
Keyphrase Ranking Based on Second Order

Co-Occurrence Analysis

Hosein Shahsavar Haghighi

Department of Computer Engineering

Malek Ashtar University

Tehran, Iran

Shahsavar@mut.ac.ir

Mojtaba Hoseini

Department of Computer Engineering

Assistant Professor Malek Ashtar

University

Tehran, Iran

mojtabahoseini@mut.ac.ir

Jamshid Shanbehzadeh

Department of Computer

Engineering

Associate Professor Kharazmi

University

Tehran, Iran

jamshid@khu.ac.ir

Received: April 4, 2015- Accepted: August 18, 2015

Abstract— State-of-the-art researches in unsupervised automatic keyphrase extraction focused on graph analysis.

Keyphrase ranking is critical step in graph-based approaches. In this paper, we follow two main purposes including

choice of good candidate phrases and computing importance of candidate phrase by considering the mutual information

between words. Our documents representation improves the process of candidate phrases selection by constructing a

single graph for all documents in the collection. We enjoy from parallel minimum spanning tree to prune irrelevant

edge relations. We also consider second order co-occurrence of words by point-wise mutual information as a similarity

measure and importance of terms to increase the performance of keyphrase ranking. We formed a single graph of co-

occurrence network for all documents in the collection and analyze co-occurrence network with different settings. We

compare our method with three baseline approaches of keyphrase extraction. Experimental results show that applying

second order co-occurrence analysis improves keyphrases identification accuracy.

Keywords-component; graph analysis, similarity measure, point-wise mutual information, co-occurrence networks,

keyphrase ranking

I. INTRODUCTION

Keyphrase includes terms in a document that give a
brief summary of its content and main concepts as the
document is related to them. This task is used widely in
many areas of information extraction such as a digital
library[1],[2]. It’s a critical task in natural language
processing, document categorization and clustering
[3],[4].

Although there are some structured texts, which are
labeled with keyphrases by the authors, other resources
such as web pages and social media content are still
semi-structured text. They include different domains
such as scientific, news, sports and blogs[5]. There are
two overall categories for extracting keyphrase:
supervised and unsupervised. The supervised approach
[1] regards keyphrase extraction as a classification task,
in which a model is trained to decide whether a

candidate phrase is a keyphrase or not. Supervised
methods require a document set with human-assigned
keyphrases as training set [6]. The first task in
supervised keyphrase extraction as a classification is
carried out by [1]. The supervised methods need
manually annotated training set which is time-
consuming[7],[8]. In this paper, we focus on
unsupervised method. As the manual tagging or
providing a comprehensive list of human labeled
keyphrases is time-consuming, we apply unsupervised
learning in this study.

In the unsupervised approach [9], Offered a graph-
based ranking method which builds a word graph
according to word co-occurrences within the document.
It uses PageRank as a random walk technique to
measure word importance[6].
Existing graph-based methods compute an importance
score for each word. Most of unsupervised method has
faced two challenges.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

18
]

 1 / 10

http://ijict.itrc.ac.ir/article-1-83-en.html

First, selecting
proper candidate phrase, especially candidate phrase
with the length of 3-4 using background knowledge to
understand deeper structure of document[10],[11]. This
point of view can be facilitated by involving term
weighting methods, constitution of parallel minimum
spanning tree for eliminating original graph to get
proper relevant edge and use page rank to propagate
importance of words across the graph. The second
challenge is computing importance of candidate phrase
with a length of 3-4 words. We proposed a ranking
method for candidate phrase. We compute words
similarity based on second order co-occurrence
analysis. This ranking methods assigned a weight to
each candidate phrase. It helps us to find candidate
keyphrases and non-keyphrases more precisely[12].

II. RELATED WORKS
TextRank [9], is a scoring algorithm of random

walk modelling that represents text by a graph. Each
vertex corresponds to a word type and its weight is the
number of times the corresponding word types co-occur
within a certain window. SingleRank [13] is similar to
TextRank [9] with several differents. First, its edge
weight is equal to the number of corresponding words
co-occur. Second, TextRank filter the word type based
their part-of-speech, whiles [13] does not consider such
limitation. Finally, it uses a window size of 10.
ExpandRank [13] is another extension of TextRank [9].
For a document d, it exploits K similar documents in
corpus, by using a similarity measure (e.g., cosine
similarity). Then, it builds a graph for document d by
using the co-occurrence analysis of the words of these
K neighbors. Once the graph is constructed then the rest
of the procedure is same to SingleRank. Z. Liu et al. (Z.
Liu, Li, Zheng, &Sun, 2009) Proposed a cluster-based
approach called KeyCluster to cluster candidate words
based on their semantic relationship.

Three clustering algorithms are used of which
spectral clustering yields the best score. Once the
clusters are formed, one representative word, called an
exemplar term, is picked from each cluster. Finally,
KeyCluster extracts from the document all the longest
n-grams starting with zero or more adjectives and
ending with one or more nouns, and if such an n-gram
includes one or more exemplar words, it is selected as a
keyphrase.

In the
final step,

candidate phrases are sorted by their scores. For
example, If selected keyphrase includes one or more of
the top-ranked keywords words [15],[16] or sum of the
ranking scores of its words sequence which causes it
have a top score[13].

