
CNN Accelerator Adapted to Quasi Structured

Pruning and Dense Mode

Amirhossein Sadough

Department of AI, Donders Center for Cognition,

Radboud University Netherlands
amirhossein.sadough@donders.ru.nl

Hossein Gharaee Garakani*

ICT Research Institute (ITRC)

Tehran, Iran
gharaee@itrc.ac.ir

Parviz Amiri

Department of Electrical Engineering

Shahid Rajaee Teacher Training University

Tehran, Iran
pamiri@sru.ac.ir

Mohammad Hossein Maghami

Department of Electrical Engineering

Shahid Rajaee Teacher Training University

Tehran, Iran
mhmaghami@sru.ac.ir

Received: 7 December 2024 – Revised: 7 February 2025 - Accepted: 22 March 2025

Abstract—In recent years, Convolutional Neural Networks (CNN) have been extensively used in machine learning

algorithms related to images due to their exceptional accuracy. The multiplication-accumulation (MAC) in

convolutional layers makes them computationally expensive, and these layers account for 90% of the total computation.

Several researchers have taken advantage of pruning the weights and activations to overcome high computation

bandwidth. These techniques are divided into two categories: 1) unstructured pruning of the weights can achieve heavy

pruning, but in the process, it unbalances data access and computation processes. Consequently, compression coding

for indexing non-zero data increases, which causes much more memory volume. 2) Structured pruning by the specified

pattern prunes the weights and regularizes both computations and memory access but does not support high pruning

amounts compared to unstructured pruning. In this paper, we proposed Quasi Structured Pruning (QSP) that profits

from the high pruning ratio of unstructured pruning. The load balancing property in structured pruning has also been

included in the QSP scheme. Implementation results of our accelerator using VGG16 on a Xilinx XC7Z100 indicate

616.94 GOP/s and 1437.7 GOP/s at just 7.8 watts power consumption for dense and sparse mode, respectively.

Experimental results show that the accelerator is 1.38×, 1.1×, 2.77×, 2.87×, 1.91×, and 1.18× better in terms of DSP

efficiency than previous accelerators in dense mode. As well, our accelerator has achieved 1.9×, 2.92×, 1.67×, and 1.11×

higher DSP efficiency besides 4.52×, 5.31×, 10.38×, and 1.1× better energy efficiency than other state-of-the-art sparse

accelerators.

Keywords: Load balance, convolutional neural network (CNN), hardware accelerator, zero-skipping, quasi-structured

pruning (QSP).

Article type: Research Article

© The Author(s).

Publisher: ICT Research Institute

* Corresponding Author

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 1 / 15

mailto:pamiri@sru.ac.ir
mailto:mhmaghami@sru.ac.ir
https://orcid.org/0000-0002-9905-6156
https://orcid.org/0000-0001-5764-0912
https://orcid.org/0000-0002-7932-9161
http://ijict.itrc.ac.ir/article-1-730-en.html

I. INTRODUCTION

Convolutional Neural Network (CNN) has created

an extraordinary revolution in deep learning and

artificial intelligence applications such as machine

vision, image classification, and sound detection. In

recent years, CNNs have become a consistent method

for learning and detecting problems [1], [2]. However,

the advantages of engaging CNNs are challenged by

the scope and complexity of computations and

significant data volume. Recently, accelerators have

become a crucial part of the real-time inference for

CNNs. Accelerators based on GPUs, ASICs, and

FPGAs have been investigated to attain heavy

computation capability. FPGA-based accelerators have

been used in [3-5] due to their reconfigurability,

parallel and pipeline computation aptitude,

performance, and efficient power consumption. Since

hardware resource restrictions (computation resources

and memory) are a potential adversity in realizing

CNNs, specialization of accelerator structure is

considered to maximize computation potency and

power efficiency [6-9].

Recent research suggests compression methods that

reduce the weight density of the network and

subsequently achieve high inference speed. These

strategies include computation load reduction by

pruning the weights of CNN and weight quantization.

[10] expressed that dropping the network weights to

10% by pruning slightly affects accuracy. Weight

quantization and representing weights with low bit

widths can reduce storage bandwidth and computation

complexity. Binary Neural Networks (BNN) [11] have

afforded an extreme discount on inference time and

power dissipation through concise bit representation to

+1 and -1.

The pruning exploiting space can be discussed in

two approaches: 1) structured pruning and 2)

unstructured pruning. Unstructured pruning can prune

up to 90% of network weights [10, 12] but brings load

imbalance and computation irregularity problems. In

addition, non-zero indexing overhead and memory

access hierarchy devastation derived from unstructured

pruning does not approve of improving accelerator

performance. In contrast, structured pruning [13-15]

pursues a pruning process with a definite pattern that

produces balancing on the load for hardware adaption.

A software-based approach is contributed in this

manner where the weights diminish first, and then the

accelerator will be designed as particular for the

adopted pruning strategy. Although the load-balancing

nature of structured pruning is hardware-friendly,

weight pruning practically does not exceed 60% in this

method. Weight pruning requests proper criteria to

retain accuracy when removing weights during the

pruning. Weight valuation by the absolute magnitude

criterion has been applied in [10] and [16] which

removes the lowest elements by considering the

desired pruning through layer-wise and model-wise

comparison, respectively. [17] has inspected various

pruning criteria and proved that random pruning has

respectable and competitive alongside other schemes.

The CNNs are constructed by variant layers:

convolutional layer, pooling layer, activation

functions, and fully connected layer (FC). The

consistent truth is that convolutional layers have a

conquering contribution to CNN computation

complexity. Hence, fast convolution techniques such

as FFT convolution [8], [18], [19], and Winograd [20]

have developed to speed up computation alongside

pruning methods. Nevertheless, once an accelerator

wants to be designed, designating a conventional or

fast convolution algorithm to complete the

convolutional layer computations depends on the

pruning strategy.

As a result of the abovementioned arguments,

structured pruning is hardware-friendly due to its data

computation balancing. Still, it has a limited sparsity,

while unstructured pruning confirms a heavy pruning

level at the cost of more complexity, coding burden,

and unbalancing on load. We proposed Quasi

Structured Pruning (QSP) to obtain a colossal pruning

expanse close to unstructured pruning that assures

computation load balancing and regular memory

access hierarchy. In addition, this pruning approach

does not demand compression coding complexity and

process management burden on the hardware. On the

other hand, this is a genuinely right case that the

pruning process by a conventional method which

prunes the weights in a software environment by CPU

and then the hardware accelerator employs them for

inference, takes much time for preparation. In this

work, an accelerator block has been designed for

pruning the network weights based on the QSP

approach on the hardware, which addresses the vast

elapsed time by the pruning process. This block

minimizes the time of pruning with negligible resource

utilization. This paper presents a load-balanced

accelerator that performs efficiently in dense and

sparse networks. The main contribution of the paper

will be as follows:

 Proposed QSP modifies load imbalance

defect of unstructured pruning and covers its

accessible pruning amount.

 A simple weight coding has been projected to

comprehend the accelerator to skip

computations for zero values without

complicated procedures and pressure on

hardware.

 Weight-shared computation flow has been

proposed by establishing two parallelism

approaches that promise performance

efficiency for dense and sparse modes.

 Active Pruning Block accelerates the QSP-

based pruning process on the chip.

The paper is organized as follows: Section II

reviews related works; Section III presents proposed

accelerator architecture; Section IV is focused on

Volume 17- Number 3 – 2025 (19-33)

20

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 2 / 15

http://ijict.itrc.ac.ir/article-1-730-en.html

analyzing accelerator performance and extending

results and comparisons; Section V is the conclusion.

II. RELATED WORKS

A. Pruning

Accelerator designing based on network

optimization frameworks has been regarded in many

works. For instance, [21] has introduced a framework

to combine software optimization and hardware for

sparse CNNs. As mentioned in section I, structured and

unstructured pruning approaches have developed

recently. Unstructured Pruning: [12] has achieved

plenty of pruning rates by appointing a threshold

parameter and eliminating values less than the

threshold. Although this method inaugurates a chapter

of entrancing to mobile applications by offering weight

reductions of up to 13× for VGG16 without any

damage to the accuracy, it demands access to column

indexes in CSR format to locate the required inputs. On

the other side, load unbalancing of Processing

Elements (PE) and the case mentioned earlier has

formed an efficiency descent. Compression formats

such as CSR [22] and CSC [23] to signify non-zero

values when sparsity is applied on both weight and

activation bother the hardware for handling the

computation flow. One of the significant drawbacks of

unstructured pruning is the imbalance of

computational loads to PEs since the reduction of

weights occurs asymmetrically and eventuates

disruption in data scheduling. The idle time of some

PEs owing to load imbalance issues does not make it

possible for the accelerator to utilize maximum

resources in run-time and begets decreasing

computational efficiency. [24] has proposed dynamic

scheduling that balances the PE loads by placing

multiplexers on the input and output of PEs. This

operates through managing the multiplexer control

states that decide which FIFO should inject into which

specific PE. In addition, the multiplexer control states

in the output of each PE steer the partial results in their

path to accumulation. However, this idea demands

high power consumption for efficient utilization of

PEs. Structured Pruning: recent research has

revealed that structured pruning can aid the accelerator

to skip computations for zeroes in processing cores

conveniently and improves performance and energy

efficiency. To obviate the irregularity of pruning, [25]

suggests channel-wise, filter-wise, and shape-wise

pruning that obeys specific patterns in the pruning

process (Fig. 1). Similarly, [26] proposes a shape-wise

pruning that prunes similar spatial points along channel

kernels and applies this method to regulate the memory

access hierarchy and enhance computation efficiency

of PEs.

