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Abstract— A scheduling algorithm in doud computing environment is in charge of assigning tasks of a workflow to
cloud’s virtual machines (VMs) so that the workflow completion time is minimized. Due to the heterogeneity and
dynamicity of VMs and diversity of tasks size, workflow scheduling is confronted with a huge permutation space and
is known as an NP-complete problem; therefore, heuristic algorithms are used to reach an optimal scheduling. While
the single-objective optimization i.e., minimizing completion time, proposes the workflow scheduling as a NP-complete
problem, multi-objective optimization for the scheduling problem is confronted with a more permutation space. In
our previous work, we considered single-objective optimization (minimizing the workflow completion time) using
Particle Swarm Optimization (PSO) algorithm. The current study aims to present a multi-objective optimizer for
conflicting objectives using Gray Wolves Optimizer (GWO) where dependencies exist between workflow tasks. We
applied our method to Epigenomics (balanced) and Montage (imbalanced) workflows and compared our results with
those of the SPEA2 algorithm based on parameters of Attention Quotient, Max Extension, and Remoteness Dispersal.

Keywords- Cloud computing; Task scheduling; Grey Wolf Optimizer; Multi -objective optimization; Pareto front; Strength
Pareto Evolutionary Algorithm2 (SPEA2)

multiple VMs, while sequential tasks are running on

one VM.
l. I. INTRODUCTION

In cloud computing environment, although M
Minimization of workflow completion time has been [ tso ts3 !
of concern, other objectives are considered with the | ts7 > M2
completion time as well. Thinking of planning for the

optimal completion time of workflow tasks is a NP- mgm M3
hard problem [1], the planning becomes more

complex when some other objectives should be -Q@
considered as well. Given that a cloud consists of a

number of virtual machines (VMs) and ts,, , is
execution time of nt task on mth WM, L, =

Mgy

Ms
2 P Will be the completion time of tasks in mt" VM.
Lyax = max(Li) is called the completion time of
workflow tasks in VMs. Fig. 1 shows a typical
completion time for allocation of 9 tasks to 5 VMs.

As the figure shows, parallel tasks are running on Fig. 1. Completion time of a typical workflow
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If G is value of the makespan (completion time)
obtained by a task scheduling algorithm on virtual
machines and OPT is the lowest possible amount of
makespan, G<o*OPT, where o is a threshold. For
example, a=2 means that the obtained makespan in
task scheduling of virtual machines should not
become more than twice the least makespan. In our
previous work [2], we employed single-objective
Particle Swarm Optimization (PSO) algorithm for
workload scheduling with the aim of minimizing the
makespan when tasks are independent of each other.

However, usually there are 3 other concerns: (1)
the more/less processing power VMs have, the
faster/slower they run tasks (user requests) but the
more/less cost they charge (2) VMs providers are
interested in more utilization of their VMs. Therefore,
the optimal scheduling algorithm (allocating tasks to
VMs) should make trade-off between conflicting
objectives: (1) makespan minimization, (2) utilization
maximization, and (3) cost minimization. A unique
solution that simultaneously optimizes all objectives
is called a Pareto optimal solution. However, usually
since the solution is not unique, we have a set of
optimal solutions called Pareto front.

As well as the concerns stated above, there are
scientific workflows such as bioinformatics, physics
and astronomy comprising a number of dependent
tasks [3]. Dependency between tasks causes
postponing execution of dependent tasks after that of
parent tasks. This results in a deferral of the execution
of entire workflow. The workflows we considered in
this article have dependent tasks in form of balanced
(Epigenomics, Fig. 2) and imbalanced (Montage, Fig.
3) workflows [4,5,6].

Fig. 2. A typical Epigenomics workflow
N OROIONONON
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©)

Fig. 3. A typical Montage workflow

According to concerns state above, to schedule
tasks of a workflow on VMs we should obtain an
optimal scheduling among a large space of the
scheduling permutations, which has a factorial time
complexity. To handle such a problem, among others,
multi-objective optimizers are significant candidates.