III. MOTIVATION
In this paper, we proposed an unsupervised method

for automatic keyphrase extraction. We deal with two
challenges. Most of unsupervised methods deal with
two challenges. First, they do not understand deeper
structure of document. As many recent work has
focused on algorithmic development, we want to use
background knowledge to understand deeper structure
of document. This point of view can be facilitated by
involving deeper knowledge of document Such as
individual term weighting methods, constitution of
minimum spanning tree for eliminating original graph
to get proper relevant edge and use page rank to
propagate importance of words across the graph.

most of keyphrases have length of 1–4 words [17].
Keyphrases are normally composed of nouns and
adjectives, but may occasionally contain adverbs or
containing Conjunction, prepositions, hyphens and
apostrophes[18]. Those often used in the documents to
be one of the following forms:

 Simple key words (e.g. “phrase”, “topic”)

 Noun phrases (e.g. “page rank”, “key word”,
“topic modelling”).

Second challenge is ranking candidate phrase with
a length of 3-4 words. It's possible to propose a method
to handle the large number of documents, by using
statistical methods, especially those that semantically
improve vector space representation of term-document
matrix. It will help system to distinguish candidate
keyphrases and non-keyphrases. We proposed a new
ranking method for candidate phrases with the length of
3-4 word to find prior keyphrases. We enjoy point-wise
mutual information by considering second order co-
occurrence of words.

IV. METHODOLOGY

Similar to most of unsupervised approaches, the
proposed method comprises three main steps: Pre-
processing, Candidate Selection and Candidate
Ranking[19]. Fig.1 represents general framework of
proposed method.

POS tagging

Input Text

Data

Stopword

Removing

Graph Model

Measuring

Similarity

Preprocessing Candidate Selection and Ranking

Term Weighting

Random Walk

Graph-Based

Keyword

Extraction

Second Order

Co-occurrence

Analysis

Co-occurrence

Network
Parallel Minimum

Spanning Tree

Stopword as Cut-

off

Phrase

Ranking Pattern

Matching

Individually

Weighted
Term-doc

Matrix

Fig 1. Keyphrase extraction system

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

18
]

 2 / 10

http://ijict.itrc.ac.ir/article-1-83-en.html

A. Proposed Algorithm

We describe an algorithm based on forming
distributed minimum spanning tree of single corpus
graph(See Fig.2). First, we do pre-processing steps on
document collection. Then term weighting methods
applied to extract individual score for each word
(feature). After computing edge importance by point
wise mutual information co-occurrence analysis of two
word in whole corpus, co-occurrence network is created
to show candidate phrases then random walk method
such as Page Rank applies to propagate score of the
word and edges across network. Nodes with high
weights are keywords. In this step, we prune
unnecessary relation between words using minimum
spanning tree. we find candidate phrase considering
three conditions in section (A.2). Finally, we use
candidate phrase ranking method to find prior
keyphrases.

Function KPE-PMST Returns A List Of Keyphrase

Inputs: 𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑛} ,

 K // number of extracted

phrase

 TWM // term weighting method

 WS // windows size
Output:

 KPL // list of key phrases

result ← remove-stopword (d, stopwords list)

(result, pos) ← stanford_pos_tager(result)

eliminate words space with specific pos tag

result ← reduce _space (result-{adj, nn, nns, nnp})

return a weighted term vector by deploying different

weighing methods

wt ←individual_weighting (result, twm)

g(e,v) ← conduct graph(wt, result)

 for each vertex 𝑣𝑖 , 𝑣𝑗 in v

 eij ←
𝑣𝑖∩𝑣𝑗

𝑣𝑖∪𝑣𝑗
=

𝑐𝑜−𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒(𝑣𝑖,𝑣𝑗,𝑤𝑠)

𝑡𝑓(𝑣𝑖)+𝑡𝑓(𝑣𝑗)

keyword scoring: return an importance weight for each

word in v

 (keyword score, 𝑅(𝑡𝑗)) ← page_rank (e, v, wt)

candidate selection: return candidate phrases

(candidate phrases) ← candidate selection (2-gram,3-gram, 𝐷)

remove phrase from candidate list
for each phrase cp in candidate phrases

 if (cp^ stopwords list) <>null

remove (cp)

(pmst_tree(e’,v)) ← parallel minimum spanning tree (g (e, v))

candidate ranking: 𝐒𝐎𝐂_𝐏𝐌𝐈(.) is our ranking method

return ranked kephrase and KPL is a list of keyphrases
 for each phrase cp in candidate phrases

 if (cp ∩ pmst_tree(e’,v)) ==null

remove (cp)
 else

 KPL = KPL ∪ 𝑆𝑂𝐶_𝑃𝑀𝐼(cp)

Fig2. Pseudo code of proposed algorithm

1) Preliminaries
Let 𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑛} be a set of document and

𝑉 = {𝑡1, 𝑡2, … , 𝑡𝑚} is vocabulary which be set of all
terms in corpus. For a document di, corresponding term
weights vector is represented as di ={w1,…, w|di|},
where wi indicates how much wi contributes to
document di.

2) Pre-Processing

In Pre-Processing phase, we do three common tasks
which include:

 We apply a stop word list to remove
ineffective and common words[14].

 We consider words with certain part of-speech
tags (e.g., nouns, adjectives) as candidate
keywords[15]. In our experiments, we apply the
following tags captured from Stanford POS Tagger [20]
as candidates words: Noun, Proper Noun and Adjective.