Filter-Wise

Pruning

Filter 1

Filter 2

Channel-Wise

Pruning

Filter 1

Filter 2

Shape-Wise

Pruning

Filter 1

Filter 2

Figure 1. Filter-Wise, Channel-Wise, and Shape-Wise pruning
[26], depicted from left to right

Filters

Output Feature Map
Input Feature Map

Noc Noy

Nox

Noc

Nix

Nwx

Nwy

Nic

Nic

Niy
Conv

Figure 2. Convolutional layer including input feature map, filters

and output feature map

B. Loop Executing Optimization

The convolutional layer with significant

multiplication-accumulation in a few operations loops

should accelerate with loop unrolling techniques. A

convolutional layer operates by convolving a filter

with the dimension of Nwx, Nwy, Nic, and Noc as

kernel width, kernel height, number of input channels,

and number of output channels, respectively, on an

input feature map with a dimension of Nix, Niy, and

Nic where Nix and Niy demonstrate input width and

input height, respectively, and produces an output

feature map with a size of Nox, Noy, and Noc where

Nox and Noy represent output width and output height,

respectively. A relation between the input and output

feature map is always steady, which will be as follows:

Algorithm 1 Convolutional Layer Computation

Input: Input activation Iy,x,ci
, Weight Wky,kx,ci,co

and Bias Bco

Output: Output Activation Oy,x,co

1: for co from 1 to Noc do

2: for x from 1 to Nox do

3: for y from 1 to Noy do

4: for ci from 1 to Nic do

5: for kx from 1 to Nwx do

6: for ky from 1 to Nwy do

7:

Partial_Sum+=IS×y+ky,S×x+kx,ci
×Wky,kx,ci,co

8: Oy,x,co
+=Partial_Sum+Bco

Volume 17- Number 3 – 2025 (19-33)

21

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 3 / 15

http://ijict.itrc.ac.ir/article-1-730-en.html

 Nix=Nwx+S(Nox-1) , Nox=(Nix-Nwx+S)/S (1)
 Niy=Nwy+S(Noy-1) , Noy=(Niy-Nwy+S)/S (2)

Where S is stride, and zero-padding has been

included in Nix and Niy. Fig. 2 illustrates

convolutional layer characteristics. Algorithm 1

introduces a convolutional layer in loop format. To

compute a convolution layer, lines 1 to 6 must be

executed. As the computation of these loops serially

takes a long time, loop unrolling and parallelism

techniques are essential to accelerate the loops. Loop

unrolling repeatedly has been used in State-Of-The-Art

accelerators. To better classify these accelerators, in

Algorithm 1, line 1 is called loop-1, lines 2 and 3 are

called loop-2, line 4 is called loop-3, and lines 5 and 6

are called loop-4. In [9] loops 1, 2, and 4, [6] loops 2

and 4, [27] loops 1 and 3, and [28] loops 3 and 4 have

been unrolled. However, these loop-unrolling

strategies have been explicitly considered for dense

networks and do not bring adequate efficiency for

sparse networks. Unrolling of loops 3 and 4 alongside

sparse-wise data flow has been offered in [26], making

it conceivable to employ both parallelism and zero-

skipping in shape-wise format simultaneously. Loop

tiling methods to diminish frequent access to external

memory and maintain the under-computation data on

internal buffers often apply in the accelerators, leading

to higher performance and efficiency. [26] and [7]

demonstrate that optimization in off-chip memory

access and data-sharing ability on weights and

activations have been practicable by the loop tiling

technique.

An efficient state-of-the-art accelerator should pass

these qualifications: 1) loop unrolling and tiling must

satisfy different kernel sizes and strides in widely used

CNN networks; 2) the designed structure should be

scalable and flexible to adjust for corresponding

hardware with limited resources; 3) accept both dense

and sparse modes; 4) establishing proper pruning

approach to speed up the accelerator performance; 5)

choosing loop unrolling and tiling techniques based on

determined pruning approach to profit from zero-

skipping abundantly.

III. PROPOSED ACCELERATOR

A. Loop Unrolling and Tiling Strategy

The proposed accelerator benefits from two

parallelism approaches. These approaches promise

performance and energy efficiency in dense and sparse

modes. Moreover, according to the proposed pruning,

the zero-value computation skipping scheme is

acknowledged throughout parallelism approaches.

Afterward, loop tiling can be illuminated based on

parallelism.

1) Loop Unrolling

Parallelism Approach 1 (PA1) is shown in Fig. 3,

where one weight from one input channel of the filter

kernel is shared along Py pixel in the same column

from the input feature map. In each computation cycle,

these activations and weights are multiplicated as

parallel. Therefore, Py is the parallelism coefficient in

PA1, representing the number of parallel pixels under

computation in an identical x location of the input

feature map. Since Py parallel multiplication generates

Py separate partial results in the output feature map that

must be accumulated serially, accumulating these

partial results entails inaugurating Py accumulator.

Parallelism Approach 2 (PA2) is shown in Fig. 4,

where Pic weight in different input channels of the

filter kernel with identical (x, y) locations are

multiplicated with Pic pixel in the identical (x, y)

locations along the activation channels. Hence, Pic

parallel multiplication along the input channel exposes

the necessitation of placing an adder tree to accumulate

their results. The proposed parallelism containing PA1

and PA2 is shown in Fig. 5.

1

1 1

ic
r ,c
I

1

2 1

ic
r ,c
I

1

3 1

ic
r ,c
I

1

py 1

ic
r ,c
I

1, 1

1 1

ic oc
r ,c

W

Py

Filters

Input Feature Map

Noc

Nix

Nwx

Nwy

Nic

Nic

NiyPy

Figure 3. Parallelism Approach 1.

Filters

Input Feature Map

Noc

Nix

Nwx

Nwy

Nic

Nic

Niy

Pic

Pic

1, 1

1 1

ic oc
r ,c

W

2, 1

1 1

ic oc
r ,c

W

3, 1

1 1

ic oc
r ,c

W

pic, 1

1 1

ic oc
r ,c

W

1

1 1

ic
r ,c
I

2

1 1

ic
r ,c
I

3

1 1

ic
r ,c
I

pic

1 1

ic
r ,c
I

Figure 4. Parallelism Approach 2.

Filters

Input Feature Map

Nix

Nwx

Nwy

Nic

Nic

Py

Pic

Niy

Pic

Noc

Output Feature Map

Noy

Nox

Noc

Py

Conv

Figure 5. The proposed parallelism with PA1 and PA2

Filters

Input Feature Map

Noc

Nix

Nwx

Nwy

Nic

Nic

Tiy

Tic

Tix

Niy

Tic

Twy
Twx

Output Feature Map

Noy

Nox

Noc

Tox

Toy

Toc

Conv

Figure 6. Loop tiling adapted to the parallelism approaches.

Volume 17- Number 3 – 2025 (19-33)

22

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 4 / 15

http://ijict.itrc.ac.ir/article-1-730-en.html

2) Loop Tiling

Consistent with PA1 and PA2, data required for

computing based on these approaches must be

prepared on the chip. A clever tiling strategy would

acquire minimum transfers among external memory

and on-chip buffer to lessen off-chip memory access,

consequently abating power consumption and latency.

As can see in Fig. 6, input feature map tiling with a size

of Tix×Tiy×Tic, filter tiling with a size of

Twx×Twy×Tic, and output feature map tiling with a

size of Tox×Toy×Toc is assumed. Pipeline

computation besides PA1 and PA2 to achieve PE

efficiency requires constituting suitable tile sizes. To

address these, the input feature map tile size has been

selected as follows:

 {
Tix=Nix

Tiy=Nwy+S(Py-1)
Tic=Pic

 (3)

Tix=Nix creates the pipeline computation possibility to

form the output tile equal Tox=Nox. As well, Toy=Py

obtains by similarity relation of line 2 in (3) and (2).

Parallelism approaches have not been applied for

parallel computation along the output channel.

Accordingly, Toc is equal to 1, and remained

dimension of the filter tile is designated to be

Twx=Nwx, Twy=Nwy, and Tic=Pic. These

specifications ensure that the PE arrays continue

computation without idle cycles.

B. Accumulation Scheme and Convolution Process

To address PA2 requirements, the adder tree with fan-

in of Pic sums the partial results from an array of PE.

This array realizes the PA2 strategy. Each operating

cycle computes one spatial weight in the kernel means

that after passing Nwx×Nwy cycles, convolution for a

region in the input feature map will be finished. Then,

the kernel slides along the x-direction on the input

feature map with respect to the convolution stride and

generates partial results concerning the output feature

map. The accumulation scheme in Fig. 7 has been

constructed to sustain pipeline computations for kernel

weights and the x-direction of the output feature map.

The proposed accumulator contains three adder stages,

a Partial Sum Temp (PST) buffer, and an accumulator

controller. Stage 1 accumulates partial results of

convolving spatial weights on an area of the input

feature map in Nwx×Nwy cycles. Since Pic≤Nic, after

each Nwx×Nwy cycle, obtained results are just for Pic

channel and not completed.

Hereupon, ⌈Nic/Pic⌉ appoints the number of

computation phases to finalize the output result.

Therefore, the PST buffer preserves incomplete results

in each phase. The held results in the PST buffer and

corresponding results in the current phase of

computation accumulate by stage 2. In addition, the

PST buffer saves the partial result generated by sliding

the kernel in the x-direction. In other words, each

address of the PST buffer is dedicated to one pixel of

the output feature map with the same row. The number

of PST buffer addresses should be compatible with

different Nix in all network layers. The following

equation has been founded to meet the compatibility:

 Nix_Max=Max(Nix(L)) (4)

where Nix_Max is the number of PST buffer

addresses, and L is the variable representing different

network layers. When all computation phases are

completed, stage 3 accumulates the filter bias with the

final result. The accumulator controller with an address

signal and a reset signal assists the convolution process

in the accumulator. The address signal handles PST

buffer addresses for writing/reading data to/from

corresponding addresses. On the other hand, the reset

signal applies at the first operating cycle of the new

region process to ensure the remaining data in the

previous cycle does not contribute to accumulating in

stage 1.

Fig. 8 illustrates an instance of a convolutional

process by the proposed scheme. The accelerator

parameters, including Py and Pic, have been assumed

to be 1 and 2, respectively.

PE
PE

Read Write

Bias

Partial Sum Temp Buffer

PE

PE

Pic

Accumulator

Bias

Pic

Number of Stages

= Log2(Pic)

Accumulator

Controller
Address

R
e

s
e

t

Psum_1 Psum_2 Psum_3 Psum_M

M
u
x

Stage1 Stage2 Stage3

Figure 7. Accumulation scheme including accumulator and adder

tree.

