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Abstract—Nowadays data mining is the way of extracting hidden knowledge from raw data whereas sequence mining
aims to find sequential patterns that are frequent in the database, so publishing these data may lead to the disclosure of
private information about organizations or individuals. Knowledge hiding is the process of hiding sensitive knowledge
extracted previously from the database, to ensure that no abuse will be caused. This paper addresses the problem of
sequential pattern hiding and proposes an efficient algorithm which uses a multi-objective approach to overcome the
problem of sequence hiding as well as maintaining database fidelity as much as possible. It also shows that the proposed
algorithm outperforms existing methods in terms of both speed and memory usage.

Keywords-data mining, sequence mining, knowledge hiding, sequential pattern.

NOMENCLATURE

SDB: Sequence Database,

bestSolutions: An array associated with a sequence in
SDB,which contains best solutions for sanitizing the
sequence,

D: The number of distortions,

DBSeqsToCheck: The set of sequences which should
be checked in the next iteration of candidate tree
generation,

S: A database sequence,

nSP: The number of sensitive patterns,

NSP: The number of non-sensitive patterns,

SP: Sensitive pattern,

SPS: The set of sensitive patterns,

T0S5ps(x: 1) The related occurrence set of x, as the i"
item of SP,in sequence S,

A: An item-set,

minsup(A): The percentage of all transactions that
contain 1's for all the items in A,

maxsup(A): The percentage of transactions that contain
either 1 or "?" for all the items in A,

International Journal of information & Communication Technology Research

ITRC



http://www.jigsaw.com/id181046/the_university_of_georgia_company.xhtml
http://ijict.itrc.ac.ir/article-1-84-en.html

ﬂlJlCTR Volume 7- Number 4- Autumn 2015

[ Downloaded from ijict.itrc.ac.ir on 2025-11-18 ]

f(.,.,.): The sanitization objective function which
evaluates the generated solutions,

J: Hiding threshold,

a: Weight of nSP in the sanitization objective function,
y: Weight of D in the sanitization objective function,
&: Weight of NSP in the sanitization objective function,
M-pruning: A real value which serves as a threshold to
prune the candidate tree,
gaprosgp_s(x:i,min,max): The related occurrence
set of a gap constraint that enforces the number of
elements in S, which are between every two elements
of SP, to be in the interval [min-1, max+1],
disrossp_¢(x:i,min,max): The related occurrence
set of a distance constraint that enforces the number of
elements in S, which are between the first and the last
elements of SP, to be in the interval [min, max],

R: The complete set of rules mined from a database
with respect to a minimum support threshold,

Rse: The set of non-sensitive rules,

Rr: The set of restrictive rules,

R": The set equal to R — (Rr + Rsg)

. INTRODUCTION

Today, data mining methods help owners of
databases extract useful knowledge from their raw data.
Privacy preserving data mining is a relatively new
research area in the data mining community, having
existed for approximately a decade. It investigates the
side effects of data mining methods originating from the
penetration into the privacy of individuals and
organization[7].Privacy-preserving  algorithms are
divided into two major groups, the first is data hiding
which proposes various techniques (perturbation,
transformation) for preserving the privacy of raw data
and the second is knowledge hiding which involves
protecting sensitive data after applying data mining
techniques on raw data when the dataset is less
distorted. The altered database is also called the
sanitized database. So far, most sanitization methods
have dealt with classic and simple forms of databases
and knowledge namely, frequent item-sets and
association rules, while the real-world applications are
more structured data, which are named sequential data.
In many applications like web usage logs, biomedical
patient data, spatio-temporal geo-referenced traces and
basket of customer purchasing, sequentiality of data is
obvious. While extracting knowledge from these data
offers several services to the world, it may be abused by
competitors. Consider a medical patient database which
contains clinical measurements at different moments in
time. By publishing this information, rivals abuse it by
sharing several databases to reveal personal
information. Another example is the abuse of spatio-
temporal data which contains sequences of locations
left by mobile phones and other location-aware devices
such as wvehicular GPS [1]. Traffic management,
marketing, fuel management and several other
beneficial applications may also use the information
extracted from mobility data, which, if published
provides competitors with the opportunity to engage in
user profiling, unauthorized advertising, terrorist acts,
and so on.