 In the third step, we build a weighted term-
matrix for all terms in the corpus based on their
“individual importance” . We also consider three
measures for this purpose namely, Entropy, Mutual
information and variance approach[20].

3) Graph Model
The graph model is based on vector space model

[21] by weighting each term according to its degree of
“individual importance” regardless of term
associations. Term-document weighting method such
as, TF-Tdf weighting set the weight of each term
individually without considering its correlation with
other terms and their occurrences[22]. As a result, such
methods omit latent and valuable information among
the terms. Due to the above, we first set the weight of
each term in collection as “individual importance” then
compute “association’s importance” by constructing
co-occurrence network and measuring similarity as an
edge weight between pair-terms by co-occurring
analysis[19], [23]. We organize the single graph for all
documents and their constructing units (words).

4) Keyword Ranking
After conducting graph and assigning an individual

weight to each vertex, edge similarity between two
vertexes is calculated by measuring number of co-
occurrence between them within all documents[24].
When the network co-occurrence is formed, the edge
weight is propagated across the network using random
walk algorithm

5) Term Weighing Methods
In the first step, we set “individual importance” of

each word. We use the following Tf-Tdf weighing
method.

𝑇𝐹_𝑖𝑑𝑓(𝑡𝑖) = 𝑡𝑓(𝑡𝑖 , 𝑑𝑖) × 𝑖𝑑𝑓(𝑡𝑖, 𝐷) (1)

Inverse document frequency weight is the most
standard To separating terms among documents as
follows[25]:

𝑖𝑑𝑓(𝑡, 𝐷) = 𝑙𝑜𝑔
|𝐷|

1 + |{𝑑 ∈ 𝐷: 𝑡 ∈ 𝑑}|
 (2)

Some of frequent terms are less relevant to
document concepts because they are irreverent to whole
collection except a few documents[26], [27]. We
exploit the three weighting methods, including mutual
information, Entropy and term variance-based method
and compared with TF_idf in table3 and table.4. Mutual
information is use to compute the feature importance by
measuring the statistical dependence between the
feature and the document collection. It computes term
weight ti as follows[25]:

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

18
]

 3 / 10

http://ijict.itrc.ac.ir/article-1-83-en.html

𝐼(𝑡𝑖, 𝐷) = 𝑝(𝑡𝑖) ∑ 𝑝(𝑑𝑗|𝑡𝑖) (log
𝑝(𝑑𝑗|𝑡𝑖)

𝑝(𝑑𝑗)
) (3)

𝑑𝑗∊𝐷

Where P(di) is occurring probability of document dj
in collection. P(ti) shows the occurring probability of ti
in the document collection, P(di|ti) is the probability that
document dj contains term ti. Entropy is another
measuring method which can compute the weights for
features [28],[25]. It is based on uncertainty theory and
illustrated in following equation:

𝐸𝑁(𝑡𝑖) = 1 +
1

log|D|
∑ 𝑝(𝑑𝑗|𝑡𝑖) log 𝑝(𝑑𝑗|𝑡𝑖) (4)

|𝐷|

𝑗=1

[29]proposed term variance approach which is
computed as follows[25]:

Q(𝑡𝑖)

= ∑ 𝑂𝑑𝑗,𝑡𝑖

2

|𝐷|

𝑗=1

−
1

|𝐷|
[∑ 𝑂𝑑𝑗,𝑡𝑖

2

|𝐷|

𝑗=1

] (5) 

where 𝑂𝑑𝑖,𝑡𝑖
2 represents the frequency that the term

ti occurs in the document dj[26].

6) Measuring Similarity
Each word is a vertex of the graph. After computing

the individual importance of the words by term
weighting methods, a term-document matrix with initial
weights is prepared[23]. Then, the relation between
vertexes is captured by measuring the co-occurrence
count of them within a sliding window N[30]. We
extend this measure in section.8 (Ranking Method). In
[9] shown that the edge direction of graph does not
influence the accuracy of keyphrase extraction so
much.

7) Candidate Selection
We apply three-stage filter for candidate selection.

This filter is applied for each term and its neighbors in
document collection.

Since keyphrases are usually noun phrases, we only
add adjectives, nouns and proper noun in word graph.
We apply the following pattern for candidate
selection[19]:

(adjective)*(noun)+.

Using stop words as contour phrases. Fig.3
illustrates part of article in CNN news website with
drawing stops words as phrases cut-off window. The
green highlighted area are candidate keyphrase. It can
be inferred that using stop words and conjunctions as
cut-off widows improve detection of proper candidate
keyphrases.

Yahoo wants to make its Web e-mail service a
place you never want to -- or more importantly – have
to leave to get your social fix. The company on
Wednesday is releasing an overhauled version of its
Yahoo Mail Beta client that it says is twice as fast as
the previous version, while managing to tack on new
features like an integrated Twitter client, rich media

previews and a more full-featured instant messaging
client. Yahoo says this speed boost should be
especially noticeable to users outside the U.S. with
latency issues, due mostly to the new version making
use of the company’s cloud computing technology.
This means that if you're on a spotty connection, the
app can adjust its behavior to keep pages from timing
out, or becoming unresponsive. Besides the speed and
performance increase, which Yahoo says were the top
users requests, the company has added a very robust
Twitter client, which joins the existing social-sharing
tools for Facebook and Yahoo. You can post to just
Twitter, or any combination of the other two services,
as well as see Twitter status updates in the update
stream below. Yahoo has long had a way to slurp in
Twitter Feeds, but now you can do things like reply
and retweet without leaving the page.