In this article, a recent single-objective
evolutionary algorithm called the Grey Wolf
optimizer algorithm (GWOQ) is spread out to obtain a
Pareto front of optimal conflicting objectives and it is
applied to the Epigenomics (Fig. 2) and Montage (Fig.
3) workflows for the evaluation of performance. We
call the extended GWO, PGWO (Pareto-based
GWO). Similar to PSO algorithm GW O algorithm is
based on swarm intelligence proposed by Mirjalili et
al [7]. In order to evaluate the performance of the
proposed algorithm, we implemented the extend
algorithm using WorkflowSim [8], using the
CloudSim simulator. Results of the proposed
algorithm were compared with those of Strength
Pareto Evolutionary Algorithm2 (SPEA2) algorithm
[9]. We used SPEA2 for the comparison because
based on literature it is used as one of the
evolutionary algorithms when we need a good
performance in case of many objectives i.e., more
than 2 ones [9, 10, 11].

The rest of the paper is organized as follows: In
Section I, the overall concept of task scheduling is
introduced. In Section 1lIl, related works in single-
objective and multi-objective  categories are
presented. In Section 1V, we present our method In
Section V, case studies, simulation environment,
performance indices, and result evaluation of the
algorithm are presented. Finally, the conclusion is
drawn in Section V1.

Il.  TASK SCHEDULING

A set of tasks is called workload if there is no
dependency between them. However, a workflow
consists of interdependent tasks shown by a directed
acyclic graph (DAG).

The task scheduling problem in the cloud
computing environment can be modeled as a single-
or multi-objective optimization problem. Unlike
single-objective optimization which is trying to find a
unique optimum solution, multi-objective
optimization is faced with a set of optimal solutions
called Pareto front. In other words, in Pareto front no
solution can dominate the other.

A. Definition

A multi-objective optimization problem involves
some conflicting objective functions (denoted by fi) to
be optimized (minimized/maximized) simultaneously

(Eq. 1).

Min[Max (f; (x), ..., f(%)] @

Where xeX and X is the decision space.

In minimization process, solution x* for a set of

conflicting objectives dominates solution x if no
member of x*has value more than its corresponding
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member in x, and at least the value of one member of
x* is less than its corresponding component in x (Eq.
2):

fiean) < ficgnand fioy, &) < f;(0) )

A set of non-dominated solutions are denoted by P
where:

¢ No solutionin P is dominated by anotherone,
e Each solution in P dominates at least one solution
thatis notbelonging to P.

I1l.  RELATED WORK

When the number of tasks and available resources
rises in a cloud environment, the search of all possible
task-resource mappings and selection of a Pareto front
of them become difficult. Therefore optimized task
scheduling in the cloud environment is an NP-
complete problemthat plays a key role in determining
the quality of service, flexibility and efficiency. Meta-
heuristic algorithms are popular in such optimization
problems because they are able to find the near
optimal solutions in a reasonable time [12]. Meta-
heuristic methods for task scheduling in the cloud
environment can be divided into two categories:
single-objective and multi-objective techniques.

A. Scalaroptimization

Scalar optimization called single objective one
refers to minimizing makespan or cost. Such methods
are divided into two categories.

The followings are approaches that deal with
workload: Zhang et al. [13] used the PSO algorithm in
order to schedule workload tasks in grid computing
environment with the aim of minimizing completion
time of tasks. In [2], the PSO algorithm was used to
schedule workload tasks in a cloud computing
environment in order to minimize makespan. In [3], a
number of different inertia weight approaches were
used, among which linear descending inertia weight
(LDIW) approach significantly reduced the
makespan. LDIW could improve 22.7% compared to
First Come First Serve (FCFS) algorithm.

The following approaches consider the workflow
concepts in their work. The PSO algorithm was used
by Pandey et al. [14] to assign workflow tasks on
VMs in the cloud environments to minimize the total
charge. A Revision of Discrete PSO (RDPSO) was
used by Wu et al. [15]. A genetic algorithm (GA) was
used by Yu et al. [16] in utility grid in order to
minimize makespan with an upper limit of the user’s
budget.

B. Vector optimization

Vector optimization called Multi-objective one
usually involves several conflicting objectives and the
aim is to find the optimal trade-off solution between
these objectives.