This paper proposes a novel algorithm to hide such
sensitive patterns before publishing data while

maintaining most of the quality of information and data.
The benefit of the proposed algorithm is twofold: it
maintains the quality of and the fidelity of the data; and
can reduce the computational requirements by reducing
the computing time and memory usage. The proposed
algorithm is based on an efficient tree pruning and
shows that can improve the method previously
proposed by the authors [10], through reduction of
computing time and memory usage.

The rest of this paper is organized as follows.
Section2 presents the literature on the sanitization field.
The background information and notations are
presented in Section 3. In Section 4, the proposed
algorithm is introduced and the sequential pattern-
hiding problem is described. In addition, the
computational burden of the algorithm in terms of the
time and memory usage and complexity of it is
discussed in the worst case in section 4.2, and a solution
to cope with these problems is proposed in the section.
Section 5 presents the experimental results of two
different datasets. Finally, the conclusion is presented
in Section 6.

Il.  RELATEDWORKS

Most sanitization methods deal with classic and
simple forms of databases and information, namely
frequent item-sets and association rules. Several
algorithms have been proposed to solve the problem of
sensitive association rule hiding by manipulating
support of or confidence in the rules. In the work done
by Saygin et al. (2001), unknown values are introduced
which define the support and confidence intervals for
an item-set A and for a Rule, i.e. [minsup(A),
maxsup(A)], where the minsup(A) is the percentage of
all transactions that contain 1's for all the items in A
and maxsup(A) is the percentage of transactions that
contain either 1 or "?" for all the items in A. For rule R
the interval is [minconf(R), maxconf(R)]. The objective
is to decline a rule's support or confidence below
minimum support or minimum confidence thresholds.
In order to decline the minimum confidence of a rule
A—B, which is defined as minconf(A - B) =

minsup(AB) .
Per—— , they decrease minsup(AB) and/or

increase maxsup(A). Nevertheless, by replacing "?"
with items in the A's or B's item-sets, the
minconf(A—B) will be reduced, but it is preferable to
alter B's items, because otherwise maxconf (4 —

B) = IexsupB)  might rise. Also to increase
minsup(A)

maxsup(A), “?” marks are substituted for 0’s in the
transactions. Reducing support of a rule is trivial. They
proposed two sets of algorithms for decreasing either
support of or confidence in the rules.

In Verykios et al [12], disjoint-sensitive association
rules (association rules whose constituent item-sets are
disjointed) are hidden one at a time by reducing their
support or confidence. Reducing the support is done by
reducing a rule's antecedent or its consequent item-sets.
In addition, either by increasing the support of a rule's
antecedent item-set in transactions that partially support
it, or by decreasing the support of the rule's consequent
item-set, they decreased confidence in the rule.
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Oliveira et al [9], proposed a different idea which
concerns sharing association rules rather than the data,
and tries to restrict the rules to be published. Let R be
the complete set of rules mined from a database with
respect to a minimum support threshold, and Rg be the
restrictive rules, then the goal is to transform R to R’
where sensitive rules in R cannot be extracted by
analyzingR'. Clearly, by merely subtracting Rs from R,
an adversary could infer restrictive rules. So the
algorithm finds a set of non-sensitive rules: Rsg, and
sets R' = R —(Rr + Rsg), and as a result, all inference
channels are closed. In the frequent item-set graph,
either by obliterating at least one subset of each leaf
item-set whose corresponding sensitive rules had to be
hidden, or by erasing all supersets of each non-terminal
node whose rules were considered restrictive, they
reached to their objectives.

Aggarwal et al [4] introduced an algorithm for
protecting sensitive entries in a database. Some entries
in each tuple are considered sensitive by users, and the
objective is to guard them from being revealed. The
correlation that exists among entries in the database
alleviates the contingence of the values of hidden
entries by harnessing mined association rules. So some
non-sensitive entries should be erased to reduce
confidence in the revealing of rules. This is called Rule
Invalidation.  Another  method, termed Rule
Marginalization, precludes guessing the values of
entries by blanking out the entries in the sensitive
records corresponding to the antecedent of the rules, so
the rule will not fire on those records. In this algorithm,
first a set of rules, named Adversarial Rules which can
be utilized by an adversary to predict values of hidden
entries, are identified, then a set of non-sensitive
entries, with the help of these rules, are removed from
the database. Thus, Adversarial Rules become
inaccessible.