4,1

3,3
W

4,1

2,3
W

4,1

1,3
W

4,1

1,3
W

4,1

1,3
W

3,1

1,3
W

3,1

2,3
W

3,1

3,3
W

3,1

3,3
W

3,1

3,3
W

2,1

1,3
W

2,1

1,3
W

2,1

1,3
W

2,1

2,3
W

2,1

3,3
W

4

5,5
I 4

5,5
I 4

5,5
I 4

5,5
I 4

1,5
I

4

2,5
I

4

3,5
I

4

4,5
I

4

5,5
I

PE2

PE1

S1

1 20 26 272 3 4 9 19

P
h

a
s
e
 1

S: Stage Wt: Write to Rf: Read from

Address

Reset 1 0

0

S1

Wt Psum3

0

2

Cycle

PE2

PE1

S2

47 53 5429 30 31 36 46

0

2

Cycle

Rf Psum1

S2 S3

Input Feature Map

Kernels Output

Feature Map

Stage

1

28

1

P
h

a
s
e
 2

Wt Psum1

Address

Reset

Stage S1

1 0

0

S3 S1

Rf Psum3

3

1,1
I

3

1,1
I

3

1,1
I

3

1,1
I

3

1,5
I

3

2,5
I

3

3,5
I

3

4,5
I

3

5,5
I

1

1 2,I 1

1 3,I 1

1 4,I 1

1 5,I
2

1,1
I 2

1,2
I 2

1,3
I 2

1,4
I 2

1,5
I

2

2,5
I

2

3,5
I

2
4,5

I

2
5,5

I

1

1,1
I 1

1,2
I 1

1,3
I 1

1,4
I 1

1,5
I

1

2,5
I

1

3,5
I

1
4,5

I

1
5,5

I1
5,4

I1

5,3
I1

5,2
I1

5,1
I

1

4,1
I 1

4,2
I 1

4,3
I 1

4,4
I

1

3,4
I

1

2,4
I1

2,3
I1

2,2
I1

2,1
I

1

3,1
I 1

3,3
I

1

1,1
O 1

1,2
O 1

1,3
O

1

1,1
O 1

1,3
O

1,1

1,2
W

1,1

1,3
W

1,1

2,1
W

1,1

2,3
W

1,1

1,1
W

1,1

3,1
W

1,1

3,2
W

1,1

3,3
W

1,1

2,2
W

2,1

1,1
W

2,1

1,2
W

2,1

1,3
W

2,1

2,1
W

2,1

3,3
W

2,1

1,1
W

2,1

1,2
W

2,1

3,2
W

2,1

3,3
W

1,1

1,1
W

1,1

1,2
W

1,1

1,3
W

1,1

3,3
W

1,1

2,1
W

1,1

1,1
W

1,1

1,2
W

1,1

3,3
W

3,1

3,3
W

3,1

2,1
W

3,1

1,1
W

3,1

1,2
W

3,1

1,3
W

3,1

3,2
W

3,1

3,3
W

3,1

1,1
W

3,1

1,2
W

4,1

1,3
W

4,1

1,2
W

4,1

1,1
W

4,1

2,1
W

4,1

3,3
W

4,1

3,2
W

4,1

1,2
W

4,1

1,1
W

4,1

3,3
W

1

1,1
I 1

1,2
I 1

1,3
I 1

2,1
I 1

3,3
I

1

3,2
I

1

1,3
I 1

1,4
I 1

3,4
I 1

3,5
I

2

1,1
I 2

1,2
I 2

1,3
I 2

2,1
I 2

3,3
I 2

1,3
I 2

1,4
I 2

3,4
I 2

3,5
I

3

1,1
I

3

1,2
I

4

1,1
I 4

1,2
I 4

1,3
I 4

2,1
I 4

3,3
I

3

1,3
I

3

2,1
I

3

3,3
I

3

1,3
I

3

1,4
I

3

3,4
I

3

3,5
I

4

3,5
I4

3,4
I4

1,4
I4

1,3
I

1,1

3,2
W

Volume 17- Number 3 – 2025 (19-33)

 23

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 5 / 15

http://ijict.itrc.ac.ir/article-1-730-en.html

Figure 8. Computation of a convolutional layer by proposed

accelerator.

The convolution of an input feature map with a size

of 5×5×4 and a filter with a dimension of 3×3×4 with

stride=1 has led to the output feature map of 3×3×1. As

Pic=2 is fewer than Nic=4, the computation phases are

divided into ⌈Nic/Pic⌉=2 phases. In phase 1, PE1 and

PE2 process the kernels of channel 1 and channel 2,

respectively. In cycles 1 and 19, similarly, the reset

signal has been applied to refresh the accumulation

operation of stage 1 since these cycles are the

beginning of the new region process. After elapsing

nine cycles, the convolution result for two filter kernels

on one region of the input feature map is obtained and

should write to its address in the PST buffer. In phase

2, PE1 and PE2 calculate the kernels of channel 3 and

channel 4, respectively. As this phase is the last

processing phase to get the final results of the output

feature map, the corresponding address of the region

under computation in the PST buffer must be read

before coming to the ninth cycle of the region. For

example, O1,1
1 and O1,3

1 have been computed by

accumulating Psum1 and Psum3 from the PST buffer

with the achieved output result of stage 1 in cycles 36

and 54, respectively. Stage 2 accumulates these values

and guides them to stage 3 for finalizing. As a result,

the proposed accumulator utilizes three adders that

diminish LUTs practically.

C. Quasi Structured Pruning

The network sparsity based on weight pruning

extraordinarily optimizes performance and efficiency.

However, structured or unstructured pruning has some

strengths and weaknesses that engender challenges to

fully utilizing the leverages of the pruning. This paper

offers a Quasi Structured Pruning method, which

powers from structured and unstructured pruning

advantages. In this method, two fundamental

principles are admitted: 1) each filter can possess its

pruning rate; 2) in each filter, the channels can adopt

different zero positions only by noticing an equal

number of zeros along channels. Two irregularities

created by these guidelines aid grow the pruning rate

in the convolutional layer. Fig. 9 shows an instance of

QSP-based pruning for a filter with Nwx=Nwy=3,

Nic=4, and Noc=2. Filter 1 and 2 have pruning rates of

5 and 6, respectively. Even so, each channel benefits

different zero locations with respect to the pruning rate

of its filter. According to restrictions by shape-wise

pruning [26] in terms of the identical location of non-

zero weights per channel, QSP eliminates this

boundary to realize vast pruning capacity.

1) Weight Status Coding

Sparse accelerators widely use compression coding

and non-zero indexing. This option cuts memory

storage, but code/decoding of the data brings a

redundant involvedness burden on the accelerator

hardware. This work has endeavored to considerably

discount resource utilization and hardware complexity

to reach higher clock frequency besides lower power

consumption. Thus, a simple coding called Weight

Status Coding (WSC) has been used to simplify

detecting non-zero weights in hardware. As revealed in

Fig. 10, a WSC with Nwx×Nwy bits determines the

status of each weight in the kernel. When a location has

a non-zero weight, logic equals 1; when it has a zero

value, logic equals 0.

2) Load Balancing

The load imbalance nature of unstructured pruning

induces a lack of maximum PE utilization efficiency,

which emanates from idle cycles in some of them.

Furthermore, organizing data flow to PE will be extra

complicated. The QSP-based pruning, PA1, and PA2

constitute an accelerator with a balanced load. To

express this feature, Fig. 11 has depicted a convolution

layer process for an input feature map dimension of

5×5×2 and the filter dimension of 3×3×2×2 with

stride=1.

F
il

te
r

2

Ch1 Ch2 Ch3 Ch4

F
il

te
r

1

Ch1 Ch2 Ch3 Ch4

Figure 9. QSP-based pruning for a filter with Nwx=Nwy=3,

Nic=4, and Noc=2.

Pos0 Pos1 Pos2

Pos3

Pos6

Pos4 Pos5

Pos7 Pos8

Kernel

Pos0 Pos1 Pos2 Pos3 Pos4 Pos5 Pos6 Pos7 Pos8

WSC

WSC = 011100001

Figure 10. WSC for a 3×3 kernel.

0

0

0

0 0

OFM

2

2 5,I

2

1 1,I 2

1 3,I
2

1 2,I
2

1 4,I
2

1 5,I

2

3 5,I

2

5 5,I

2

4 5,I

IFM Filter 1
Ch1

0 0

0 0

0 0

0 0

0

0

0

0

0 0

0

0

0

Ch2 Ch2

Ch1

Filter 2

Cycle

Address

Reset

Stage

PE2

PE1

F
il
te

r
2

16 17 1813 14 15 19 20 21

1 2 3 4

S1

0

Don t Care

S3

1

S1

0

Don t Care

S3

1

9 10 11 12

Cycle

Address

Reset

Stage S1 S3 S3S1

0

Don t Care

1 0

Don t Care

1 0

Don t Care

1

S3S1

PE2

PE1

F
il
te

r
1

1,2

1,1
W

1,2

2,3
W

1,2

1,1
W

1,2

2,3
W

1,2

3,1
W

1,2

1,1
W

1,2

2,3
W

1,2

3,1
W

1,2

1,1
W

1,2

2,3
W

1,2

3,1
W

1,2

3,1
W

2,2

1,3
W

2,2

2,2
W

2,2

3,2
W

2,2

1,3
W

2,2

2,2
W

2,2

3,2
W

2,2

1,3
W

2,2

2,2
W

2,2

3,2
W

2,2

1,3
W

2,2

2,2
W

2,2

3,2
W

1,1

1,2
W

1,1

1,3
W

1,1

2,1
W

1,1

2,3
W

1,1

2,1
W

1,1

2,3
W

1,1

1,2
W

1,1

1,3
W

1,1

2,1
W

1,1

2,3
W

2,1

1,1
W

2,1

2,1
W

2,1

2,2
W

2,1

3,3
W

2,1

2,1
W

2,1

2,2
W

2,1

3,3
W

2,1

1,1
W

2,1

2,1
W

2,1

2,2
W

2,1

3,3
W

1

1,1
O 1

1,2
O 1

1,3
O

2

1,3
O2

1,2
O2

1,1
O

1

1,1
O 1

1,3
O

2

1,3
O2

1,2
O2

1,1
O

1

1,1
I 1

1,2
I 1

1,3
I 1

1,4
I 1

1,5
I

1

2,5
I

1

3,5
I

1
4,5

I

1
5,5

I1
5,4

I1

5,3
I1

5,2
I1

5,1
I

1

4,1
I 1

4,2
I 1

4,3
I 1

4,4
I

1

3,4
I

1

2,4
I1

2,3
I1

2,2
I1

2,1
I

1

3,1
I 1

3,2
I 1

3,3
I

1

2,1
I 1

2,3
I 1

1,4
I 1

1,5
I 1

2,3
I 1

2,5
I

2

2,1
I 2

2,2
I 2

3,3
I

1,1

1,2
W

1

1,2
I

1,1

1,3
W

1

1,3
I

2

1,3
I 2

2,3
I 2

2,4
I 2

3,5
I

1

1,1
I 1

2,3
I 1

3,1
I 1

1,2
I 1

2,4
I 1

3,2
I 1

1,3
I 1

2,5
I 1

3,3
I

2,1

1,1
W

2

1,1
I

2

1,3
I 2

2,2
I 2

3,2
I 2

1,4
I 2

2,3
I 2

3,3
I 2

1,5
I 2

2,4
I 2

3,4
I

Figure 11. Load balancing and zero-skipping based on QSP.

Volume 17- Number 3 – 2025 (19-33)

24

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 6 / 15

http://ijict.itrc.ac.ir/article-1-730-en.html

The accelerator configuration has also been assumed to

be Pic=2 and Py=1. Since Pic equals Nic, each filter

has just one computation phase and does not require

holding partial results in the PST buffer. So, stage 2 has

been ignored. Filter 1 and 2 have a pruning rate of 5

and 6, respectively. Filter 1 has two input channels

with non-zero weights equal to four, which balances

the effective operating cycle of the channels against

each other. Cycles corresponding to zero weights have

been ignored in PE1 and PE2 equally in terms of the

number by a data flow. The proposed data flow will be

introduced later, which brings collaboration to

leverage the benefits of cycle equality in parallel PEs.