Tsai et al. [17] combined DEA algorithm and the
Taguchi method, and proposed IDEA algorithm to
schedule services in the cloud. In this algorithm,
Pareto-optimal set was obtained based on two
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conflicting  objectives: makespan and  cost
minimization. The charge model included the rent
cost for processing and data transferring. Yu et al [10]
used multi-objective evolutionary algorithms to
schedule workflow. The aim of these algorithms is to
obtain a set of scheduling solutions that establishes a
trade-off between user’s QoS requirements. In this
approach, two conflicting objectives are considered:
makespan and cost minimization. The constraint was
the consideration of time and budget determined by
the user. They evaluated the effectiveness of three
algorithms: Strength Pareto Evolutionary Algorithm
(SPEA2), Non-dominated Sorted Genetic Algorithm
(NSGAII), and Pareto Archived Evolution Strategy
(PEAS). The results showed that SPEA2 is the most
effective among the three algorithms when we
involve more than 2 conflicting objectives. Thus, we
compared our results with those obtained by SPEA2.
Mohammadifard et al. [18] proposed a multi-
objective list algorithm which is appropriate to
workflow scheduling in heterogeneous environments
such as grid and cloud. Four objective functions were
considered: (1) cost minimization, (2) makespan
minimization, (3) reliability maximization, and power
consumption minimization. Ramzeani et al. [19]
developed a multi-objective model for optimal task
scheduling with the aim of minimizing the execution
time, transfer charge, power consumption, and task
queue length of virtual machines. Multi Objective
Particle Swarm optimization (MOPSO) and multi
objective genetic algorithm (MOGA) were used to
evaluate the proposed model. Talukder et al [20]
suggested an approach based on multi-objective
differential evolution (MODE) in order to schedule
workflow in grid environment. Scheduler can obtain a
set of optimal solutions regarding two conflicting
objectives: makespan and cost minimization.

The existing methods for task scheduling in the
cloud environment often focus on minimizing two
conflicting objectives, i.e. makespan and the cost and
benefits of service providers are not considered. In
this study, in addition to makespan and cost, resource
efficiency is also considered to increase the benefit of
service providers.

IV.  THE PROPOSED METHOD

Aiming at covering the conflicting objectives, a
multi-objective model is proposed for workflow
scheduling in a cloud environment that considers
three optimization aspects: (1) minimizing makespan,
(2) minimizing costs, and (3) maximizing efficiency
of resources because of considering the providers
benefit. In order to obtain the optimal solution for the
proposed model, Pareto based grey wolf optimizer
(PGWOQ) algorithm is proposed. Optimization of
workflow scheduling in cloud environment are
considered for three criteria: makespan, cost, and
efficiency of resources.

As Figs. 2 and 3 show, a workflow is displayed as
acyclic direct graph (DAG) in which each
computational task is expressed by a node, and each
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data or control correlation is shown by an arc between
related tasks.

A workflow is denoted by W(T,D), where T =
{t,, t;, ..., t,}is a set of n tasks and D is a set of
directed arcs such as (t;, t;, data; ;) in which task ¢
is the parent, task t; is the offspring and data, ;
represents the size of the data which needs to be
transferred from ¢; to ¢;. The offspring task cannot be
executed until all of the parent’s tasks terminate and
all of the input data are received. Each task of a
workflow has the following characteristics:

e Size in terms of millions instructions and is
denoted by MI.

e One ormore input files.

e One or more output files

A. Objective level extension

Suppose that a set of tasks T is allocated to VM;.
The objective functions and the constraints are
defined using makespan, cost, and efficiency
parameters.

1) Completiontime

The execution time of task tseTS is equal to the
longest time taken to receive the input data by ts from
its parents (indicated by t1(ts)) plus its processing time
(indicated by to(ts)). Egs. 3 and 4 show t1 and t, for
task ts where Bw shows average bandwidth (Mega-bit
per seconds, Mbps) of virtual machines, size(ts) does
the task size in million instructions and speed(VM;)
does the VM speed in Million Instruction per Second
(MIPS). The completion time of VM; is expressed by
makspan(VM;) T;,eq; —; Which is obtained by Eg. 5.
The maximum completion time of the virtual
machines is called makespan and obtained by Eq. 6.

ti(ts)=max (Inp parents(ts)) / Bw ©)]
t2(ts)=size(tsi) / speed(VM;) @

makespan(VM;) = Z[tu(tsi)+t2(tsi)], i=1..nj where nj is
the number of tasks assigned to VM; (5)

makespan= max[makespan(VM;j)], j=1..m where m is
the number of VMs 6)

The execution time obtained from a solution such
as S should be less than the execution time using the
first come first served (FCFS) algorithm. In FCFS
algorithm, tasks are scheduled according to their order
of arrival. Therefore makespan of task scheduling
using FCFS algorithm is an upper bound for the
execution time of S where makespan(S) <
makespan(FCFS).