A new form of practical knowledge and approaches
for hiding it were proposed by Abul et al [2]. Co-
occurring frequent item-sets are a set of item-sets that
appear all together in mining results, and to keep them
secret it suffices to impede one of them from being
divulged. In another words, one piece of information
will not contain secrecy unless it comes into view
simultaneously with others. Therefore, if C = {Cy,
Co, ...,Cn} is the set of sensitive co-occurring frequent
item-sets, the two-staged hiding process elects one
item-set from each Cye C at the first stage, then
conceals it as the second stage. Four different heuristic
algorithms were proposed for the first stage.

A relatively new and more applicable form of data
which has been presented recently, is sequential data
[5], so knowledge preserving methods should be
applied to this category of data, too. Although it is more
likely to represent some real world data by a sequential
database, few studies focus on this topic with the
possible exception of Abul[3] which introduced the
first sequence-pattern hiding algorithm. In this work the
authors first define the matching set which is the set of
all sets with the size of sensitive patterns, which each
sequence supports, then the algorithm finds the
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occurrences of items of sensitive patterns in each
sequence. Next it sorts the database in ascending order
according to matching set size, then removes all
matches in the top |[SDB| — Ainput sequences. [10],
introduced a novel method capable of low distortion
and infidelity. The algorithm constructs candidate trees
for each sequence, which contain all the solutions with
respect to the multi-objective sequence-selection
framework defined by the user, then it finds the best
solution for the database and finally sanitizes the
sequence. While the support of sensitive patterns is
greater than a defined hiding threshold, this process
iterates. The process of knowledge hiding is discussed
in the next section.

I1l.  PROBLEMSTATEMENT

In this section, some basic definitions of sequence
data mining are presented and a discussion about the
problem of sequential pattern hiding is provided.

Definitionl. Sequence: A sequence is an ordered list
S =5;5;, ...5;, where each s;(1 < i <) is an itemset
called an element which is denoted as (x;x; ... X;,)
suchthateach x, (1 < k <m) € £, and X isa finite set
of distinct items. A sequence « = a,a, ...a,, is called
a subsequence of another sequence B = b,b, ...b,,
and S a super-sequence is adenoted as a = S, if there
exist integers 1 <j, <j, <:-<j, <m such that
a; € bjy, a; € bjy, ..., a, S b, . In addition, a
sequence database SDB contains a set of sequences.

Definition2. Support of a Sequence: The support of a
sequence a in a SDB is the number of sequences in
SDB that are super-sequences of a: supspg(a) =
|{S € SDBla = S}| . A sequence a is called a
sequential pattern in SDB if supgspg(a) =min-sup.

Given a sequence S = s; ... s, and a subsequence S’ =
sy ... 8", a set of positions {iy, iy, ..., i, } is called an
occurrence of S"in S, if1<i; <+ <iyp <n and
s’y =sy foreach1 <k <m.

Problem definitionl. Sequential Pattern Mining:
Given a sequence database and a minimum support
threshold, the sequential pattern mining problem is to
find the complete set of sequential patterns in the
database.

Definition3. Related occurrence set of an item in a
sequence: given a sequence S, a sequential pattern SP,
and an item x which is the i item ofSP, the related
occurrence set of x from SP in S encircles item numbers
in S which corresponds to item x and is denoted as
T0Sgyos(x:1) .As an example consider s =
bab(cd)(abd)bb(chd), and sp= (cd)bb, then the related
occurrence set of 3™ item from SP, i.e. b, in S is
TOS(Cd)bb—)S(b: 3) ={7, 9, 10}

Definition4. Sensitive Patterns: Experts determine
some sequential patterns to be hid. These sequential
patterns are called sensitive patterns. In addition, it is
referred to items in sensitive patterns as sensitive
items.

