work, the
computation inefficiency comes from the size of the
input channel and the output feature map height. AP1
divides Noy by Py, and AP2 divides Nic by Pic. So, the
computation efficiency of the accelerator will be as
follows:

Nic/Pic ~ Noy/Py
Comp_ Eff =

[Nic/Pic] . [Noy/Py]

Fig. 22 shows the computation efficiency of the
VGG16 convolutional layers for different accelerator
configurations. According to Fig. 22 (a), (b), the
computation efficiency for the configuration of Pic=32
and Pic=64 with a different Py is genuinely close. In
Convl of VGGL16, the number of input channels (Nic)
for the first and second layers equals 3 and 64,
respectively, with a 5% and 95% contribution. Based
on the first term in (21), the inefficiency difference of
Pic=32 and Pic=64 is just in the first layer of Conv1l,
where Nic=3 causes better efficiency for Pic=32 than
Pic=64. Still, this layer has just a 5% contribution of
the Convl and only creates a little difference in
efficiency between these configurations. For other
layers, Nic is bigger than Pic=32 and Pic=64 and
divisible. In the case of Pic=128 based on Fig. 22 (c),
Convl and the first layer of Conv2 have Nic<128,
which has caused a computation efficiency drop in

(e2))
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Convl and Conv2. Since Noy>I4 in all layers, the
second term of (21) is equal to 1 when Py is 7 or 14,
which shows maximum computation efficiency by
these configurations for Py. For Py=28, Py=56, and
Py=64, Noy is lower than Py in Conv5, Conv4-5, and
Conv3-5, respectively, which makes the inefficiency
based on the second term in (21). Thus, computation
efficiency has been degraded by the difference
between Noy and Py.

C. Determine Configuration Using OEE Method

The best accelerator configuration with respect to
resource utilization limits needs to be explored based
on two criteria comprising computation efficiency and
performance. Using (13), (18), and (22), we proposed
a measurement method called Overall Efficiency
Estimation (OEE) that will be defined as follows:

(22)

Cycle_Layer(i) |¥.X, N_Mult(j)

L . ‘
OEE= Z Comp_Eff{i) N _Mult(i)
i=1 ij

Where L equals the number of convolutional layers in
VGG16. The OEE is affected by Comp_Eff per layer,
the number of computation cycles per layer, and the
computation contribution of each layer toward overall
computations. DSP usage will estimate as follows:

DSP_Estimated=Pic *x[Py/2] (23)

Where [Py/2] represents Merged-PE scheme. Hence,
the combination of efficiency and latency in OEE, and
DSP utilization, clarifies the best configuration of the
accelerator. Fig. 23 depicts the OEE for different
accelerator configurations. In addition, DSP usage in
each configuration using (23) has been mentioned
above its bar. We have considered three DSP usage for
implementation, including 448, 896, and 1792 DSP. As
Fig. 23 shows, for DSP utilization of 448, 896, and
1792, Pic=64 and Py=14, Pic=64 and Py=28, and
Pic=128 and Py=28 are the best configurations,
respectively. For DSP usage of 1796, OEE in Pic=128
and Py=28 is better than Pic=64 and Py=56, while Fig.
22 (b) and (c) showed the opposite of that. Therefore,
this method truly assists in deciding among different
configurations.

D. VGG16 QSP-based Pruning

The QSP-based pruning result for convolutional
layers of VGG16 is placed in Table I. The result has
been compared with the topmost pruning methods,
such as unstructured pruning in Deep Compression
[12], structured pruning of Cambricon-S [15], and
OMNI [21]. Deep Compression and Cambricon-S have
achieved under 70% sparsity, while the dominant
consumption of the inference time is related to the
convolutional layers. Pattern-Aware pruning of OMNI
has concentrated on convolutional layers and achieved
88% sparsity. Although the QSP-based pruning has
obtained lower sparsity than OMNI, QSP has a lower
top-1 error than OMNI and others. QSP with almost
80% sparsity on convolutional layers has also reached
1.18x and 1.23x sparsity growth up than Deep
Compression and Cambricon-S, respectively. We used
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these pruned weights for sparse mode comparison in
Section IV-E.

E. Performance Analysis

This work is focused on gaining sparsity benefits
and adapting the accelerator to the QSP approach.
However, it has a deserved performance and efficiency
in dense mode. Therefore, we present a comparison of
dense and sparse modes.