Filter 1 and 2 have spent 12 and 9 cycles to obtain three

output pixels, respectively. Meanwhile, Filter 1 and 2

have been computed serially and ensure that different

pruning rates of filters have not affected the process.

Based on the details above, parallel processing

elements are permanently fed by identical load volume

that guarantees PE utilization and computation

efficiency.

D. Accelerator Architecture

Fig. 12 demonstrates the overall architecture of the

proposed accelerator. An array of Processing Units

(PU) erects the central core of the convolutional

computation. According to Fig. 12, Py PUs

simultaneously produce Py row of the output feature

map, which emphasizes PA1. An array of PEs with a

length equal to Pic as multiplier units has been

equipped in PU. An adder tree, an accumulator based

on the accumulation scheme, a normalization, and a

ReLU have also been embedded in PU. Input

activation from Pic input channel is stored in Pic Input

Feature Map (IFM) buffer. Similarly, Pic kernel is

stored in Pic weight buffer.

Gatherer block puts the convolutional results of Py PUs

in one column and writes them on Output Feature Map

(OFM) buffer. Required data transfers between buffers

and external memory through DMA. Whenever the

layer under process needs a pooling operation, OFM

buffer data feeds into Max-Pooling block, and the

results will be directed to DMA for storing in external

memory. Otherwise, Max-Pooling operation will be

disabled. WSC buffer maintains weight status codes

related to kernels written in weight buffers. IFM

Router dispatches data from IFM buffers to PE arrays.

Address Generator (AG) block gets weight status

codes from WSC buffer and then creates proper

addresses for IFM buffers and Weight Buffers. Also,

IFM Router is controlled by the AG block.

1) Data Buffering

According to the projected loop tiling, kernels and

activations must prepare on the chip. The pattern of

data storing on buffers is a significant matter that

characterizes the data flow procedure into PEs.

a) Weight Storing

The pattern of storing the kernels in weight buffers

for an instance of Tic=Pic=2 has been revealed in Fig.

13. Each spatial weight gets one address in weight

buffer. The weight buffer depth will be as follows:

 Weight_Buffer_Depth=2×(Nwx×Nwy) (5)

The selected depth has two aspects: 1) the number of

addresses to hold all kernel weights equals Nwx×Nwy.

2) a ping pong buffer has been realized by creating two

sections in each weight buffer. The buffers are based

on Dual Port RAM (DPRAM) that enables write and

read operations independently. Whenever a section is

under computing (reading state), another can prepare

the required data (writing state) for the next

computation phase. Thus, coefficient 2 in (5) is set for

buffer segmentation. Using (5), memory will be

allocated in the following manner:

 WB_Bits=Tic×Weight_Buffer_Depth×WB_Bit_Width (6)

Where WB_Bit_Width is the number of bits used to

represent the weights, and Tic shows the number of

weight buffers.

PE PE PE PE

Adder Tree

Accumulator

Normalization

ReLU

PU 1

PE PE PE PE

Adder Tree

Accumulator

Normalization

ReLU

W
e
ig

h
t

B
u

ff
e
r

2

W
e
ig

h
t

B
u

ff
e
r

3

W
e
ig

h
t

B
u

ff
e
r

P
ic

W
e
ig

h
t

B
u

ff
e
r

1

IF
M

 B
u
ff
e
r

P
ic

IF
M

 B
u
ff
e
r

1

IF
M

 B
u
ff
e
r

2

IF
M

 B
u
ff
e
r

3

IFM Router

Py
PU

OFM Buffer

G
a
th

e
re

r

Py

Max-Pooling

Pic

Py

Pic

Address

Generator

WSC

Bufferr

DMA

Pic

Pic

Pic

Figure 12. The proposed accelerator architecture.

2,1

1,1
W

2

1,1
I

W
e

ig
h

t

B
u

ff
e

r
2

2
,1

1
,1

W

2
,1

1
,2

W

2
,1

1
,3

W

2
,1

3
,3

W

W
e

ig
h

t

B
u

ff
e

r
1

0 1 2 8
1

,1

3
,3

W

1
,1

1
,3

W

1
,1

1
,2

W

1
,1

1
,1

W

Section 1 Section 2

Weight_Buffer_Depth

WB_Bit_Width

Address

1
7

2,1

1,3
W

2,1

1,3
W

2,1

1,3
W

2,1

2,3
W

2,1

3,3
W

1,1

1,2
W

1,1

1,3
W

1,1

2,1
W

1,1

2,3
W

1,1

1,1
W

1,1

3,1
W

1,1

3,2
W

1,1

3,3
W

1,1

2,2
W

Weight Kernel

Figure 13. The weigh buffer pattern for an accelerator parameter of

pic=2.

IF
M

 B
u

ff
e

r
1

0 1 5

1

1,2
I

1

2,2
I

1

5,2
I

1

1,1
I

1

2,1
I

1

5,1
I

1

1,6
I

1

2,6
I

1

5,6
I

IFM_Buffer_Depth -1

Address

Section 1 Section 2

2

1,6
I2

1,2
I2

1,1
I

2

2,6
I2

2,2
I2

2,1
I

2

5,6
I2

5,2
I2

5,1
I

IF
M

 B
u

ff
e

r
1

2

1,6
I 2

1,6
I2

1,6
I2

1,6
I2

1,6
I2

1,6
I

2

2,6
I

2

3,6
I

2

4,6
I

2

5,6
I

2

6,6
I

1

1,1
I 1

1,2
I 1

1,3
I 1

1,4
I 1

1,5
I 1

1,6
I

1

2,6
I

1

3,6
I

1

4,6
I

1

5,6
I

1

6,6
I1

6,5
I1

6,4
I1

6,3
I1

6,2
I1

6,1
I

1

5,1
I 1

5,2
I 1

5,3
I 1

5,4
I 1

5,5
I

1

4,1
I 1

4,2
I 1

4,3
I 1

4,4
I 1

4,5
I

1

3,5
I1

3,4
I1

3,3
I1

3,2
I1

3,1
I

1

2,1
I 1

2,2
I 1

2,3
I 1

2,4
I 1

2,5
I

Input Feature Map

IFM_Buffer_Depth

IFMB_Bit_Width

Figure 14. The IFM buffer pattern for an accelerator parameter of

Pic=2.

Volume 17- Number 3 – 2025 (19-33)

25

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 7 / 15

http://ijict.itrc.ac.ir/article-1-730-en.html

b) Input Feature Map storing

An example of input feature map storing in IFM

buffers for Tic=Pic=2 has depicted in Fig. 14. The

determined input tile size in (3) helps to find IFM

buffer width in the following:

 IFMB_Bit_Width=Tiy×Feature_Bits (7)

Where Feature_Bits is the number of bits used to

represent the activations, and Tiy is for confirming the

PA1 strategy. Fig. 14 assumes Py=3 and stride=1 by

using (3) results in Tiy=5. As convolutional layers of

the considered network may have different Nix, Tix

should equal Nix_Max in (4) to be compatible with all

convolutional layers. The ping pong buffer technique

by DPRAM segmentation has also been used for IFM

buffers. As a result, IFM buffer depth is:

 IFM_Buffer_Depth=2×Nix_Max (8)

Using (8), memory allocation to IFM buffers will be as

follows:

IB_Bits=Tic×IFM_Buffer_Depth×IFMB_Bit_Width (9)

c) output Feature Map storing

The final results from Py PU being gathered will be

written in OFM buffer as one address. Figure 15

illustrates an instance of output feature buffering with

supposing Py=3. OFM buffer width will be as follows:

OFMB_Bit_Width=Py×Feature_Bits (10)

As Tox equals Nox in the loop tiling, for compatibility

of different convolutional layers, Tox should be as

follows:

 Tox_Max=Max(Nox(L)) (11)

Where L shows different convolutional layers of the

network. The depth of OFM buffer with respect to the

ping pong buffering method and using (11) is given

below:

 OFM_Buffer_Depth=2×Tox_Max (12)

Finally, the allocated memory for OFM buffer using

(12) is below:

 OB_Bits=OFM_Buffer_Depth×OFMB_Bit_Width (13)

2) Weight-Shared Data Flow to PE

Data flow to PEs is handled by AG block for weights

and activations. The weights read from weight buffers

are routed to PEs as straight, where each weight is

shared among Py PUs. For the activations, an IF Router

block scatters the inputs read from IFM buffer between

PEs.

d) IF Router

Fig. 16 determines a sample of IF Router block for

the accelerator parameters of Pic=2 and Py=3.

IF_Router_Sub_Block1 and IF_Router_Sub_Block2

distribute data from IFM Buffer 1 and IFM Buff 2 to

corresponding PEs, respectively. Each IFM buffer

address is placed in a partition register with a division

coefficient equal to Nwy and the partition stride equal

to the convolution stride. For example, when the

stride=2, the jump offset of picking the activations and

putting them in the partition will equal 2.

Consequently, each partition contains Py sectors. A

multiplexer (MUX) with Nwy inputs selects among

partitions by the control state of IFR_S and transfers to

the distribution register. The distribution register that

includes Py sectors routes the partition sectors to PEs.

e) Address Generator and Zero-Skipping

AG block adopts two modes for accessing data to

PEs: 1) dense mode operation, in which all cycles

without ignoring will be done; 2) sparse mode based

on QSP pruning that will skip addresses for zero

weights. In sparse mode, the zero-weight locations

differ in each weight buffer. This comes from the QSP

kernel irregularity, which demands particular address

generator subblocks for each weight buffer to generate

non-zero weight addresses. In addition to the weight

buffer, the AG subblock generates ignored addresses

and ignored states for IFM buffer and IFR_S,

respectively. Hence, Pic AG subblock produces fitting

characteristics based on WSC codes related to its own

kernel. Fig. 17 shows an example AG block for Pic=2.

OFM_Buffer_Depth

Section 1 Section 2
O

F
M

 B
u

ff
e

r

OFMB_Bit_Width

0 1 5 OFM_Buffer_Depth -1
Address

1

1,1
O

1

2,1
O

1

3,1
O

1

1,2
O

1

2,2
O

1

3,2
O

1

1,6
O

1

2,6
O

1

3,6
O

Figure 15. The IFM buffer pattern for an accelerator parameter of
Py=3.