Problem definition2. SequentialPattern Hiding:
Given a sequence database SDB, a sensitive pattern set
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SPS, and a hiding threshold 4, the goal is to change the
SDB at least to hide all of the sensitive patterns in it by
reducing their support to 1.

There are four important issues in the definition.
First, the sequences of database should be changed.
This is done by replacing some items of the element by
an unknown value "?".The number of items to be
changed are called distortions. Second, the term "at
least” dictates that the distortions should be as few as
possible, due to the fact that distortions decrease the
quality of the data. Then, the support of sensitive
patterns must be reduced exactly to A, because
excessive support diminishes the database's quality.
The proposed algorithm is described in the next
Section.

IV. THEPROPOSEDALGORITHM

In this section we first review some fundamental
implications of our previous work which constitutes the
basis of the proposed algorithm here[10].

A.MOSS algorithm

As outlined in the previous section, we need to
explain how a sequential pattern vanishes from a
sequence; for this purpose, all the occurrences of the
sequential pattern must be cleared from the sequence.
Consider the sequence s=(cd)b(cd)bebe and the
sequential pattern sp = (cd)bb and ebe. The sanitized
s=(cd)b(cd)?e?eis gained by two distortion, because
ros(cd)bb—»s(b: 3) ={4,6}, 10S.pe-s(b:2) = {4}
Note that the sequence should be sanitized with as few
distortions as possible. It is worth mentioning that an
optimal sanitization, namely that of hiding all
occurrences of sensitive patterns in a sequence, is NP-
Hard [3].

A multi-objective sequence selection framework to
surmount the sensitive patterns hiding problem,was
introduced in[10]. Then the the algorithm finds the best
candidate solution for each sequence to sanitize the
dataset and then, by comparing all the best candidates
in the database, it selects the best overall candidate. It
is then applied to the corresponding sequence, so the
support of some sensitive patterns will reduce by one
unit. This process will iterate until all sensitive pattern
supports descend to the exact value of 4.

The candidate solution selection process considers
the following factors [10]:

1. Number of sensitive patterns (nSP) to be
maximized .

2. Number of distortions (D) of the candidate
solution that needs to be minimized.

3. Number of non-sensitive patterns (NSP) that
needs to be minimized.

Thus, the problem of hiding all sequences seSPS in
a sequential database SDB is defined as finding s'
Cs to be hidden and changing SDB into SDB' so that:

max nSP(s"),minD(s"), min NSP(s") (1)
s.t. s'CEs, forallse€ SPS
Supspp,(s) = A, forall s € SPS

To solve the above multi-objective optimization
problem, a weighted summation of the above
objectives is introduced:

F(nSP(s"),D(s"),NSP(s")) = a * nSP(s") —
(y xD(s')+ 6 * NSP(S’)) 2

Where a,y and § are scaling factors and belong to [0,1].
The sequence analysis process, which results in the best
solution, is conducted by constructing a candidate tree
which again was introduced completely in (Rahbarinia
et al., 2010). The candidate tree is composed of all
possible solutions to sanitize a sequence in such a way
that each of its nodes is a solution. Note that solutions
which construct the i level of the tree must be the
combination of a pair of items from (i-1)"level. Based
on this criterion a huge number of unnecessary and
useless solutions will be pruned beforehand.

B. Handling Constraints

Two types of constraints, namely max/min gap and
max/min distance (sliding window), could be
conveniently enforced to hide the algorithm where no
change is required in the algorithm and only the
definition of the related occurrence set needs
reconsideration. If a sequence S contains a
subsequence SP, then a max/min gap constraint
demands the number of elements in S that are
between every two elements of SP, to be less than (max
+ 1) and more than (min — 1). In this case, the related
occurrence set is denoted as
gaprossp_,s(x:i,min,max) . Moreover, a Sliding
window constraint states that the number of elements
in the sequence that are between the first and the last
elements of SP, is in the interval [min, max]. In this
case the related occurrence set is denoted as
disrossp_g(x:i,min,max) . The  following
definitions about the related occurrence sets are
obvious:
gaprossp_s(x:i, min,max) € rosgp_s(x:i) (3)
disrosgp_s(x:i,min,max) C rosgp_s(x:i) (4)

To generate the new related occurrence sets, the
rossps(x:i) is computed first.Then those item
numbers which do not satisfy the constraints are
excluded from it. The modified algorithm, i.e.,
EMOSS, will be introduced in the next part.