Fig 3. CNN news with drawing stops words as cut-off
window

We draw minimum spanning tree from original co-
occurrence network to find a tree whose sum of
vertexes’ weight is minimal and covered all vertices in
the graph. We use parallel implementation of
Boruvka’s Minimum Spanning Tree Algorithm by
S.Chung et al. [31].

8) Ranking Method
Given the three ranking functions for comparison:

First technique is similar to [4], we can rank candidate

keyphrases by∑ 𝑅(𝑤𝑗)
𝑤𝑗∈𝐾

, where 𝑅(𝑤𝑗) is the score

assigned to word w by a keyword ranking method. We
consider another ranking technique

by ∑ log 𝑅(𝑤𝑗)
𝑤𝑗∈𝐾

. This technique is similar to

former with the difference that calculates the logarithm
of 𝑅(𝑤𝑗). In [1] Turney introduced point-wise mutual

information an unsupervised learning methods for
recognizing word similarity by using Point-wise
Mutual Information. We proposed a similarity measure
between words using second order co-occurrence point-
wise mutual information. let 𝑉 = {𝑡1, 𝑡2, … , 𝑡𝑚}be the
set of all unique words which occur in the documents
collections D. 𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑛} denotes a large
corpus of text containing n documents and vocabulary

V contains m unique words which occur in the 𝐷. Let t1
and t2 be the two vertices of graph G=(V,E). We want

to determine the semantic similarity between t1 and t2.
as we know, the majority of keyphrases have length of
1 to 4 words [17]. Candidate phrases with 1 and 2 words
are easily identified, But for the rest of candidate phrase
with 3 or 4 words long, we obliged to offer a different
ranking approach. After preprocessing steps, for
recognizing triple candidate phrase, we will compute
the similarity between two words 𝑡1, 𝑡2 which no direct
connection established between them. We set a
parameter α, which determines how many words can be
included in the context window. The window also
contains the target word 𝑡1, 𝑡2 themself. The steps in
determining the semantic similarity consider the corpus
and some functions related to frequency counts. We
define frequency function for each words in 𝑉 as 𝑓(𝑡𝑖)
which says how many times 𝑡𝑖 occurs in the entire
corpus[32].

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

18
]

 4 / 10

http://ijict.itrc.ac.ir/article-1-83-en.html

We also consider another frequency function named
Co-occurrence function for two words in corpus if
exists a connection between them (i.e. if two connected
with edge in corpus graph) and shown with 𝐶(𝑡𝑖 , 𝑡𝑗). It

tells us how many times 𝑡𝑖 , 𝑡𝑗 Co-occurred together in a

window size 𝛼 . We proposed point-wise mutual
information based Co-occurrence function (SOC-PMI)
only for those words having 𝐶(𝑡𝑖 , 𝑡𝑗) > 0,

𝑓𝑝𝑚𝑖(𝑡𝑖 , 𝑡𝑗)

= log2

𝐶(𝑡𝑖 , 𝑡𝑗) ∗ 𝑚

𝑓(𝑡𝑖) ∗ 𝑓(𝑡𝑗)
 (6)

Where 𝑓(𝑡𝑖) ∗ 𝑓(𝑡𝑗) > 0 and m is total number of

tokens in corpus D as mentioned earlier. For word 𝑣1,
we define a set of neighbor words as 𝑖 = 1, 2, … , 𝜇

1
,

which 𝑓𝑝𝑚𝑖(𝑡𝑖 , 𝑣1) > 0 and having 𝜇
1

 top-most value

where:

∀ 𝑖 = 1, . . . , 𝜇1 | 𝑓𝑝𝑚𝑖(𝑡𝑖 , 𝑣1)
> 𝑓𝑝𝑚𝑖(𝑡1+𝑖 , 𝑣1) (7)

As a same way, for word 𝑣2 , we define a set of
neighbor words as 𝑗 = 1, 2, … , 𝜇

2
, which

𝑓𝑝𝑚𝑖(𝑡𝑗, 𝑣2) > 0 and having 𝜇
2
 top-most value where

∀ 𝑗 = 1, . . . , 𝜇2 | 𝑓𝑝𝑚𝑖(𝑡𝑗 , 𝑣2) > 𝑓𝑝𝑚𝑖(𝑡𝑗+1, 𝑣2) (8)

Value of 𝜇
1
 and 𝜇

2
 depend on word v. We multiply

the SOC-PMI function for all word as following:

𝑓𝛼(𝑣1)

= ∏ (
𝑓𝑝𝑚𝑖(𝑡𝑖 , 𝑣2)

𝛽𝑡𝑖
∗ 𝛽𝑣2

)

𝜇1

𝑖=1

 (9)

Where 𝑓𝑝𝑚𝑖(𝑡𝑖 , 𝑣2) > 0 and𝑓𝑝𝑚𝑖(𝑡𝑖, 𝑣1) > 0 and
𝛽𝑡𝑖

, 𝛽𝑣2
 are branching coefficient (i.e. number of nodes

with context windows size of 2 with 𝑡𝑖 and 𝑣2). It
multiplies PMI values of all the semantically close
words of 𝑣2 (Note that we call it semantically-close
because each 𝑡𝑖 co-occurs with 𝑣2 in context
windows 𝛼, has high PMI value with 𝑣2) but it doesn’t
guarantee 𝑡𝑖 co-occurs with 𝑣1 within the window size.