A
d

d
e

r
T

re
e

A
c

c
u

m
u

la
to

r

N
o

rm
a
li

z
a

ti
o

n

R
e

L
U

P
U

2

P
E

P
E

IF Router

In
p

u
t

In

p
u

t
2 In

p
u

t

M
u

x

Input 1

Input 2

Input 3

IF
R

_
S

(1
)

IF Router_Sub_Block1

IF
M

 B
u

ff
e
r

1

In
p

u
t

In

p
u

t
2 In

p
u

t

M
u

x

Input 1

Input 2

Input 3

IF
R

_
S

(2
)

IF Router_Sub_Block2

IF
M

 B
u

ff
e
r

2

1

4 1,
I
1

5 1,
I

1

1 1,
I
1

2 1,
I
1

3 1,
I

1

1 1,
I
1

2 1,
I
1

3 1,
I

2

5 1,
I

2

4 1,
I

2

3 1,
I

2

2 1,
I

2

1 1,
I

2

3 1,
I

2

2 1,
I

2

1 1,
I

A
d

d
e

r
T

re
e

A
c

c
u

m
u

la
to

r

N
o

rm
a
li

z
a

ti
o

n

R
e

L
U

P
U

1

P
E

P
E

A
d

d
e

r
T

re
e

A
c

c
u

m
u

la
to

r

N
o

rm
a
li

z
a

ti
o

n

R
e

L
U

P
U

3

P
E

P
E

Figure 16. IF Router containing Pic=2 subblock for Py=3.

AG_Sub_Block 1

AG_Sub_Block 2

W
S

C
 B

u
ff

e
r

D
is

tr
ib

u
to

r

IFM Buffer 1
Weight Buffer 1

IFM Buffer 2
Weight Buffer 2

IFR_S(1)

Address Generator

IFR_S(2)

Figure 17. AG block with Pic=2 subblock.

Volume 17- Number 3 – 2025 (19-33)

26

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 8 / 15

http://ijict.itrc.ac.ir/article-1-730-en.html

The AG block is illustrated in Fig. 18 as a data flow

controller by configuring Pic=2 and Py=3 based on

weigh buffers in Fig. 13 and IFM buffers in Fig. 14.

The pruning rate equals five, and for each computation

area, four-cycle have been ignored. Data flow to PEs is

controlled by two AG subblocks due to Pic=2. In the

WSC, the Most Significant Bit (MSB) indicates the

status of the first computation cycle since it contains

the first weight of the kernel; accordingly, the Least

Significant Bit (LSB) shows the last computation

cycle. The AG subblock skips a computation cycle

when its cycle status in WSC is zero.

AG block achieves different strides by varying the

jump offset of addresses. Moreover, different kernel

sizes will confirm by altering the number of

computation cycles in AG block.

3) Fixed-Point Representation and PE Merging

The activations and weights in the proposed

accelerator have been fixed to 8 bits. This item,

alongside the weight-sharing feature in the proposed

accelerator, makes it possible to merge a pair of PEs.

Digital Signal Processing (DSP) units in Xilinx FPGAs

such as DSP48E1 have a 25×18 multiplier. Recently,

INT-8 multiplication by DSP has been used to decrease

DSP utilization in some accelerators [29-31].

However, signed multiplication has remained

ambiguous in these works. Adding 8-bit zeros between

two 8-bit inputs as one input port of the multiplier and

multiplicate with an 8-bit weight, such as Fig. 19 (a),

results in a 32-bit output in which the lower 16 bits and

the upper 16 bits are the results of multiplying the

weight by the first and second inputs, respectively.

This technique works well for unsigned multiplication,

but various faults will happen when these values are

signed, such as in Fig. 19 (b). According to Fig. 20,

Merged-PE has been proposed to eliminate signed

multiplication problems. Merged-PE is formed by

merging two PEs from two adjacent PUs with a shared

weight and different inputs. Input values in Merged-PE

are converted to absolute values and multiplied

according to Fig. 19. Conversely, XOR between the

most significant bit of both inputs and weight will

control the MUX. The MUX is fed by the positive state

and negative state of the output. The positive form of

output is ready Inherently, but the negative state

obtains by subtracting the positive state from zero.

With the lowest component, the Merged-PE scheme

multiplies two signed inputs by a signed weight.

E. Active Pruning

The conventional software-based pruning process is

realized by pruning the pre-trained weights through

chosen pruning approach and then validates by

datasets. The pruning process will terminate when the

considered accuracy obtains in the validation regarding

the desired pruning rate. Then, the pruned weights will

be used in the hardware accelerator. This paper offers

an Active Pruning (AP) block, which accelerates the

pruning process on the accelerator. The AP block

prunes the pre-trained weights based on the proposed

QSP. To lacking overhead on the hardware, random

pruning has been settled in the AP block. Fig. 21

introduces the pruning process by the AP block where

Pic Random Generator (RG) produces Pic WSC for

kernels intended to begin convolutional operation.

Pruning rate and threshold accuracy are two inputs of

the AP block. The AP block operates in four steps: 1)

WSC codes for Pic channel of the filter generates, then

will direct to the WSC buffer; 2) datasets applies to the

accelerator for inference operation; 3) the classification

result of datasets validates by validation labels; 4)

validation result determines whether must save WSCs

in external memory and finish the pruning process or

return to step 1. Each Pic channel from Nic channel

may prune at its own pruning rate based on the QSP-

based pruning process in the AP block. For generating

WSCs, RG blocks just spend Nwx×Nwy cycles, which

have negligible latency for the pruning process.

F. Computational Latency

The convolutional layer latency depends on looping

tiling and loop unrolling parameters. The number of

multiply for a convolutional layer is as follows:

 N_Mult=Nwx×Nwy×Nic×Nox×Noy×Noc (13)

Since computations are tiled, considering the size of

input and filter beside tile size will have:

 N_Tile=⌈
Nwx

Twx
⌉⌈

Nwy

Twy
⌉⌈

Nic

Tic
⌉⌈

Nox

Tox
⌉⌈

Noy

Toy
⌉⌈

Noc

Toc
⌉ (14)

Where N_Tile is the total number of convolutional tiles

that should be computed. The proposed accelerator has

chosen tile size of Twx=Nwx, Twy=Nwy, Tic=Pic, and

Toc=1 that modifies (14) to following form:

 N_Tile=⌈
Nic

Pic
⌉⌈

Noy

Py
⌉

× Noc (15)

On the other hand, maximum parallel multiplication in

a convolutional layer will be as follows:

 Max =Pwx×Pwy×Pic×Pox×Poy×Poc (16)

2,1

1,1
W

2

1,1
I

IF
M

 B
u

ff
e
r

1

IF
M

 B
u

ff
e
r

2

0 1 5 0 1 5

W
e
ig

h
t

B
u

ff
e
r

2

W
e
ig

h
t

B
u

ff
e
r

1

0 1 2 8 0 1 2 8

Cycle 9 10 11 121 2 3 4 5 6 7 8

PU1

IFMB 2 Addr

WB 2 Addr

IFR_S(2)

PE2

PE2PU2

PE2PU3

Weight

Sharing

WSC Ch2 = ''100010011''

IFMB 1 Addr

WB 1 Addr

IFR_S(1)

PE1PU1

PE1PU2

PE1PU3

Weight

Sharing

WSC Ch1 = ''011101000''

0

0

0

1 1 2

4 7 8

1 2 2

1

1

0

2 0 2

2 3 5

0 1 1

2

1

0

3 1 3

2 3 5

0 1 1

1

0

0

2 2 3

4 7 8

1 2 2

3

1

0

4 2 4

2 3 5

0 1 1

2

0

0

3 3 4

4 7 8

1 2 2

1

1,2
I 1

1,3
I 1

2,1
I 1

2,3
I 1

1,3
I 1

1,4
I 1

2,4
I1

2,2
I 1

1,4
I 1

1,5
I 1

2,5
I1

2,3
I

1

2,3
I1

2,2
I 1

3,1
I 1

3,3
I 1

3,4
I1

2,4
I1

2,3
I 1

3,2
I 1

2,5
I 1

3,5
I1

2,4
I 1

3,3
I

1

4,1
I 1

4,3
I1

3,3
I1

3,2
I 1

4,2
I 1

4,4
I1

3,4
I1

3,3
I 1

3,5
I 1

4,5
I1

4,3
I1

3,4
I

1,1

1,2
W

1,1

1,3
W

1,1

2,1
W

1,1

2,3
W

1,1

1,2
W

1,1

1,3
W

1,1

2,1
W

1,1

2,3
W

1,1

1,2
W

1,1

1,3
W

1,1

2,1
W

1,1

2,3
W

2,1

2,2
W

2,1

3,2
W

2,1

3,3
W

2,1

1,1
W

2,1

2,2
W

2,1

3,2
W

2,1

3,3
W

2,1

1,1
W

2,1

2,2
W

2,1

3,2
W

2,1

3,3
W

2,1

1,1
W

2

1,1
I 2

1,2
I 2

1,3
I2

2,2
I 2

2,3
I 2

2,4
I2

3,2
I 2

3,3
I 2

3,4
I2

3,3
I 2

3,4
I 2

3,5
I

2

2,1
I 2

2,2
I 2

2,3
I2

3,2
I 2

3,3
I 2

3,4
I2

4,2
I 2

4,3
I

2

5,2
I

2

4,3
I 2

4,4
I2

4,4
I 2

4,5
I

2

3,1
I 2

3,2
I 2

3,3
I2

4,2
I 2

4,3
I 2

4,4
I2

5,3
I 2

5,4
I2

5,3
I 2

5,4
I 2

5,5
I

2
,1

1
,1

W

2
,1

1
,2

W

2
,1

1
,3

W

2
,1

3
,3

W

1
,1

3
,3

W

1
,1

1
,3

W

1
,1

1
,2

W

1
,1

1
,1

W

1

1,2
I

1

2,2
I

1

3,2
I

1

4,2
I

1

5,2
I

1

1,1
I

1

2,1
I

1

3,1
I

1

4,1
I

1

5,1
I

1

1,6
I

1

2,6
I

1

3,6
I

1

4,6
I

1

5,6
I 2

5,6
I

2

4,6
I

2

3,6
I

2

2,6
I

2

1,6
I2

1,2
I

2

2,2
I

2

3,2
I

2

4,2
I

2

5,2
I2

5,1
I

2

4,1
I

2

3,1
I

2

2,1
I

2

1,1
I

Figure 18. An instance of proposed dataflow to PEs and

corresponding AG block outputs

Fault

100

127

12700

56

127

7112

× ×
100

-127

-12700

56

-127

-7112

× ×

(a)

100 56

01111111×

711212700

001110000000000001100100

127

00011011110010000011000110011100

(b)

100 56

10000001×

-7112-12701

001110000000000001100100

-127

11100100001110001100111001100011

Figure 19. A 24×8 dual multiplication: a) right result for unsigned

multiplication b) Fault result for signed multiplication.