C. Enhanced Multi-objective Sequence Selection
(EMOSS)

The proposed algorithm aimed to reduce the time
complexity as well as the memory usage of the
previous work. As mentioned before, in order to hide
sensitive patterns, the algorithm constructs a candidate
tree. The height of the tree depends on the number of
sensitive patterns. The enhancement is achieved by
pruning the candidate tree. The objective function (2)
is computed for each solution and is used as a measure
to rank them as sanitizing candidates. It should be
noted that a deeper solution in the tree offers more
distortions, which leads to a lower objective function.
Thus, deeper solutions in the candidate tree are of
lower quality. This shows the idea of pruning the
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candidate tree, i.e. during the construction of the
candidate tree, the sub-tree starting from a solution will
be pruned if the objective function value for the
solution is lower than the current best objective value
for some thresholds.

Definition5. Measure of Pruning Or M-pruning:a
real value which serves as a threshold to prune the
candidate tree. The current best objective function
value is compared with the objective function value of
each solution, and the subtree starting from the solution
is pruned if the difference is greater than M-pruning.

The mechanism of pruning is as follows:

a. The first level of tree is constructed and the best
objective function value is saved as the current
best objective value.

b. For the 2" level or higher, the process of tree
construction continues as described below:

i If the difference between the current best
objective value and the new solution is less
than or equal to M-pruning, the solution will
be added to the tree.

ii. If the difference is bigger than M-prunnig,
prune the subtree starting at the solution.

iii. If the objective value of the solution is better
than the current best objective value, then the
current best objective value is updated.

Fig.1 shows the steps of the proposed algorithm.
The algorithm DBSeqsToCheck, which holds the s-id
of all sequences, is used to determine which SDB
sequences should be checked in the next iteration. The
algorithm iterates until all sensitive patterns become
hidden. In the first step it finds the best candidate
solution for each sequence and then finds the best
solution for the entire SDB. This solution is applied to
the corresponding sequence and as a result the supports
of sensitive patterns in that sequence will be reduced
by one unit. At this point, those sensitive patterns
which are successfully hidden will be removed from
the SPS.

After the first iteration, only those sequences that
contain hidden sensitive patterns are rechecked and the
sequences are updated taking into account the fact that
their candidate tree will not include the hidden
sensitive patterns anymore. Other sequences' candidate
trees will remain intact. Therefore, a small number of
sequences are checked in each iteration.

With the respect of discussion in this section, the
complexity of the algorithm in worst case will be
computed as below:

In the worst case, if every sequence supports all
sensitive patterns (maximum size of the candidate tree
for the sequence) and each sensitive pattern has one
occurrence in the sequence, then first level of the tree
has the complexity of:

NSP*LSP (5)

Volume 7- Number 4- Autumn 2015 |J|CTR[&.

So with respect to figure 1, the other levels have the
complexity of:

(NSP-2)*(NSP~2) (6)

Finally, the complexity of the whole of the while loop
is:

[(NSP*LSP)+(NSP-2)*(NSP~2)]*DBSize*NSP  (7)

The abbreviation of LSP and NSP is described below:

LSP means Length of Sensitive Pattern and NSP points
to Number of Sensitive Patterns which the sequence
supports.

It is well worth mentiong that the result is for non-
pruning tree. The complexity will be much less than
the above result when the pruninig process is used, and
the complexity is dependent to the depth of the tree
which the pruning occurs.

In the proposed approach in[3], the authors sanitize
selected sequences by hiding all the occurrences of
sensitive patterns in them. In this method, when a
sequence to be sanitized is decided upon, all the
sensitive patterns are removed from it. The process of
hiding all the sensitive patterns from the selected
sequence may lead to the loss of the chance to sanitize
the database with fewer distortions[10].