in the same way, for word 𝑣2, the SOC-PMI function is:

𝑓𝛼(𝑣2) = ∏ (
𝑓𝑝𝑚𝑖(𝑡𝑗,𝑣1)

𝛽𝑡𝑗
∗𝛽𝑣1

)
𝜇2
𝑗=1 (10)

Where 𝑓𝑝𝑚𝑖(𝑡𝑗 , 𝑣1) > 0 and 𝑓𝑝𝑚𝑖(𝑡𝑗 , 𝑣2) > 0 . It

multiplies PMI values of all the semantically close
words of 𝑣1 (Note that we call it semantically-close

because each word 𝑡𝑗 co-occurs with 𝑣1 in context

windows 𝛼, has high PMI value with 𝑣1) but it doesn’t
guarantee 𝑡𝑖 co-occurs with 𝑣2 within the window size.
Finally, we define the semantic PMI similarity function
between two words 𝑣2 and 𝑣1:

𝑆(𝑣1, 𝑣2)

=
𝑓𝛼(𝑣1)

𝜇1
+

𝑓𝛼(𝑣2)

𝜇2
 (11)

We use from Md. Aminul Islam and Diana Inkpen
work [33] for choosing value of 𝜇1, 𝜇2 . It related to
how many times the word, 𝑣𝑖 , 𝑣1appears in the corpus.
They define 𝜇

𝑖
 as:

𝜇𝑖 = (𝑙𝑜𝑔(𝑓𝑡(𝑣𝑖)))
2 log2 𝑛

𝛿
 (12)

We also define a new method for determining top
most neighbors of each node as following:

𝜇𝑖 = 𝑙𝑜𝑔 (
𝑓𝑡(𝑣𝑖)

𝛽𝑣𝑖
∗ 𝐼𝐷𝐹𝑣𝑖

)

∗
𝛽𝑣𝑖

𝛿
 (13)

Where 𝐼𝐷𝐹𝑣𝑖
 is inverse document frequency of

𝑣𝑖 and 𝛽𝑣𝑖
 is number of distinguished neighbors of 𝑣𝑖

and δ is a constant for all experiments (we used δ= 5).
The value of δ depends on size of the corpus. If smaller
corpus is used, the value of δ should be smaller.

V. EXPERIMENTS

A. Database

We consider two corpora for constructing our
model. First was built [13]. This dataset includes 308
news articles in DUC2001 [34]. Each article have 10
manually annotated keyphrases. The second corpus was
built by [35] contains 2,000 abstracts of research
articles and 19,254 manually annotated keyphrases. We
remove the articles shorter than 100 words. After pre-
processing steps, we build the vocabulary by selecting
20,000. We learn model by taking each article as a
document.

B. Metrics
Despite the output of most keyphrase extraction

systems are yet weak in comparison with other NLP-
Branches, it doesn’t indicate the performance is low.
Even different manual annotators can assign different
keyphrases to the same documents and rank extracted
phrase arbitrarily. We choose traditionally NLP-Tasks
metrics. It includes precision, recall, F-measure.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

18
]

 5 / 10

http://ijict.itrc.ac.ir/article-1-83-en.html

Fig. 4. Co-occurrence network with 35 node, 97 edge

C. Network Co-occurrence Analysis

In this step we show network co-occurrence
analysis with two different settings. We conduct two
network co-occurrence with 11 document, 695
paragraphs and 3064 sentences. The documents
extracted from news articles in DUC2001 [34] with
several limitations. First Ineffective and stop words are
removed. Second, it has been allowed to words with
certain part of-speech tags to be candidate keywords.
These tags (Noun, Proper Name and Adjective)
captured from Stanford POS tagger [12]. Third, term
frequency rate for each word must be greater than 30
(TF1>30) and document frequency of each word must
be greater than 10 (DF 2 >10). After removing stop
words and tagging, the remaining words are weighted
by one of the individually term weighing methods.
Then we run page rank as a random walk algorithm to
propagate weighted terms and importance of relations
(edges) across the co-occurrence Network. Larger
circles show higher weight in contrasting to smaller
circle.

1 Term frequency

Fig.4 illustrates first co-occurrence network with 35
node, 97 edge and windows size is whole document. As
the neighborhood window becomes larger, graph will
be full and more complete. In this situation many
irrelevant relation between words with high dispersion
are considered. Fig.5 shows second network co-
occurrence with 35 node, 61 edge and windows size 2.
As you see, nodes with the same color are strong
relevant to each other.

D. Drawing Minimum Spanning Tree

After analyzing two different network in earlier
section. In this section, we captured minimum spanning
tree from each co-occurrence network with two
different settings. We conduct two networks co-
occurrence with 11 documents, 695 paragraphs, 3064
sentences and 54867 tokens. After removing stop words
and tagging, the remaining words are weighted by one
of the term weighing methods. Then we run page rank
as a random walk algorithm to propagate weighted
terms and importance of relations (edges) larger circles
shows higher weight in contrasting to smaller circle.