Volume 17- Number 3 – 2025 (19-33)

27

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 9 / 15

http://ijict.itrc.ac.ir/article-1-730-en.html

O1

 Mult

Weight

Input1

Input2

O2

M
u

x
1

0

1

M
u

x
2

0

1

Mux2_S

Mux1_S

Output1

Output2

00000000 Abs (Input2)

×

Abs (Input2) × Abs (Weight)Abs (Input1) × Abs (Weight)

8-bits 8-bits 8-bits

8-bits

16-bits16-bits

W
e
ig

h
t(7

)

In
p

u
t2

(7
)

M
u

x
2
_

S

W
e
ig

h
t(7

)

In
p

u
t1

(7
)

M
u

x
1
_

S

M
e

rg
e

d
 P

E

W
e
ig

h
t

In
p

u
t1

In
p

u
t2

O
u

tp
u

t1

O
u

tp
u

t2

Abs (Input1)

Abs(Weight)

0

P
E

i
(P

U
2
j)

P
E

i
(P

U
2
j+

1
)

Figure 20. Internal structure of the Merged PE.

WSC

Buffer

Classification

Result

Validation

LabelWSC Random

Generator
Validate

Pruning Rate

P
ru

n
in

g

R
a

te

WSC Ch 1

RG Pic

RG 1

RG 2

RG 3

WSC Ch 2

WSC Ch 3

WSC Ch Pic

DMA

Yes

No

En

Threshold

Accuracy

Figure 21. The proposed Active Pruning process.

Figure 22. Computation efficiency of all convolutional layer of

VGG16 for a) Pic=32, b) Pic=64, and c) Pic=128.

Conv1 Conv2 Conv3 Conv4 Conv5
0.2

0.4

0.6

0.8

1.0

C
o

m
p
u
ta

ti
o
n
 E

ff
ic

ie
n
c
y

 Py=7 Py=14 Py=28 Py=56 Py=64

Conv1 Conv2 Conv3 Conv4 Conv5
0.2

0.4

0.6

0.8

1.0

C
o

m
p
u
ta

ti
o
n
 E

ff
ic

ie
n
c
y

 Py=7 Py=14 Py=28 Py=56 Py=64

Conv1 Conv2 Conv3 Conv4 Conv5
0.2

0.4

0.6

0.8

1.0

C
o
m

p
u
ta

ti
o
n
 E

ff
ic

ie
n
c
y

 Py=7 Py=14 Py=28 Py=56 Py=64

Conv1 Conv2 Conv3 Conv4 Conv5
0.2

0.4

0.6

0.8

1.0

C
o
m

p
u
ta

ti
o
n
 E

ff
ic

ie
n
c
y

 Py=7 Py=14 Py=28 Py=56 Py=64

(a) (b) (c)

Figure 23. OEE and DSP usage of different configuration.

Pic=32 Pic=64 Pic=128

1.00

O
E

E
(l
o

g
1

0
)

 Py=7 Py=14 Py=28 Py=56 Py=64

128

224

448
896

1024

256

448

896
1792

2048

512

896

1792

 Py=7 Py=14 Py=28 Py=56 Py=64 Py=7 Py=14 Py=28 Py=56 Py=64

TABLE I. COMPARISONS WITH OTHER PRUNING

METHODS FOR VGG16 CONVOLUTIONAL LAYERS

 Sparsity(%) Top-1

Error(%) Deep

Compression[12]

67.24 31.17

Cambricon-S[15] 64.83 31.33

OMNI[21] 88.70 31.10

QSP 79.68 30.59

TABLE II. COMPARISONS WITH STATE-OF-THE-ART DENSE ACCELERATORS USING VGG16

TVLSI’20

[31]

TCAD’22

[32]

TVLSI’19

[33]

TNNLS’22

[34]

TCAS-

II’22 [35]

TCAS-

I’22 [36]

Proposed

Imp.I

XC7Z100

Proposed

Imp.II

FPGA XC7K325t ZC706 VX690T VX980T ZC706 Aria 10 XC7Z100

Frequency(MHz) 200 150 200 150 200 200 240

Precision 8bit fixed 8bit fixed 16bit fixed 8bit fixed 8bit fixed 8bit fixed 8bit fixed

DSP Utilization 516(61%) 900(100%) 1436(40%) 3395(94%) 448(50%) 607(36%) 448(22%) 768(38%)

Logic Utilization(K) 94.7(46%) - 468(67%) 335(54%) 78 (37%) 207(82%) 38.2(13%) 63(22%)

BRAM 165(37%) 545(100%) 1465(99%) 1492(99%) 168(31%) 769(36%) 202(26%) 271(35%)

Performance(GOP/s) 354 374.98 407.23 1000 326 352.06 334.26 616.94

DSP Efficiency

(GOP/s/DSP)

0.68 0.42 0.28 0.29 0.73 0.58 0.746

(0.373a)

0.803

(0.401a)

Power (W) 16.5 - - 14.36 3.338 - 5.117 7.836

Energy Efficiency

(GOP/s/W)

21.45 - - 69.64 97.66 - 65.32 78.73

a The results normalized to 16-bit precision for fair comparisons with [33].

Volume 17- Number 3 – 2025 (19-33)

28

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 10 / 15

http://ijict.itrc.ac.ir/article-1-730-en.html

Division of the tile size by the maximum parallel

multiplication shows the number of cycles for the

computation of a tile:

 Cycle_Tile=⌈
Twx

Pwx
⌉⌈

Twy

Pwy
⌉⌈

Tic

Pic
⌉⌈

Tox

Pox
⌉⌈

Toy

Poy
⌉⌈

Toc

Poc
⌉ (17)

The proposed accelerator has configured by

Toy=Poy=Py and Pwx=Pwy=Pox=Poc=1, so (17)

will correct as follows:

 Cycle_Tile=Nwx × Nwy × Nox (18)

Eq. (18) is for dense mode. On the opposite, the

number of QSP-based computation cycles for a tile will

obtain by the following:

 Cycle_Tile=(Nwx × Nwy) × Pruning_Rate

× Nox (19)

Pruning_Rate will define as dividing the number of

non-zero weights by the number of zero weights in the

kernels for the tile. Finally, using (18) for dense mode

or (19) for sparse mode and using (15), the total

number of cycles per layer can be calculated as

follows:

 Cycle_Layer=N_Tile

× Cycle_Tile (20)

IV. CONFIGURATION EXPLORATION AND

EXPERIMENT

A. A. Experiment Setup

In this work, we used VHDL for RTL

implementation of the proposed structure as well as

Xilinx Vivado 2021.1 for compile of the codes. To

evaluate the proposed accelerator, we used Xilinx

XC7Z100 FPGA that includes 277K Look Up Tables

(LUTs), 2020 DSP slices, and 755 Block RAM

(BRAM) alongside 4GB DDR3 DRAM as an external

memory. VGG16 has widely been used to benchmark

the performance of state-of-the-art accelerators due to

its complexity of computations and vast data. Hence,

we exploited VGG16 to evaluate and compare the

performance of the proposed accelerator in dense and

sparse modes. A theoretical method has been used to

estimate the performance and efficiency of different

accelerator configurations. Three configurations with

the highest performance and efficiency have been

selected for comparison. We categorize these

configurations in the aspect of resource utilization into

low, middle, and high to demonstrate the scalability

capacity and performance of the accelerator on low-

resource, mid-resource, and high-resource hardware.

The Xilinx Power Estimator (XPE) has been used to

compare power consumption and energy efficiency.

B. Computation Efficiency

According to the previously-mentioned contents, the

proposed accelerator in dense and sparse modes has a

balanced load, and sparsity does not contribute to

computation inefficiency. In our work, the

computation inefficiency comes from the size of the

input channel and the output feature map height. AP1

divides Noy by Py, and AP2 divides Nic by Pic. So, the

computation efficiency of the accelerator will be as

follows:

 Comp_Eff =
Nic/Pic

⌈Nic/Pic⌉
×

Noy/Py

⌈Noy/Py⌉
 (21)

Fig. 22 shows the computation efficiency of the

VGG16 convolutional layers for different accelerator

configurations. According to Fig. 22 (a), (b), the

computation efficiency for the configuration of Pic=32

and Pic=64 with a different Py is genuinely close. In

Conv1 of VGG16, the number of input channels (Nic)

for the first and second layers equals 3 and 64,

respectively, with a 5% and 95% contribution. Based

on the first term in (21), the inefficiency difference of

Pic=32 and Pic=64 is just in the first layer of Conv1,

where Nic=3 causes better efficiency for Pic=32 than

Pic=64. Still, this layer has just a 5% contribution of

the Conv1 and only creates a little difference in

efficiency between these configurations. For other

layers, Nic is bigger than Pic=32 and Pic=64 and

divisible. In the case of Pic=128 based on Fig. 22 (c),

Conv1 and the first layer of Conv2 have Nic<128,

which has caused a computation efficiency drop in

TABLE III. COMPARISONS WITH STATE-OF-THE-ART SPARSE ACCELERATORS USING VGG16

TCAD’21

[21]

TVLSI’20

[26]

TVLSI’22

[37]

TCAS-I’21

[38]

IEEE

Access’20

[39]

Proposed

Imp.II

XC7Z100

Proposed

Imp.III

Sparsification Type

(Weight Density)

Structured-

Like (12%)

Structured

(36.75%)

Unstructured

-

Structured

(13.2%)

Structured

(25%)

QSP

(28%)

FPGA ZC706 ZCU102 XCVU9P ZCU102 XC7Z045 XC7Z100

Frequency(MHz) 166 200 300 300 150 240

Precision 16bit fixed 8bit fixed 8bit fixed 8bit fixed 8(4)-16a 8bit fixed

DSP Utilization - 2520(100%) 512(7%) 654(26%) 450(50%) 768(38%) 1536(76%)

Logic Utilization(K) - 405(67%) 822(70%) 71.992(26%) 163(75%) 63(22%) 124.2(44%)

BRAM - 1460(80%) 1024(47%) 851(93%) 512(94%) 271(35%) 527(69%)

Power(W) 9.6 17.1 - 23.7 12.85 7.836 15.39

FPS 12.60 92 - 13.54b 14 46.50 63.25

Peak Performance

(GOP/s)

43.70 990.80 307.20 318.22

112.80 475.97 647.13

Achieved (GOP/s) 389.85c 2846.50c 862.16 418.98c 443.60 1437.70 1957

Achieved

(GOP/s/DSP)

- 1.12 1.68 0.64 0.98 1.87 1.27

Achieved (GOP/s/W) 40.60 166.46 - 17.68 34.52 183.47 127.16
a Means that 16-bit for input and output feature maps, 8-bit for weights of CONV layers, and 4-bit for weights of FC layers.

b 13.54 FPS is calculated according to given latency equal to 73.848ms in the paper.
c The value is estimated according to the number of frames per second in the paper.