1) Dense Comparison

The proposed accelerator will be evaluated in dense
mode by imp. 1 (Pic=64 and Py=14) and imp. 2
(Pic=64 and Py=28), which exhibit compact and mid-
level configurations, respectively. Results and
comparison have shown in Table I1. Similar to what we
proposed in Merged-PE, [35] leverage from SMF-
INT8 that uses from each DSP for implementing two
INT-8 multiplication and accumulation. However,
SMF-INT8 uses input activation sharing, while
Merged-PE uses weight sharing. Of course, [35] shows
a better energy efficiency that comes by two
accumulation operations in each DSP, consequently
LUT reduction, but LUT utilization of imp. 1 is better.
In addition, imp. 1 has better performance and DSP
efficiency in an identical DSP utilization. Albeit imp.
1 has utilized 13%, 50%, and 26% DSP lower than
[31], [32], and [36], respectively, and also has a 60%
and 81% lower usage of LUT than [31] and [36],
respectively, achieved very close performance as well
as 1.09x%, 1.8x, and 1.28x better DSP efficiency toward
them that shows performance gain of them comes by
higher usage of DSP than our imp. 1. In addition to
higher DSP utilization [32] than imp. 1, it has powered
from non-overlap convolution and the block
convolution idea so that few convolutional layers can
be pipeline to decrease transactions between chip and
memory. Apart from [34], imp. 2 has attained superior
results than others, whereas 1.74x, 1.64x, 1.51x,
1.89%, and 1.75x performance speed-up as well as
1.18%, 1.91x, 2.77%, 1.1x, and 1.38x better DSP
efficiency against [31], [32], [33], [35], and [36] has
obtained, respectively. As well, Imp. 2 has a 3.67x
speed-up in terms of energy efficiency than [31]. While
[34] has achieved 1.62x better performance than our
imp. 2, it is reasonable that it is due to the use of 4.42x
DSP resources relative to our implementation. So, this
case can be confirmed by the superiority of 1.13x and
2.77x imp. 2 in energy efficiency and DSP efficiency.
Since [33] uses 16 bits precision, the DSP efficiency of
our implementation has been normalized by 8/16 for a
fair comparison. However, considering DSP efficiency
equals 0.401, imp. 2 has a 1.41x better DSP efficiency.

2) Sparse Comparison

Sparse mode and dense mode do not differ in
hardware implementation but differ in the operational
task. Thus, resource utilization of the accelerator in
dense and sparse modes will be alike. Imp. 2 (Pic=64,
Py=28) and imp. 3 (Pic=128, Py=28) has been
selected to compare with other state-of-the-art sparse
accelerators. The comparison and results of our work
have declared in Table I11. In [37], a peak performance
evaluation method has been offered to extract the
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theoretical computation power of sparse accelerators
and the achieved performance used for evaluating
computational and performance efficiency to reflect
the competence of the sparse accelerators. The
achieved performance equals dividing the inference
latency by the workload of dense mode. We used these
evaluation parameters besides achieved energy
efficiency that introduces the real energy efficiency of
the accelerators. Imp. 2 has minimum power
consumption (7.836 W) than other sparse accelerators.
Furthermore, the energy efficiency of imp. 2 with
183.47 is the best, so that has 4.52x, 5.31x, 10.37x, and
1.1x better energy efficiency toward [21], [39], [38],
and [26], respectively. In terms of peak performance,
imp. 2 has achieved 10.89x, 4.22x, 1.50x%, and 1.55%
speed-up compared to [21], [39], [38], and [37],
respectively, as well as the superiority in DSP
efficiency that corroborates the preponderance of imp.
2 meaningfully. Imp. 2 has obtained 1.67x superior
DSP efficiency than [26], which authenticates that
1.98x peak performance speed-up for [26] caused by
3.27% higher DSP utilization of them versus imp. 2.
Imp. 3 as a high throughput implementation, except for
[26], has shown better energy efficiency toward others.
In terms of the achieved performance, imp. 3 has
achieved a speed-up of 5%, 4.4x, and 4.7x than [21],
[39], and [38], respectively. [37] has a better DSP
efficiency than imp. 3, but 822K LUT and 1024
BRAM usage occupy massive space in hardware and
are not compatible with implementing their structure
on mid-level or semi-heavy FPGAs. Although [37] has
achieved 1.47x higher DSP efficiency than imp. 3 at
the cost of extraordinarily higher utilization of LUT
and BRAM, which assists in using lower DSP in their
implementation, nevertheless, imp. 3 has 2.27x speed-
up in terms of the achieved performance. [37] uses
1.64x more DSP slice, 3.26x more LUT, and 2.77x
more BRAM than our imp. 3 but acquires just 1.45x
better achieved performance, and even imp. 3 has
better DSP efficiency.

As a result, imp. 2, as a low-power and efficient
configuration with the capacity to implement on low-
cost hardware, achieves 1.473 TOP/s in terms of
performance, which has superior energy efficiency and
greater DSP efficiency among other sparse
accelerators. Another side, imp. 3, as a high throughput
approach, reaches 1.957 TOP/s in terms of
performance by consuming 15.39 W.

V. CONCLUSION

In this paper, we proposed QSP-based pruning to
attain a high pruning rate and establish sparse
accelerators. QSP-based pruning for VGG16 achieved
almost 80% sparsity in convolutional layers with an
accuracy improvement toward other methods. In
addition, an accelerator block for QSP-based random
pruning (AP) has been offered, which has not put any
redundant burden on the hardware. Finally, the
proposed accelerator structure based on QSP has been
balanced in PE loads, which does not leave any idle
time for PEs. The scalability feature of the proposed
parallelism enables the accelerator to implement on
embedded or edge-computing platforms. The OEE
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method has been presented to evaluate different
accelerator configurations before implementation. The
introduced accelerator in dense and sparse modes
without change in the structure has a very respectable
performance. Using VGG16 for evaluation, our most
optimum implementation (imp. 2) has achieved 1.38x,
1.1x, 2.77%, 2.87%, 1.91x, and 1.18x better DSP
efficiency than other state-of-the-art  dense
accelerators. As well, imp. 2 has achieved 1.9%, 2.92x,
1.67x, and 1.11x higher DSP efficiency besides 4.52x,
5.31x, 10.38x%, and 1.1x better energy efficiency than
other state-of-the-art sparse accelerators. The proposed
accelerator has a minimal power consumption equal to
7.8 W and achieves 616.94 GOP/s and 1437.7 GOP/s
in terms of performance for dense and sparse modes,
respectively.
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