2) Charge

In this extension, compared to the previous work
[2], the cost of task execution is considered. In cloud
computing, clients are charged based on "pay-per-
use” model in which they are required to pay the
service providers based on the amount of resources
they use each time. For each task tseTS, charges: (1)
processing, storage, and data transfer (indicated by
cu(ts), co(ts), ca(ts), respectively) are calculated using

rates r1 (charge of processing one million instructions
per second), r2 (the hosted-time of the task on an
VM), and r3 (charge of data transfer between the VMs
measured in megabytes of data per second),
respectively (Egs. 7-9).

ci(ts)=ta(ts)*r1 ()
ca(ts)=[ta(ts)+(ts)]*r2 ®)
cs(ts)=[Zoutput(tschitdren)/ BW]*r3 9)

The outpout(tSmilden) is the amount of data are
outputted by children of task ts. Eq. 10 shows the total
price that each VM charges and Eq. 11 does the
overall charge.

charge(VM;j)=Zci(ts) where i=1..3 (10)

chargeita = Zcharge(VM;) where j=1..m and m is the
number of VMs (11

The charge of solution a solution, say S should be
less than the price charged by the GreedyCost
approach. In the GreedyCost approach, tasks are
assigned to the most expensive virtual machines, thus
this cost is an upper boundary, ie. charge(s)<
charge(greedy).

3) Efficiency
Efficiency is defined as the number of instructions
processed by a VM by the end of its operations. In
this article, we consider efficiency (Eq. 12) as one of
the optimization objectives. The total efficiency is the
average efficiency of all virtual machines (Eq. 13).

eff(VM;) = Z[to(tsi)] / makespan(VM;) where i=1..n;
where nj is the number of tasks assigned to

VM; (12)
eff(VMs) = X[eff(VM;)] where j=1.m and m is the
number of VMs (13)

B. Algorithmlevel extension

One of the most recent swarm intelligence
algorithms, proposed by Mirjalili et al., is the grey
wolf optimizer (GWO). GWO algorithm is used to
optimize different continuous mathematical functions
with various dimensions and one or more relative and
absolute extreme points. The results show that the
GWO algorithm can find more optimal points
compared to well-known meta-heuristic algorithms
such as particle swarm optimization (PSO),
gravitational search algorithm (GSA), differential
evolutionary (DE), evolutionary programming (EP),
evolutionary strategy (ES), and several other
algorithms. This algorithm avoids dispersion in the
problem space and appropriately converges to the
optimal point [5]. So this algorithm can search the
state space of the problem and find optimal points
significantly better than PSO algorithm used in [2].

1) Grey Wolf Optimizer algorithm
The GWO algorithm mimics the strategies of
wolves in hunting. The hunting structure consists of
three parts: chasing and encircling the prey, harassing
the prey until it stops moving, and eventually
attacking the prey. Each wolf as a problem solution in
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the search space has a position vector W, =<
Wi1, Wig, ., Wi, >IN which n indicates the
dimensions of the problem. The fitness function
(according to the problem definition) is used to assess
the position of wolves. Regarding the values of the
fitness function, the first, second, and third best
wolves are shown by o, B, and 8, respectively. During
the hunting (optimizing) process, wolves update their
position according to the position of o, B, and 3.
GWO algorithm is depicted in Fig. 4.

GWO algorithm steps

1. init(Xi=1.n) //populationinitialization
2. compute(4,C, @) //based on Eqs. 14 and 15
3. compute fintness(agents)and call:
Xqo» Xz, X5, the best, second best and third
best agents (wolves)
loop
4. vagent (wolf) update its position //based on
Egs. 16-18
5. update(4,C, @)
6. compute fitness(agents)
7. update X, X; and X5
end loop
8. return X,

Figure 4. GWO algorithm

The first step of algorithm is initializing
population where a population of wolves is created
(step 1) and the position of each wolf is randomly
initialized. Then, coefficient vectors 4, C, and d are
initialized based on Egs. 14 and 15 (step 2).