Volume 17- Number 3 – 2025 (19-33)

29

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 11 / 15

http://ijict.itrc.ac.ir/article-1-730-en.html

Conv1 and Conv2. Since Noy≥14 in all layers, the

second term of (21) is equal to 1 when Py is 7 or 14,

which shows maximum computation efficiency by

these configurations for Py. For Py=28, Py=56, and

Py=64, Noy is lower than Py in Conv5, Conv4-5, and

Conv3-5, respectively, which makes the inefficiency

based on the second term in (21). Thus, computation

efficiency has been degraded by the difference

between Noy and Py.

C. Determine Configuration Using OEE Method

 The best accelerator configuration with respect to

resource utilization limits needs to be explored based

on two criteria comprising computation efficiency and

performance. Using (13), (18), and (22), we proposed

a measurement method called Overall Efficiency

Estimation (OEE) that will be defined as follows:

 OEE= ∑ [
Comp_Eff(i)

Cycle_Layer(i)
[

N_Mult(i)

∑ N_Mult(j)L
j=1

]]

L

i=1

 (22)

Where L equals the number of convolutional layers in

VGG16. The OEE is affected by Comp_Eff per layer,

the number of computation cycles per layer, and the

computation contribution of each layer toward overall

computations. DSP usage will estimate as follows:

 DSP_Estimated=Pic×⌈Py/2⌉ (23)

Where ⌈Py/2⌉ represents Merged-PE scheme. Hence,

the combination of efficiency and latency in OEE, and

DSP utilization, clarifies the best configuration of the

accelerator. Fig. 23 depicts the OEE for different

accelerator configurations. In addition, DSP usage in

each configuration using (23) has been mentioned

above its bar. We have considered three DSP usage for

implementation, including 448, 896, and 1792 DSP. As

Fig. 23 shows, for DSP utilization of 448, 896, and

1792, Pic=64 and Py=14, Pic=64 and Py=28, and

Pic=128 and Py=28 are the best configurations,

respectively. For DSP usage of 1796, OEE in Pic=128

and Py=28 is better than Pic=64 and Py=56, while Fig.

22 (b) and (c) showed the opposite of that. Therefore,

this method truly assists in deciding among different

configurations.

D. VGG16 QSP-based Pruning

The QSP-based pruning result for convolutional

layers of VGG16 is placed in Table l. The result has

been compared with the topmost pruning methods,

such as unstructured pruning in Deep Compression

[12], structured pruning of Cambricon-S [15], and

OMNI [21]. Deep Compression and Cambricon-S have

achieved under 70% sparsity, while the dominant

consumption of the inference time is related to the

convolutional layers. Pattern-Aware pruning of OMNI

has concentrated on convolutional layers and achieved

88% sparsity. Although the QSP-based pruning has

obtained lower sparsity than OMNI, QSP has a lower

top-1 error than OMNI and others. QSP with almost

80% sparsity on convolutional layers has also reached

1.18× and 1.23× sparsity growth up than Deep

Compression and Cambricon-S, respectively. We used

these pruned weights for sparse mode comparison in

Section IV-E.

E. Performance Analysis

This work is focused on gaining sparsity benefits

and adapting the accelerator to the QSP approach.

However, it has a deserved performance and efficiency

in dense mode. Therefore, we present a comparison of

dense and sparse modes.

1) Dense Comparison

The proposed accelerator will be evaluated in dense

mode by imp. 1 (Pic=64 and Py=14) and imp. 2

(Pic=64 and Py=28), which exhibit compact and mid-

level configurations, respectively. Results and

comparison have shown in Table II. Similar to what we

proposed in Merged-PE, [35] leverage from SMF-

INT8 that uses from each DSP for implementing two

INT-8 multiplication and accumulation. However,

SMF-INT8 uses input activation sharing, while

Merged-PE uses weight sharing. Of course, [35] shows

a better energy efficiency that comes by two

accumulation operations in each DSP, consequently

LUT reduction, but LUT utilization of imp. 1 is better.

In addition, imp. 1 has better performance and DSP

efficiency in an identical DSP utilization. Albeit imp.

1 has utilized 13%, 50%, and 26% DSP lower than

[31], [32], and [36], respectively, and also has a 60%

and 81% lower usage of LUT than [31] and [36],

respectively, achieved very close performance as well

as 1.09×, 1.8×, and 1.28× better DSP efficiency toward

them that shows performance gain of them comes by

higher usage of DSP than our imp. 1. In addition to

higher DSP utilization [32] than imp. 1, it has powered

from non-overlap convolution and the block

convolution idea so that few convolutional layers can

be pipeline to decrease transactions between chip and

memory. Apart from [34], imp. 2 has attained superior

results than others, whereas 1.74×, 1.64×, 1.51×,

1.89×, and 1.75× performance speed-up as well as

1.18×, 1.91×, 2.77×, 1.1×, and 1.38× better DSP

efficiency against [31], [32], [33], [35], and [36] has

obtained, respectively. As well, Imp. 2 has a 3.67×

speed-up in terms of energy efficiency than [31]. While

[34] has achieved 1.62× better performance than our

imp. 2, it is reasonable that it is due to the use of 4.42×

DSP resources relative to our implementation. So, this

case can be confirmed by the superiority of 1.13× and

2.77× imp. 2 in energy efficiency and DSP efficiency.

Since [33] uses 16 bits precision, the DSP efficiency of

our implementation has been normalized by 8/16 for a

fair comparison. However, considering DSP efficiency

equals 0.401, imp. 2 has a 1.41× better DSP efficiency.

2) Sparse Comparison

Sparse mode and dense mode do not differ in

hardware implementation but differ in the operational

task. Thus, resource utilization of the accelerator in

dense and sparse modes will be alike. Imp. 2 (Pic=64,

Py=28) and imp. 3 (Pic=128, Py=28) has been

selected to compare with other state-of-the-art sparse

accelerators. The comparison and results of our work

have declared in Table III. In [37], a peak performance

evaluation method has been offered to extract the

Volume 17- Number 3 – 2025 (19-33)

30

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 12 / 15

http://ijict.itrc.ac.ir/article-1-730-en.html

theoretical computation power of sparse accelerators

and the achieved performance used for evaluating

computational and performance efficiency to reflect

the competence of the sparse accelerators. The

achieved performance equals dividing the inference

latency by the workload of dense mode. We used these

evaluation parameters besides achieved energy

efficiency that introduces the real energy efficiency of

the accelerators. Imp. 2 has minimum power

consumption (7.836 W) than other sparse accelerators.

Furthermore, the energy efficiency of imp. 2 with

183.47 is the best, so that has 4.52×, 5.31×, 10.37×, and

1.1× better energy efficiency toward [21], [39], [38],

and [26], respectively. In terms of peak performance,

imp. 2 has achieved 10.89×, 4.22×, 1.50×, and 1.55×

speed-up compared to [21], [39], [38], and [37],

respectively, as well as the superiority in DSP

efficiency that corroborates the preponderance of imp.

2 meaningfully. Imp. 2 has obtained 1.67× superior

DSP efficiency than [26], which authenticates that

1.98× peak performance speed-up for [26] caused by

3.27× higher DSP utilization of them versus imp. 2.

Imp. 3 as a high throughput implementation, except for

[26], has shown better energy efficiency toward others.

In terms of the achieved performance, imp. 3 has

achieved a speed-up of 5×, 4.4×, and 4.7× than [21],

[39], and [38], respectively. [37] has a better DSP

efficiency than imp. 3, but 822K LUT and 1024

BRAM usage occupy massive space in hardware and

are not compatible with implementing their structure

on mid-level or semi-heavy FPGAs. Although [37] has

achieved 1.47× higher DSP efficiency than imp. 3 at

the cost of extraordinarily higher utilization of LUT

and BRAM, which assists in using lower DSP in their

implementation, nevertheless, imp. 3 has 2.27× speed-

up in terms of the achieved performance. [37] uses

1.64× more DSP slice, 3.26× more LUT, and 2.77×

more BRAM than our imp. 3 but acquires just 1.45×

better achieved performance, and even imp. 3 has

better DSP efficiency.

As a result, imp. 2, as a low-power and efficient

configuration with the capacity to implement on low-

cost hardware, achieves 1.473 TOP/s in terms of

performance, which has superior energy efficiency and

greater DSP efficiency among other sparse

accelerators. Another side, imp. 3, as a high throughput

approach, reaches 1.957 TOP/s in terms of

performance by consuming 15.39 W.

V. CONCLUSION

In this paper, we proposed QSP-based pruning to

attain a high pruning rate and establish sparse

accelerators. QSP-based pruning for VGG16 achieved

almost 80% sparsity in convolutional layers with an

accuracy improvement toward other methods. In

addition, an accelerator block for QSP-based random

pruning (AP) has been offered, which has not put any

redundant burden on the hardware. Finally, the

proposed accelerator structure based on QSP has been

balanced in PE loads, which does not leave any idle

time for PEs. The scalability feature of the proposed

parallelism enables the accelerator to implement on

embedded or edge-computing platforms. The OEE

method has been presented to evaluate different

accelerator configurations before implementation. The

introduced accelerator in dense and sparse modes

without change in the structure has a very respectable

performance. Using VGG16 for evaluation, our most

optimum implementation (imp. 2) has achieved 1.38×,

1.1×, 2.77×, 2.87×, 1.91×, and 1.18× better DSP

efficiency than other state-of-the-art dense

accelerators. As well, imp. 2 has achieved 1.9×, 2.92×,

1.67×, and 1.11× higher DSP efficiency besides 4.52×,

5.31×, 10.38×, and 1.1× better energy efficiency than

other state-of-the-art sparse accelerators. The proposed

accelerator has a minimal power consumption equal to

7.8 W and achieves 616.94 GOP/s and 1437.7 GOP/s

in terms of performance for dense and sparse modes,

respectively.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,

vol. 521, pp. 436–444, May 2015.

[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A large-scale hierarchical image database,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2009,
pp. 248–255.

[3] J. Li, et al., An FPGA-based energy-efficient reconfigurable
convolutional neural network accelerator for object recognition
applications, IEEE Trans on Circuits and Systems II: Express
Briefs 68 (9) (Sept, 2021) 3134–3147.

[4] D. Pestana, et al., A full featured configurable accelerator for
object detection with YOLO, IEEE Access 9 (2021) 75864–
75877.

[5] C. Park, S. Park, C.S. Park, Roofline-model-based design space
exploration for dataflow techniques of CNN accelerators, IEEE
Access 8 (2020) 172509–172523.

[6] Y. Ma, N. Suda, Y. Cao, J.-S. Seo, and S. Vrudhula, “Scalable
and modularized RTL compilation of convolutional neural
networks onto FPGA,” in Proc. 26th Int. Conf. Field Program.
Log. Appl. (FPL), Aug. 2016, pp. 1–8.