2 Document frequency

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

18
]

 6 / 10

http://ijict.itrc.ac.ir/article-1-83-en.html

Fig 5. Co-occurrence network with 35 node, 61 edge

Fig.6 illustrates first network co-occurrence with 35
node, 34 edge and windows size 2. In this network
semantically similar keywords have same color. After

conducting minimum spanning tree, candidate phrases
are highlighted and many of weak links removed.

Fig 6. Co-occurrence network minimum spanning tree with 35 node, 34 edge

E. Comparing with Baseline Methods
We outperform three baselines (TF-IDF, Page

Rank, SingleRank) on both datasets. The results show
that the proposed method is more efficient than other
methods in two datasets.This proves the effect of co-
occurrence network optimization using Parallel
minimum spanning tree so that reduces candidate
number and increases accuracy of extracted keyphrases.

TABLE.1 COMPARING WITH BASELINE METHODS

Keyword Ranking

Methods

Comparison With Baseline

Methods

Pre. Rec. F. measure

TF-IDF 0.333 0.173 0.227

Page Rank 0.330 0.171 0.225

SingleRank 0.286 0.352 0.2

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

18
]

 7 / 10

http://ijict.itrc.ac.ir/article-1-83-en.html

PMST3+PageRank+MI4 0.286 0.352 0.321

Comparing our result with different baseline methods when the
number of extracted keyphrases from each document is 5 using

dataset DUC[34].
The comparing result of our method with the other
baseline methods under precision, recall and F-measure
has been shown. (See Table.1 and Table.2).

TABLE.2 COMPARING WITH BASELINE METHODS

Keyphrase
Ranking Method

Keyword
Ranking
Methods

comparison with
Baseline Methods

Pre. Rec.
F.

measu
re

∑ 𝐥𝐨𝐠 𝑹(𝒘𝒋)

𝒕𝒋∈𝑲

TF-IDF 0.376 0.196 0.271
Page Rank 0.330 0.171 0.283
SingleRank 0.253 0.321 0.277

PMST+
PageRank +

MI5
0.359 0.386 0.376

Comparing our result with different baseline methods when the
number of extracted keyphrases from each document is 10 using
dataset[35].

Table.3 Keyphrase Extraction Results

Keyphrase

Ranking Method

Keyword
Ranking
Method

Term
Weighting

Method

Candidate
Selection

∑ 𝑹(𝒕𝒋)

𝒕𝒋∈𝑲

 ∑ 𝐥𝐨𝐠 𝑹(𝒘𝒋)

𝒕𝒋∈𝑲

F.
measure

F.
measure

PageRank tf*idf
PMST+
Stops

words cut-
off

0.250 0.248

PageRank EN6 0.261 0.262

PageRank MI7 0.265 0.266

Comparing results of different settings of proposed methods when
the number of extracted keyphrases from each document is 5 using
dataset [35].

We, also compare different version of our proposed
methods with different settings (See Table.3 and
Table.4) Our method exploits the advantages of both
minimum spanning tree and PageRank, by eliminating
irrelevant weak phrase from space of candidate
keyphrases.

3 Parallel Minimum spanning tree
4 Mutual Information

5 Mutual Information

6 Entropy

7 Mutual Information

Table.4 Keyphrase Extraction Results

Keyphrase Ranking

Method

Keyword
Ranking
Method

Term
Weighting

Method

Candidate
Selection

∑ 𝑹(𝒕𝒋)

𝒕𝒋∈𝑲

 ∑ 𝐥𝐨𝐠 𝑹(𝒘𝒋)

𝒕𝒋∈𝑲

F. measure F. measure

PageRank tf*idf PMST+
Stops

words cut-
off

0.292 0.291

PageRank EN8 0.315 0.315

PageRank MI9 0.341 0.343

Comparing results of different settings of proposed methods
when the of extracted keyphrases from each document is 10 using
database DUC[34].

Moreover, we show the relation between number of
extracted keyphrase per document and f-measure (f-
score) for all documents in the corpus(See Fig.7, Fig.8).
These curves are evaluated on different numbers of
extracted keyphrases. Table.1 and Table.2, show that
the proposed method has better overall performance by
increasing the number of extracted keyphrases. Finally,
we compare our proposed keyphrase ranking method
with other baselines on [35] dataset. Table-5 shows that
the proposed method is more efficient in identifying
good keyphrase with the length of 3-4. This proves the
effect of considering second order co-occurrence point-
wise mutual information.

TABLE.5 DIFFERENT RANKING METHODS

Phrase
Ranking

Keyword
Ranking
Method

Term
Weighting

Method

Candid
ate

Selectio
n

F.
Measure

∑ 𝑅(𝑡𝑗)

𝑡𝑗∈𝐾

 PageRank
Variance
Approach

PMST+
Stops
words
cut-off

0.341

∑ log 𝑅(𝑤𝑗)

𝑡𝑗∈𝐾

 PageRank
Mutual

information
0.343

SOC-
PMI10

PageRank
Mutual

information
0.374

Comparing results of different Ranking methods when the
number of phrases is 10 using database [35].