A=24a7 —d (14)
C=27 (15)

Vector 4 has random values in the range [—a, a]
that models the divergence. When |Al > 1, the search
agents (Wolves) are forced to move away from the
prey; and when |A| < 1, they are forced to attack the

prey. Vector € includes randomvalues in the range of
[0,2] which helps the agents avoid trapping in local
optimum. In each iteration, a decreases linearly from
2to0.

Having initializing the coefficients, we compute
fitness of each search agent (wolf) and select the first,
second, and third best agents as «, B, and & wolves
(agents) respectively (step 3). The situation of agents
is modified based on situations of o, B, and & using
Egs. 16, 17 and 18 (step 4) in each rehearsal of the
algorithm. Then, values of A, €, and @ are updated
(step 5). According to the new situations, the fitness
value of each agent is computed and agents o, p and &
are reselected (steps 5-7). The rehearsal is continued
till finding the concluding solution as agent o (Step 8)

—

ﬁa=|C—1).Xa—5)(|, Bﬁz |CZ'X—>B_X|’
D, =| X (16)
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X—)l = )?a _A)l'(ﬁa)lz = X’B _A)Z([_))ﬁ)’

X;= X5 —43(Dy) an
Y@+ D) = s (19)

2) GWO using Pareto
We propose a Pareto based Grey Wolf Optimizer
(PGW Q) based on the basic GWO algorithm in which
optimal Pareto approach (see Section 2) is used to
solve multi-objective problems.

Inspired by the fitness allocation of SPEA2
algorithm and using an external archive, PGWO
algorithm is developed for solving multi-objective
problems.

Strength Pareto Evolutionary Algorithm (SPEA2)
is one of the well-known evolutionary algorithms
based on genetic algorithm. This algorithm is a
combination of the elitism and Pareto concepts [9].
According to the elitism concept, the best
chromosome of each generation is directly transmitted
to the next generation. In SPEA2 algorithm, non-
dominated chromosomes, collected from the
beginning of execution, are stored in an external
archive and participate in the mate selection process.
Fitness of existing chromosomes in the population
and archives is obtained based on the number of
chromosomes they dominate and the number of
chromosomes they are dominated with. To this end,
the current population and archive members are
combined, and each member is assigned a fitness S
based on the solutions it dominate (Eq. 19). Then,
based on the value of S, fitness R of the ith member
is calculated (Eg. 20). That is, fitness R is determined
by the power of its dominators both in the population
and in the archives. In other words, the fitness of an
individual is determined based on the power of all
members (current population and archives) which
dominate that individual. We use S and R for wolves
in our proposed method.

s@ =ljl:

where |j| is cardinality of the set, i>j, and j € current
population u archive (19)
R(i) = z:je(populat,‘ion+archive),j>iS(i) (20)

where notation ‘<‘denotes Pareto dominance.

3) Solution consideration

To solve an optimization problem using a meta-
heuristic algorithm, one of the fundamental issues is
how to represent a solution which is suitable and
relevant to the problem definition. In the task
scheduling problem, each solution is actually a task-
resource mapping that defines which task is to be
assigned to which resource. As noted above, GW O is
developed for continuous problems therefore a wolf
cannot directly show a mapping. To this end, we
propose to apply the Smallest Position Value (SPV)
rule [21] to the wolf position in order to determine
task-resource mapping.

When GWO algorithm is applied to the scheduling
problem, the dimensions of the problem is determined
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by the number of tasks. If the number of tasks and
resources are n and m respectively, the ith wolf
position is denoted as the wvector W, =<
Wi1, Wiy, .., Wy, > Which is a continuous vector. By
employing the SPV rule, the continuous position
vector is converted to the discrete vector S; =<
Si1,Sizs -, Sin, >. Finally, the permutation vector P, =
< Pi1s iz - Pin >, Which is in fact the task-resource
mapping [10], is calculate for ith wolf as Eq. 21. In
other words, each element of the vector P;, such as F;;
represents a virtual machine identifier on which the jt"
task should be performed. It should be noted that the
values of objective functions (makespan, cost, and
efficiency) are calculated using the permutation
vector. ldentifier of virtual machines starts from 0.
Table 1 provides an expression of the i wolf
(solution) with 8 tasks and 3 resources.