[7] Y. Ma, Y. Cao, S. Vrudhula, and J.-S. Seo, “Optimizing the
convolution operation to accelerate deep neural networks on
FPGA,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 26, no. 7, pp. 1354–1367, Jul. 2018.

[8] L. Lu, Y. Liang, Q. Xiao, and S. Yan, “Evaluating fast
algorithms for convolutional neural networks on FPGAs,” in
Proc. IEEE 25th Annu. Int. Symp. Field-Programmable
Custom Comput. Mach. (FCCM), Apr. 2017, pp. 101–108.

[9] K. Guo et al., “Angel-eye: A complete design flow for mapping
CNN onto embedded FPGA,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 37, no. 1, pp. 35–47, Jan.
2018.

[10] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights
and connections for efficient neural network,” in Proc. Adv.
Neural Inf. Process. Syst., 2015, pp. 1135–1143.

[11] M. Courbariaux, Y. Bengio, and J. P. David, “BinaryConnect:
Training deep neural networks with binary weights during
propagations,” in Proc. Adv. Neural Inf. Process. Syst., 2015,
pp. 3123–3131.

[12] S. Han, H. Mao, and W. J. Dally, “Deep compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding,”arXiv preprint
arXiv:1510.00149, 2015.

[13] C. Ding et al., “CIRCNN: accelerating and compressing deep
neural networks using block-circulant weight matrices,” in
MICRO, 2017.

[14] D. Chunhua et al., “PERMDNN: Efficient Compressed DNN
Architecture with Permuted Diagonal Matrices,” in MICRO,
2018.

[15] Z. Xuda et al., “Cambricon-S: Addressing Irregularity in
Sparse Neural Networks through a Cooperative Software-
Hardware Approach,” in MICRO, 2018.

Volume 17- Number 3 – 2025 (19-33)

31

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 13 / 15

http://ijict.itrc.ac.ir/article-1-730-en.html

[16] J. Frankle and M. Carbin, “The lottery ticket hypothesis:
Finding sparse, trainable neural networks,” 2018,
arXiv:1803.03635.

[17] D. Mittal, S. Bhardwaj, M. M. Khapra and B. Ravindran,
"Recovering from Random Pruning: On the Plasticity of Deep
Convolutional Neural Networks," 2018 IEEE Winter
Conference on Applications of Computer Vision (WACV),
2018, pp. 848-857.

[18] Lin, J., Yao, Y.: A fast algorithm for convolutional neural
networks using tile-based fast Fourier transforms,Neural
Process. Lett. (2019).

[19] Zhang, C., Prasanna, V.: Frequency domain acceleration of
convolutional neural networks on CPU-FPGA shared memory
system.In: Fpga 2017-Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays,
Monterey, CA, February 2017 (2017).

[20] Huang, Y. et al.: A high-efficiency FPGA-based accelerator for
convolutional neural networks using Winograd algorithm.
In:Journal of Physics: Conference Series, 6–8 March 2018
Location: Avid College, Maldives (2018)

[21] Y. Liang, L. Lu and J. Xie, "OMNI: A Framework for
Integrating Hardware and Software Optimizations for Sparse
CNNs," in IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 40, no. 8, pp. 1648-1661,
Aug. 2021, doi: 10.1109/TCAD.2020.3023903.

[22] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz,
andW. J. Dally, ''EIE: Efficient inference engine on
compressed deep neural network,'' in Proc. ACM/IEEE 43rd
Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2016, pp.
243_254.

[23] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, ''Eyeriss v2: A
flexible accelerator for emerging deep neural networks on
mobile devices,'' IEEE J. Emerging Sel. Topics Circuits Syst.,
vol. 9, no. 2, pp. 292_308, Jun. 2019.

[24] D. Wu, X. Fan, W. Cao and L. Wang, "SWM: A High-
Performance Sparse-Winograd Matrix Multiplication CNN
Accelerator," in IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 29, no. 5, pp. 936-949, May
2021, doi: 10.1109/TVLSI.2021.3060041.

[25] Wen, Wei, et al. "Learning structured sparsity in deep neural
networks." Advances in neural information processing
systems 29 (2016).

[26] C. Zhu, K. Huang, S. Yang, Z. Zhu, H. Zhang and H. Shen,
"An Efficient Hardware Accelerator for Structured Sparse
Convolutional Neural Networks on FPGAs," in IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 28, no. 9, pp. 1953-1965, Sept. 2020, doi:
10.1109/TVLSI.2020.3002779.

[27] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial
architecture for energy-efficient dataflow for convolutional
neural networks,” in Proc. ACM/IEEE Int. Symp. Comput.
Archit. (ISCA), Jun. 2016, pp. 367–379.

[28] A. Rahman, J. Lee, and K. Choi, “Efficient FPGA acceleration
of convolutional neural networks using logical-3D compute
array,” in Proc. IEEE Design, Auto. Test Eur. Conf. (DATE),
Mar. 2016, pp. 1393–1398.

[29] J. Guo et al., “Bit-width adaptive accelerator design for
convolution neural network,” in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), 2018, pp. 1–5.

[30] S. Yin et al., “A high throughput acceleration for hybrid neural
networks with efficient resource management on FPGA,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol.
38, no. 4, pp. 678–691, Apr. 2019.

[31] Y. Yu, C. Wu, T. Zhao, K. Wang and L. He, "OPU: An FPGA-
Based Overlay Processor for Convolutional Neural Networks,"
in IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 28, no. 1, pp. 35-47, Jan. 2020, doi:
10.1109/TVLSI.2019.2939726.

[32] G. Li, Z. Liu, F. Li and J. Cheng, "Block Convolution: Toward
Memory-Efficient Inference of Large-Scale CNNs on FPGA,"
in IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 41, no. 5, pp. 1436-1447,
May 2022, doi: 10.1109/TCAD.2021.3082868.

[33] S. Kala, B. R. Jose, J. Mathew and S. Nalesh, "High-
Performance CNN Accelerator on FPGA Using Unified
Winograd-GEMM Architecture," in IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 27, no. 12,
pp. 2816-2828, Dec. 2019, doi:
10.1109/TVLSI.2019.2941250.

[34] W. Huang et al., "FPGA-Based High-Throughput CNN
Hardware Accelerator With High Computing Resource
Utilization Ratio," in IEEE Transactions on Neural Networks
and Learning Systems, vol. 33, no. 8, pp. 4069-4083, Aug.
2022, doi: 10.1109/TNNLS.2021.3055814.

[35] X. Hu, X. Li, H. Huang, X. Zheng and X. Xiong, "TiNNA: A
Tiny Accelerator for Neural Networks With Efficient DSP
Optimization," in IEEE Transactions on Circuits and Systems
II: Express Briefs, vol. 69, no. 4, pp. 2301-2305, April 2022,
doi: 10.1109/TCSII.2022.3150980.

[36] X. Wu, Y. Ma, M. Wang and Z. Wang, "A Flexible and
Efficient FPGA Accelerator for Various Large-Scale and
Lightweight CNNs," in IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 69, no. 3, pp. 1185-1198,
March 2022, doi: 10.1109/TCSI.2021.3131581.

[37] C. Yang, Y. Meng, K. Huo, J. Xi and K. Mei, "A Sparse CNN
Accelerator for Eliminating Redundant Computations in Intra-
and Inter-Convolutional/Pooling Layers," in IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 30, no. 12, pp. 1902-1915, Dec. 2022, doi:
10.1109/TVLSI.2022.3211665.

[38] X. Chang, H. Pan, W. Lin and H. Gao, "A Mixed-Pruning
Based Framework for Embedded Convolutional Neural
Network Acceleration," in IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 68, no. 4, pp. 1706-1715, April
2021, doi: 10.1109/TCSI.2020.3048260.

[39] W. You and C. Wu, "RSNN: A Software/Hardware Co-
Optimized Framework for Sparse Convolutional Neural

Networks on FPGAs," in IEEE Access, vol.
9, pp. 949-960, 2021, doi:
10.1109/ACCESS.2020.3047144.

Amirhossein Sadough received

his B.Sc. degree in Electrical

Engineering from Semnan

University, Iran, in 2019, and the M.Sc. degree in

Electrical Engineering from Shahid Rajaee Teacher

Training University, Iran, in 2022. He is currently

pursuing his Ph.D. at Radboud University, The

Netherlands. His research interests include computer

architectures, with a focus on Hardware Acceleration

of Deep Learning Algorithms Using FPGA and ASIC

platforms.

Hossein Gharaee Garakani

received his B.Sc. degree in

Electrical Engineering from Khajeh

Nasi Toosi University of Technology

(KNTU), in 1998, and M.Sc. and

Ph.D. degrees in Electrical

Engineering from Tarbiat Modares University, Tehran,

Iran, in 2000 and 2009respectively. Since 2009, he has

been with the Department of Network Technology in

ICT Research Institute (ITRC) and he is accociate Prof.

at ITRC. His research interests include general area of

VLSI with emphasis on Basic Logic Circuits for Low-

Voltage Low-Power Applications, DSP Algorithm,

Crypto Chip, Intrusion Detection and Prevention

Systems.

Volume 17- Number 3 – 2025 (19-33)

32

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

 14 / 15

http://ijict.itrc.ac.ir/article-1-730-en.html

Parviz Amiri received his B.Sc.

degree from the University of

Mazandaran in 1994, M.Sc. from K.

N. Toosi University, Tehran, Iran in

1997, and Ph.D. from Tarbiat

Modares University, Tehran, Iran in 2010, all degrees

in Electrical Engineering (Electronic). His main

research interest is in RF and Power Electronic

Circuits, With Focus on Highly Efficient And Highly

Linear Power Circuit Design.

Mohammad Hossein Maghami

received his B.Sc. degree from

Ferdowsi University of Mashhad,

Mashhad, Iran, in 2006, the M.Sc.

degree from Amirkabir University of

Technology, Tehran, Iran, in 2009,

and the Ph.D. degree from K.N.

Toosi University of Technology, Tehran, Iran, in 2015,

all in electrical engineering. Since September 2016 he

is with Shahid Rajaee Teacher Training University,

Tehran, Iran, as an assistant Professor. He carried out

part of his PhD research work at Polytechnique

Montreal as a visiting research scholar under

supervision of Prof. Sawan. His main areas of interests

are implantable Biomedical Microsystems, High-

Speed Low-Power A/D Converters and Mixed-Mode

Integrated Circuits.

Volume 17- Number 3 – 2025 (19-33)

33

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

17
]

Powered by TCPDF (www.tcpdf.org)

 15 / 15

http://ijict.itrc.ac.ir/article-1-730-en.html
http://www.tcpdf.org