8 Entropy

9 Mutual Information

10 Second order point-wise mutual information

Fig 7. Comparing F-measure of proposed method with

Baseline

Fig.8. Comparing F-measures of proposed method with

Different Settings

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

18
]

 8 / 10

http://ijict.itrc.ac.ir/article-1-83-en.html

VI. CONCLUSION

In this paper, we proposed an unsupervised method
for automatic keyphrase extraction. Most of
unsupervised methods deal with two challenges. First,
they do not use background knowledge to understand
deeper structure of document. This point of view can be
facilitated by involving term weighting methods and
constitution of parallel minimum spanning tree for
eliminating original graph to get proper relevant edge
and use page rank to propagate importance of words
across the graph.

Second challenge is computing importance of
candidate phrase with a length of 3-4 words. We
proposed a new ranking method for candidate phrase
with 3-4 long. We use candidate phrase ranking
method to find prior keyphrases. We enjoy point-wise
mutual information by considering second order co-
occurrence of words. This ranking methods assigned a
weight to each candidate phrase. It semantically
improves vector space representation of term document
matrix. It will help system to distinguish candidate
keyphrases and non-keyphrases.

REFRENCES

[1] [1] P. D. Turney, “Learning Algorithms for Keyphrase
Extraction,” Inf. Retr. Boston., vol. 2, no. 4, pp. 303–336, 2000.

[2] [2] T. D. Nguyen and M.-Y. Kan, “Keyphrase extraction in
scientific publications,” in Asian Digital Libraries. Looking
Back 10 Years and Forging New Frontiers, Springer, 2007, pp.
317–326.

[3] [3] A. SIDDHARTHAN, “Christopher D. Manning and
Hinrich Schutze. Foundations of Statistical Natural Language
Processing. {MIT} Press, 2000. {ISBN} 0-262-13360-1. 620
pp. {\textdollar}64.95/{\textsterling}44.95 (cloth).,” Nat.
Lang. Eng., vol. 8, no. 01, 2002.

[4] [4] Z. Liu, W. Huang, Y. Zheng, and M. Sun, “Automatic
Keyphrase Extraction via Topic Decomposition,” Comput.
Linguist., no. October, pp. 366–376, 2010.

[5] [5] K. S. Hasan and V. Ng, “Automatic Keyphrase
Extraction: A Survey of the State of the Art,” in Proceedings
of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 2014, pp.
1262–1273.

[6] [6] Z. Liu, W. Huang, Y. Zheng, and M. Sun, “Automatic
keyphrase extraction via topic decomposition,” in Proceedings
of the 2010 Conference on Empirical Methods in Natural
Language Processing, 2010, pp. 366–376.

[7] [7] F. Yu, H.-W. Xuan, and D.-Q. Zheng, “Key-Phrase
Extraction Based on a Combination of CRF Model with
Document Structure,” in Eighth International Conference on
Computational Intelligence and Security, 2012, pp. 406–410.

[8] [8] Y. Qi, M. Song, S.-C. Yoon, and L. deVersterre,
“Combining Supervised Learning Techniques to Key-Phrase
Extraction for Biomedical Full-Text,” Int. J. Intell. Inf.
Technol., vol. 7, no. 1, pp. 33–44, 2011.

[9] [9] R. Mihalcea and P. Tarau, “TextRank: Bringing order
into texts,” in Proceedings of EMNLP, 2004, vol. 4, no. 4, p.
275.

[10] [10] Y. F. Huang and C. S. Ciou, “Constructing personal
knowledge base: Automatic key-phrase extraction from
multiple-domain web pages,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 7104
LNAI, Springer, 2012, pp. 65–76.

[11] [11] H. White, C. Willis, and J. Greensberg, “HIVEing: The
Effect of a Semantic Web technology on Inter-Indexer
Consistancy,” J. Doc., vol. 70, no. 3, pp. 1–43, 2014.

[12] [12] L. zi Liao and H. yan Huang, “Microblog Keyphrase
Extraction Based on Similarity Features,” in Proceedings of the
2013 International Conference on Advanced Computer
Science and Electronics Information, 2013.

[13] [13] X. Wan and J. Xiao, “Single Document Keyphrase
Extraction Using Neighborhood Knowledge.,” in AAAI, 2008,
vol. 8, pp. 855–860.

[14] [14] Z. Liu, P. Li, Y. Zheng, and M. Sun, “Clustering to Find
Exemplar Terms for Keyphrase Extraction,” in Language,
2009, vol. 1, pp. 257–266.

[15] [15] F. Liu, D. Pennell, and Y. Liu, “Unsupervised approaches
for automatic keyword extraction using meeting transcripts,”
in Naacl-Hlt, 2009, no. June, pp. 620–628.

[16] [16] R. Mihalcea and P. Tarau, “TextRank: Bringing order
into texts,” Proc. EMNLP, vol. 4, no. 4, pp. 404–411, 2004.

[17] [17] T. Tomokiyo and M. Hurst, “A language model approach
to keyphrase extraction,” in Proceedings of the ACL 2003
workshop on Multiword expressions: analysis, acquisition and
treatment-Volume 18, 2003, pp. 33–40.

[18] [18] N. Kumar and K. Srinathan, “Automatic keyphrase
extraction from scientific documents using N-gram filtration
technique,” in … of the eighth ACM symposium on Document
…, 2008, vol. Sao Paulo, p. 199.

[19] [19] M. Litvak, M. Last, H. Aizenman, I. Gobits, and A.
Kandel, “DegExt — A Language-Independent Graph-Based
Keyphrase Extractor,” in Advances in Intelligent Web
Mastering {\textendash} 3, Springer Science \mathplus
Business Media, 2011, pp. 121–130.