Pix = Syymod m (21)

Table 1- Solution illustration

Tasknumber|l |2 |3 |4 |5 |6 |7 |8

W, 4.76 7.9413.27 [3.58 |3.99(9.45(5.09|6.85

L
3 4 5 1

]
o0}
N
o

L

S.
P, 0 [1 [2 [1 1 (2 (2 |0

4) Proposed PGWO Algorithm

The proposed PGWO algorithm is illustrated in Fig.
5. The algorithm initiates by constructing a wolf
population and a null archive (steps 1-2). The archive
is predetermined and is constant during algorithm
execution. In fact, one difference between the
proposed PGWO and GW O algorithms is the external
archive which helps to maintain optimal solutions
during the algorithm execution.

As mentioned before, scheduling is a discrete
problem. Thus, in order to convert continuous values
of wolves’ positions into discrete ones, the SPV rule
is applied to the position vector to get the permutation
(mapping) vector (step 3). Then, coefficient vectors

A, C,d andare initialized by Eqgs. 14 and 15 (step 4).

In single-objective algorithms, the fitness function
and the objective function are the same, while, in
mu Iti-objective functions, various methods are used to
obtain the fitness of search agents. For each wolf from
the population, a vector of objective functions defined
in Section 4-1 is calculated. And fitness of S and R is
obtained through Eqgs. 19 and 20 (steps 5and 6). In a
population, wolves with the least fitness of R are
copied into the archive (wolves with the least R have
higher fitness), and three of the wolves which have
the least R are selected from archive as a, p and &
(steps 7-8).

In each rehearsal of the algorithm, wolves are updated
based on the position of o, B, and 3. The SPV rule is
applied to position vector of wolves in order to obtain
permutation (mapping). Coefficient vectors 4, C, and
d are updated and the objective functions’ vector is
calculated for the wolves in population. As stated
above for steps 7-8, fitness of S and R is estimated for
the population and the archive wolves, respectively

PGWO algorithm steps
init (Xi=1.n) /I population initialization,
create(empty archive)
find (permutation) // using SPV rule and Eq. 21
compute(4,C, @) // using Egs. 14 and 15
compute fitness(agents) //using Egs. 6,11and 13
compute fitness( Pareto front agents)
/lusing Eqgs. 19 and 20

. best 10 non—dominated agents A
7. population archive

/I copy best 10 non-dominated agentsfrom

populationto archive
8. select(X,, Xz and X;) //from archive

loop

vagent:

9.1. update(agents’position) //using Eqs. 16-18
9.2 find (permutation)/fusing SPVruleand Eq. 21
10. update(4, C, @)
11. compute fitness(agents)
12. compute fitness(Pareto-agents)

/lin population and archive
. best 10 non—dominated agents .
13. population archive

/I copy best 10 non-dominated agentsfrom
populationto archive
14. Select(X,,X; and X5)  //from archive
end loop
15.return archive

@0k wn k-

Figure 5. The proposed PGWO algorithm

(steps 9-14). Eventually, PGW O algorithm returns the
archive which contains non-dominated solutions
obtained throughout the algorithm execution as the
final output (Step 15).

V. CASE STUDY

In order to evaluate the proposed method
described in Section 4-2, PGWO was implemented
using the WorkflowSim simulator environment. Then,
the obtained results were compared with those of
SPEAZ2 for two different workflow applications. The
SPEA2 was selected due to its superior performance
[3,9] in workflow scheduling compared to well-
known NSGAII and PEAS algorithms. Workflows’
features, simulation environment, performance
indices, and the evaluation of results are presented in
detail in the following subsections.

A. Workflow application

We stated in Section Introduction balanced and
imbalanced workflows. As Fig. 3 shows, the
imbalanced workflows: are more complex, have many
parallel tasks, and require different types of services.
In order to evaluate the impact of workflow size
(based on tasks’ number) on the performance of the
scheduling algorithm, three different sizes were
utilized for each workflow: small size (almost 50
tasks), medium size (almost 100 tasks) and large size
(almost 1000 tasks).
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B. Experiments