In order to illustrate the proposed algorithm,
consider sequence s=bab(cd)(abd)bb(bcd) and its
candidate tree in Fig.2 with a sensitive pattern set
SPS = {(cd)bb, ac(ad)}. For the sake of simplicity
the effect of NSP is ignored, i.e. &§ =0. Other
parameters are considered asa =1,y =1, and M-
Pruning=1.

In Fig.2, EMOSS is applied to the sample sequence
and the candidate tree will be described. Each solution
is in the form of (nSP,D),0bj, wherenSPis the number
of sensitive patterns,D is the distortions, and “Obj” is
the objective function value for the solution,
respectively and NSP is ignored for simplicity.

In the first level of the tree, the best objective value
is zero, thus it is saved as the current best objective
value, then all the solutions that appear in the level two
of the tree are evaluated at step 1.2.1 in Fig.1, and the
underlined ones are pruned. Then the current best
objective value is updated to 1.The final best solution
of this candidate tree is solution cc(2,1),1, which is
shown doubly underlined, having an object value equal
to 1.The Result of applying EMOSS is the sanitized
sequence s=bab(?d)(abd)bb(bcd), in which the two
sensitive patterns are hidden solely by one distortion.
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Algorithm: EMOSS
INPUTS: SDB, SPS, 7, a, y, 6, M-pruning
OUTPUT: sanitized SDB (SDB")

DBSeqsToCheck « all s-ids
While |SPS| >0
1. Foreach s-d in DBSeqsToCheck

Find best overall solution

Apply best overall solution and update SDB

[V SO P )

For each sp in SPS

Empty DBSeqsToCheck
DBSegsToCheck «— updated sequence's s-id

©w o

For each s-d in DBSeqsToCheck
9.1. Delete the corresponding bestSolution

1.1. Generate solutions which consider one sensitive item for deletion, save the best objective value of
the first level asthe current best objective value,
1.2, Combine solutions to generate candidate tree:
1.2.1. If (current best objective value — objective value for the solution) > M-pruning, then prune the
subtree starting from the current solution.

then update the current best objective value.
1.3, bestSolutions «— highest ranked solution in the candidate tree

Decrement the support of affected sensitive patterns

5.1. If sup(sp} = i then remove sp from SPS

DBSegsToCheck «— DBSeqsToCheck + s-u of sequences which contain removed sensitive patterns

Fig.1: EMOSS Algorithm

Now suppose the number of sensitive patterns is
three or more, then the candidate tree will deepen more
than 2 levels and there will be opportunities for
pruning, resulting in less computational burdens and
memory usage.

Table 1 shows the results of applying the pruning
method on two sequences, where the first one isa DNA
sequence and the second is a page view of a user during
a 24-hour period. In this study, NSP is ignored, i.e.
6 = 0 andother parameters are considered as a =
1,y = 1 and M-pruning=1. The sensitive pattern set
contains 4 sensitive patterns for both sequences as

57. The MSNBC.com Anonymous Web dataset  [8]
is the second dataset which incorporates 989818
sequences over integers from 1 to 17 as its items. Each
sequence is a page view of a user during a 24-hour
period, and the first 5000 sequences have been
considered in the experiments. These datasets are
denoted as DNA, and WEB respectively. The proposed
algorithm, i.e. EMOSS, was implemented in C# and all
the experiments were conducted on a system equipped
with 2.66GHz Intel core duo processor and 3MB
physical memory, running the Windows XP operating
system.

Table 1: Results for Appling the Pruning Method

The tnber of | The number of

Sec- Sequence Sensitive patterns solutions solutions
o 5P generated by generated
MOSY EMOSY
1 tar fa goactar ge g e gt getg gitaagtat giatant g gegggeitgte gt tatear , gga, acatg, atacat 30731 21

6.2,2.2,15,2,2,1,2,8,56,73,10,11,14,12,2,2,15,15,1,7.67.6,7 4,7,7.7.7.7.7.6.7,

adpdy Lyl 0,

TALTIIIITII 0303377773033 70000000, (L1414, (L1, (7.7 .63

Vo AT T iy a0 a0 8767707,7,7,11,10,7,14 S1,1,2.2)

14.14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,

33

14.14,14,14,16,14,14,14,14,14,14,14,14,14 14,14

shown in the third column. The MOSS algorithm
generated a candidate tree with 30731 solutions, while
the EMOSS algorithm generated a candidate tree with
21 solutions. MOSS and EMOSS generated 6331 and
33 solutions, respectively for the second sequence. The
results show that the EMOSS algorithm pruned the tree
considerably, which decreases the time complexity
efficiently.