[20] [20] R. Wang, W. Liu, and C. McDonald, “How preprocessing
affects unsupervised keyphrase extraction,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 8403 LNCS, no. PART 1, Springer, 2014, pp. 163–176.

[21] [21] J. Repplinger, “G.G. Chowdhury. Introduction to Modern
Information Retrieval. 3rd ed. London: Facet, 2010. 508p. alk.
paper, $90 (ISBN 9781555707156). LC2010-013746.,” Coll.
Res. Libr., vol. 72, no. 2, pp. 194–195, 2011.

[22] [22] W. Wang, D. B. Do, and X. Lin, “Term Graph Model for
Text Classification,” in Advanced Data Mining and
Applications, Springer Science \mathplus Business Media,
2005, pp. 19–30.

[23] [23] A. Bellaachia and M. Al-Dhelaan, “NE-Rank: A novel
graph-based keyphrase extraction in Twitter,” in Proceedings
- 2012 IEEE/WIC/ACM International Conference on Web
Intelligence, WI 2012, 2012, pp. 372–379.

[24] [24] M. Sasaki, “Latent Semantic Word Sense
Disambiguation Using Global Co-Occurrence Information,” in
Computer Science & Information Technology (CS & IT),
2014, pp. 463–468.

[25] [25] Y. Ye, X. Li, B. Wu, and Y. Li, “A comparative study of
feature weighting methods for document co-clustering,” Int. J.
Inf. Technol. Commun. Converg., vol. 1, no. 2, p. 206, 2011.

[26] [26] E. Tsui, W. M. Wang, L. Cai, C. F. Cheung, and W. B.
Lee, “Knowledge-based extraction of intellectual capital-
related information from unstructured data,” Expert Syst. Appl.,
vol. 41, no. 4 PART 1, pp. 1315–1325, 2014.

[27] [27] Y. Bin Kang, P. Delir Haghighi, and F. Burstein,
“CFinder: An intelligent key concept finder from text for
ontology development,” Expert Syst. Appl., vol. 41, no. 9, pp.
4494–4504, 2014.

[28] [28] K. E. Lochbaum and L. A. Streeter, “Comparing and
combining the effectiveness of latent semantic indexing and the
ordinary vector space model for information retrieval,” Inf.
Process. Manag., vol. 25, no. 6, pp. 665–676, Jan. 1989.

[29] [29] I. Dhillon, J. Kogan, and C. Nicholas, “Feature Selection
and Document Clustering,” in Survey of Text Mining, Springer,
2003, pp. 73–100.

[30] [30] S. Rothe and H. Schütze, “CoSimRank: A Flexible and
Efficient Graph-Theoretic Similarity Measure,” in
Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 2014, pp.
1392–1402.

[31] [31] S. Chung and A. Condon, “Parallel implementation of
Bouvka{\textquotesingle}s minimum spanning tree
algorithm,” in Proceedings of International Conference on
Parallel Processing, 1996.

[32] [32] H. Ryang and U. Yun, “Unsupervised Keyphrase
Extraction Based Ranking Algorithm for Opinion Articles,” in
Multimedia and Ubiquitous Engineering, Springer Science
\mathplus Business Media, 2013, pp. 113–119.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

18
]

 9 / 10

http://ijict.itrc.ac.ir/article-1-83-en.html

[33] [33] A. Islam and D. Inkpen, “Second Order Co-occurrence
PMI for Determining the Semantic Similarity of Words,” pp.
1033–1038.

[34] [34] H. T. Dang, “{DUC} 2005,” in Proceedings of the
Workshop on Task-Focused Summarization and Question
Answering - {SumQA} {\textquotesingle}06, 2006.

[35] [35] A. Hulth, “Improved Automatic Keyword Extraction
Given More Linguistic Knowledge,” in EMNLP’03:
Proceedings of the 2003 conference on Empirical Methods in
Natural Language Processing, 2003, pp. 216–223.

Hosein Shahsavar received his B.S. degree in

Software Engineering from
Kharazmi University of
Technology in 2012. He also
received his M.Sc. degree in
Computer Engineering from
Amirkabir University of
Technology in 2011.at present he
is Ph.D. student in Malek Ashtar
University of Technology from
2013. His research interests are

text mining, natural language processing, and statistical
linguistic.

Mojtaba Hosseini received his B.Sc. degree in

Electronics Engineering from
Malek Ashtar University of
Technology in 1991. He also
received his M.Sc. and Ph.D.
degrees in Computer
Engineering from Amirkabir
University of Technology in
1995 and 2011 respectively. His
research interests are wireless

sensor networks, image processing, and evolutionary
computing.

Jamshid Shanbe Zadeh is an Associate Professor at

Kharazmi University. He
received his M.Sc. degree in
Electronics Engineering from
Tehran University of
Technology in 1986. He also
received his Ph.D. degrees in
electrical and computer
engineering from Wollongong
University of Technology in

1996. His research interests are Image Compression,
OCR, Document Analysis and Image Retrieval.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
25

-1
1-

18
]

Powered by TCPDF (www.tcpdf.org)

 10 / 10

http://ijict.itrc.ac.ir/article-1-83-en.html
http://www.tcpdf.org