In order to simulate the cloud environment and
conduct experiments, WorkflowSim toolkit was used
[8]. WorkflowSim extends CloudSim to manage
workflow applications. CloudSim is a well-known
framework to model and simulate the services and
infrastructure of cloud computing [22]. However, this
simulator only supports workload scheduling
(workload description was given in Introduction) and
does not consider the correlation between the tasks.
WorkflowSim extends “CloudSim” to support
workflows scheduling process [8]. Simulation
environment consisted of one data center and 20
virtual machines. The characteristic of virtual
machines is presented in Table 2. Datacenter features
(including operating system, VMM architecture, and
so on) and prices of virtual machines (such as storage
charge, Processing charge, etc.) were considered
according to the default values in
WorkflowSimBasicExamplel in simulation package
of WorkflowSim, (indicated by org.workflowsim.
examples.cost). Costs were proportional to those
proposed by WorkflowSim. We used the Jmetal
package in CloudSim environment to implement
SPEAZ2 algorithm. Jmetal is a Java-based framework
for multi-objective optimization using meta-heuristics
[23]. The parameters settings used for SPEA2
algorithm (based on [3]) and proposed PGWO
algorithm are listed in Table 3.

C. Evaluation of criteria

Different evaluation criteria have been proposed
to measure the quality of an optimal Pareto set. In an
ideal condition, optimal Pareto solutions should be
accurate, well distributed, and widely spread [24]. In
this paper, to compare archive sets (Pareto optimal)
obtained from PGWO and SPEAZ2 algorithms, three
popular performance indices [17, 24, 25] were
employed: (1) Attention Quotient (AQ) of two sets,
(2) Max Extension (ME) and (3) Remoteness
Dispersal (RD). These indices will be introduced in
the following subsections.

Table 2- VM specification

0.4 5.9 | 10.14 | 15.20

#Ins(MIPS) | 1000 | 1000 | 1000 | 2000
#CPU 1 1 2 4
RAM(MB) | 512 512 1024 | 1024

Store(MB) | 10000 | 10000 | 20000 | 20000
Band(MB/S) | 1000 | 2000 | 2000 | 2000

Table 3- parameters setting

Parameter Value
Population Size(PGWO, SPEA2) 50,10
IArchive Size (both of them) 10

#lteration in PGWO,#Generation in SPEA2 | 20,100

Mutation and Crossover Probability(SPEA2) | 0.5,0.9

1) Attention Quotient
This index is used to compare a set of solutions from
two optimizing algorithms. If Pand Q are 2 different
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sets of optimal Pareto in search space, we call
dom(P,Q) as the number of solutions of the set P
which were able to dominate the solutions of Q.
Accept values of Attention Quotient in [0, 1] is
calculated as Eq. 22.

dom(P,Q)=laieQ; IFpjeP:pi>qjl/ Q| (22)

dom(P,Q)=1 means that all solutions of P
dominate solutions of Q and dom(P,Q)=0 has reverse
meaning. Noted that dom(P,Q)#1-dom(Q,P). Thus,
both criteria can be utilized. We have the high
performance when this index is close to 1.

2) Max Extension
Max Extension of a set S is denoted by D,
showing the distance between boundary solutions. A
high value of this index, which is calculated as Eq.
23, indicates the high performance.

M
— i ; i 2
D Z (i=T3)X|s|fm i=1t0Is] fm)
m=1
sy ESand s, # s; (23)

where S is the Pareto optimal set, M is the number of
objectives, and fn is the mi' objective function of
solutioni.

3) Remoteness Dispersal

This index denoted by RD, estimates the diversity
of Pareto optimal set based on distance [23]. For the
i™ solution of optimal set S, the distance is shown by
d; which is equal to the least absolute difference
between that solution and the other solutions in the
direction of each axis (objective). A small value of
this index indicates the high performance. The RD
criterion is calculated as Eq. 24.

RD(S) = \/; o (d; - d)? (24)

Isl-1
di =min Z%:l |fm (Si) - fm (sk)l
Sk ESand s, # s;

where d is the average of d;, M is the number of
objectives, and f,, (s;) is the mt" objective function of
solutioni.