V. EXPERIMENTAL RESULTS

In this section the performance of EMOSS is tested
on two datasets. The first dataset is the Molecular
Biology dataset [6], with 106 DNA sequences of length

The EMOSS is compared to MOSS in subscection
5.1, and another study between EMOSS and OSH [3],
is performed in subsection 5.2. These comparative
studies were performed using the following criteria:
the number of distortions imposed on the dataset,
running-time, and infidelity. It is worth while
mentioning that infidelity is a measure that
encompasses those non-sensitive patterns with their
support falling below the support threshold after
sanitization,[10].

Information regarding the datasets is shown in
Table2.The support threshold used to find frequent
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patterns for each dataset sequence miner algorithm is
shown in Column two of Table2, and the third column
of the table shows the number of frequent patterns.
Each figure is supplied with legends in the form of
“algorithm-name, (e, y,0, M-pruning), constraint”,
where algorithm-name refers to the algorithm used in
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the test. (a,y,6,M-pruning) are the parameters used in
the test of the algorithm, and constraint shows the
settings for the constraint(s). It should be noted that the
parameter M-pruning is defined for the EMOSS
algorithm. Experiments showed that M-pruning = 0.7
is a proper value.

l;:-.r:;.a;; \c.-r:.:..u l 4202432 l
>0

Cl bR LI O dd2. 210 dbdi a2

Fig.2: Candidate tree for the sample sequence with pruning

Table 2: Test Datasets[6,8]
Dataset | Support threshold | Patterns
DNA 100 720433

WEB 100 109

A. Comparisson study on EMOSS & MOSS

In this subsection, MOSS and EMOSS are
compared in running-time, distortion, infidelity, and
the total number of solutions produced during a run,
which indicates the memory usage of each algorithm.

In Fig. 3(a)-3(d), the experiments are performed on
a DNA dataset, for sets with sensetive patterns, i.e.
4SPs (Sensitive Patterns) and no constraint has been
included. All experiments were performed for different
values of the hiding threshold(4). Fig.3(a) and 3(b)
show that EMOSS performs much better than MOSS in
terms of running-time and memory usage, due to the
proposed pruning method in EMOSS, while the
distortion and infidelity of both algorithms are the
same, according to Fig.3(c)-3(d). The same
experiments were repeated with two different types of

results are observed in Fig.6(a)-6(h) and Fig.7(a)-
7(d). It should be noted that the number of non-
sensitive patterns affected by the algorithms was also
considered in Fig.7(a)-7(d) by &=1, which leads to
better infidelity.