D. Performance appraisal

Once the simulation environment is designed, PGW O
algorithm and SPEA2 are implemented to schedule
workflows with the aim of optimizing three
conflicting objectives, i.e. makespan and cost
minimization, and resource efficiency maximization.
We run 10 times both PGWO and SPEAZ2 algorithms
for two workflows of Epigenomics and Montage (see
Figs. 2 and 3) in small, medium, and large sizes. In
each run, performance criteria for obtained archive
sets were calculated. To compare the performance of
the proposed PGWO algorithm with SPEA2, the
average of performance criteria of 10 runs were used.
Fig. 6 shows performance of PGWO and SPEA2 in
AQ for Epigenomics and Montage workflows in
small, medium, and large sizes. As the figure shows,
AQ(PGWO,SPEA?2) is better than AQ(PGWO,SPEA2)

WAV Q,
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in small, medium, and large sizes. This means that the
set of optimal solutions obtained by PGWO algorithm
could dominate those achieved by SPEA2. To
facilitate the computation of performance indices and
data display, objective functions of execution time,
cost,and resource efficiency were divided into 1000.

mPGWO mSPEA2

0.69
0.54
0.41
0.18
0.05 0.08

Small Medum Large

Fig. 6-a. Performance of PGWO and SPEA2 in AQ for
Epigenomics workflow

EPGWO =SPEA2

0.79
0.62
0.53

Small Medum Large
Fig. 6-b. Performance of PGWO and SPEA2 in AQ for
M ontage workflow

In comparison with SEPA 2, the PGW O algorithm
enjoys higher value of the Max Extension criterion for
the Epigenomics workflow in sizes of small, medium,
and large. This means that PGWO algorithm could
cover more boundary points in comparison with
SPEA2 algorithm. However, for the Montage
workflow, PGWO and SPEA2 algorithms have
approximately same the ME criterion in the small size
but for workflows of medium size, the PGWO
algorithm has slightly less value. For large size
workflows, the PGW O algorithm has higher value.
Fig. 7 depicts the ME criterion for Epigenomics (Fig.
7-a) and Montage (Fig. 7-b) workflows in small,
medium, and large sizes. Clearly, this criterion is
better for PGWO algorithm than SEPA2 algorithm.
Thus, it can be concluded that PGWO algorithm
covers more boundary points.

EPGWO =SPEA2

387.97
190.6
135.05
2181 73.98
21.98 .
—
Small Medum Large

Fig. 7-a. Performance of PGWO and SPEA2 in ME
for Epigenomics workflow

The value of RD (indicating the diversity of
solutions) is smaller in small, medium, and large
sizes: (1) for PGWO in the Montage workflow and
(2) for SPEA?2 in the Epigenomics workflow. Fig. 8
shows the RD criterion for the Epigenomics (Fig. 8-a)
and Montage (Fig. 8-b) workflows.

EPGWO =SPEA2

0.25
0.16
0.050.05  0,040.04
‘n 1
Small Medum Large

Fig. 7-b. Performance of PGWO and SPEA2 in ME for
M ontage workflow

mPGWO mSPEA2

49.43

10.08 17.32

2.19 1.78 57

Smal Medum Large

Fig 8-a. Performance of PGWO and SPEA2 in RD for
Epigenomics workflow

mPGWO = SPEA2

49.43

10.08 17.32

2.19 1.78 57

Smal Medum Large

Fig. 8-b. Performance of PGWO and SPEA2 in RD for
M ontage workflow

Generally it can be stated that for workflows with
balanced structure, PGWOQO had better performance
than SPEA?2 in terms of AQ, ME and RD. Moreover,
for workflows with unbalanced structure (Montage),
PGWO has more performance than SPEA2 in terms
of AQ and ME (except for medium size). In terms of
the RD index, SPEA2 has more performance than
PGWO.

VI. CONCLUSION

Scheduling plays a key role in the performance of
cloud computing systems, because it increases the
resources performance, reduces response time and
balances servers’ load. A good scheduling mechanis m
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not only satisfies the user's QoS requirements, but
also has effective utilization of resources. For users,
the completion of their tasks in limited time and
appropriate cost are important. And for service
providers the efficient use of their VMs is important.

We proposed a multi-objective wolf optimizer
using Pareto for scheduling dependent tasks of a
workflow on VMs of a cloud. Our aims were
minimizing makespan and cost and maximizing the
VMs’ efficiency, totally. The WorkflowSim tool was
used to implement the proposed the PGWO algorithm
and to evaluate performance. To evaluate the
performance, a set of PGWO solutions was compared
with those of SPEA2. Simulation results showed that
the proposed multi-objective algorithm enjoys a better
trade-off between three conflicting objectives of
makespan, cost,and efficiency.
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