constraints, i.e. min-max distance (sliding window)
and min-max gap. Fig.4(a)-4(h) show the results
considering the constraint of 18-20 distance, while
Fig.5(a)-5(h) shows the results for the constraint of 4-
9 gap. These Figures confirm the results obtained by
Fig.3(a)-3(d). There are sudden drops in Fig. 4(a), 4(b),
4(c), 4(d), 5(b), and 5(d) for MOSS and EMOSS, and
the EMOSS algorithm performs like the MOSS
algorithm after some hiding thresholds. These happen
because the support of some sensitive patterns
becomes less than the hiding threshold for some hiding
thresholds, and these sensitive patterns are ignored in
the candidate tree construction. When the number of
sensitive patterns reduces to 2, the depth of the
candidate tree will be 2 and no further deepening
happens, which means no pruning, thus EMOSS
performs like MOSS. Similar experiments were
conducted on the Web usage dataset, and the same
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Fig.3: DNA dataset experimental results comparing EMOSS and MOSS with no constraint: (a) time for 4SPs, (b) number
of total solutions for 4SPs, (c) infidelity for 4 SPs, (d) distortion for 4 SPs.
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Fig.4: DNA dataset experimental results comparing EMOSS & MOSS with distance constraint:
(a) time for 3SPs,(b) time for 4SPs, (c) number of total solutions for 3SPs,
(d) number of total solutions for 4SPs,(e) distortion for 3 SPs,
() distortion for 4 SPs,(g) infidelity for 3 SPs,(h) infidelity for 4 SPs.
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Fig.5: DNA dataset experimental results comparing EMOSS & MOSS with gap constraint:
(a) time for 3SPs,(b) time for 4SPs,(c) number of total solutions for 3SPs,
(d) number of total solutions for 4SPs,(e) distortion for 3 SPs,(f) distortion for 4 SPs,
(9) infidelity for 3 SPs,(h) infidelity for 4 SPs.
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Fig.6: Web dataset experimental results, comparing MOSS & EMOSS: (a) time for 3SPs,(b) time for 4SPs,
(c) number of total solutions for 3SPs,(d) number of total solutions for 4SPs,(e) distortion for 3 SPs,
() distortion for 4 SPs,(g) infidelity for 3 SPs,(h) infidelity for 4 SPs
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Fig.7: Web dataset experimental results, comparing MOSS & EMOSS with interfering non-sensitive patterns: (a) time for
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Fig. 10: DNA dataset experimental results comparing EMOSS & OSH with distance constraint: (a) time for 3SPs, (b)
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Fig. 12: Web dataset experimental results, comparing EMOSS & OSH: (a) time for 3SPs,(b) time for 4SPs,(c) distortion
for 3SPs,(d) distortion for 4SPs,(e) infidelity for 4 SPs,(h) infidelity for 3 SPs

B. Comparative Study on EMOSS & OSH

In this subsection, EMOSS and OSH are compared
in terms of running-time, distortion, infidelity.
Fig.8(a)-8(c) show experimental results for DNA
dataset with no constraint. Fig.8(b) compares the
number of distortions for both algorithms and shows
that EMOSS performs better, while EMQOSS
outperforms OSH in running-time in Fig.8(a).The
running-time figure is a descending ramp for OSH, due
to the removal of some sequences during the
sanitization process.

Fig.8(c) shows that EMOSS and OSH are the same
in terms of fidelity for most values of the hiding
threshold, and EMOSS performs better in the higher
hiding threshold.Fig.9(a)-9(f) show experimental
results for the DNA dataset with distance constraint. In
Fig.9(c) and 9(d), the previous result is seen again. In
Fig.9(a) and 9(b), the curve of running-timeslopes
down for EMOSS is just like that of Fig.4(b) which was
mentioned earlier. Fig.9(e) and (f) show a similar
performance to that seen in Fig.8(e) and 8(f).

Fig.10(a)-10(f) show experimental results for the
DNA dataset with a gap constraint and similar
performances are seen.  Fig. 11(a)-11(f) show
experimental results for the Web dataset which
compares EMOSS and OSH. Fig.11(a) and 11(b)
indicate that EMOSS performs better than OSH in
running-time, but in Fig. 11(c) and 11(d) as well as
11(e) and 11(f), EMOSS(1,1,1,1) performs better
where infidelity has been taken into account. The
major reason for the drop in the running-time for OSH
is that it removes some sequences from its processing
list with respect to the hiding threshold.

V1.CONCLUSION

In this paper the problem of hiding sequential
patterns has been addressed. The main contributions
are that it proposes a more efficient algorithm with
fewer distortions and lower infidelity. Furthermore, it
considers a highly flexible weighted objective function
to find the best solution among all candidate solutions
to sanitize sequences. Handling constraints is the other
advantage of the proposed method. Experimental
studies based on two datasets proved the advantages of
the algorithm mentioned. The results demonstrate that
the proposed algorithm outperforms the other existing
algorithm in terms of computing time and memory
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usage. Further studies include investigating other
algorithmic solutions taking into account other types of
data, like multi-dimensional data which the authors are
working on.
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