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Abstract—A new scheme is developed, in this paper, within the framework of the ADPCM-based waveform coding
technique for low bit rate encoding of speech signals. The essential feature of this scheme consists of replacing the
commonly used linear filter with nonlinear processing based on kernel methods. Our previously reported study,
conducted on various emerging kernel adaptive algorithms, shows the usefulness of the kernel LMS (KLMS)
algorithm in this framework. However, two original strategies are incorporated into this scheme, in the current study,
to further improve its performance. The first strategy is based on improving the adaptive scalar quantization of the
residual samples by employing a look-ahead concept to find the best possible quantization levels using the Viterbi
algorithm. The second strategy is to apply a pre-emphasized noise reduction filter. This filter is implemented in a
closed-loop form along with an inverse filter, so as to minimize the destructive effects of the noise reduction filter.
Simultaneous employment of these strategies in the main scheme with the nonlinear processing provided by the
KLMS algorithm brings about a waveform encoder that reconstructs speech with PESQ measure of 2.5 at low bit rate
of 1 bit per sample.
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[1, 2] and modern standard encoders, e.g. MPEG-4
audio [3] and ITU g729.1 [4] standards, is still to

I.  INTRODUCTION
Despite the existence of a large number of

[ Downloaded from ijict.itrc.ac.ir on 2025-11-17 ]

efficient speech coding methods and even in spite of
the recent departure from narrow-band to wide-band
speech, there are always great demands for coding
algorithms at lower rates. A key objective of many
state-of-the-art speech and audio coding algorithms

*This article has been extracted from a PhD thesis carried out by
Gh. Alipoor under supervision of Professor M. H. Savoji.

deliver the best possible features at low bit rates.
However, apart from sinusoidal coders that are
directly applied to the speech waveforms, low bit rate
speech coding techniques are mostly based on the
source-filter model [5]. Speech is synthesized, in this
model, by passing an excitation signal through a
linear filter that represents the spectral contents of the
speech signal. This simple paradigm has met with a
considerable success and received a great popularity
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in a variety of applications. Nevertheless, this model
suffers from some well-understood shortcomings,
mainly due to its severe dependency to the nature of
the signal. First of all, the frame-based linear
prediction (LP) analysis, embodied in this model,
implies a delay which can be intolerable in many
applications. Furthermore, performance of these
algorithms seriously degrades in the presence of
background noise or any other non-speech signal.
This in turn makes them very sensitive to tandem
connection. This problem is usually alleviated by
employing a speech enhancement unit prior to the
coding scheme [6, 7]. Although this method is found
to be useful in a variety of applications, its operability
is generally restricted to slowly varying noises.
Moreover, this preprocessor in turn deteriorates the
performance of the speech-specific coding methods

[8].

These problems mainly stem from the rigid
dependency of the adopted source-filter model to the
speech signals’ characteristics. To address this issue,
the well-known adaptive differential pulse code
modulation (ADPCM) technique with backward
prediction is used in the current study for developing
a low bit rate speech coding scheme. ADPCM coders
are classified as waveform coding algorithms that
benefit from some appealing advantages, e.g.
robustness against background noise, less degradation
in tandem connection, having low delay and being
independent from the nature of the signals. However,
they are generally accepted as coding algorithms
operating at moderate bit rates [5, 9]. By contrast, a
scheme is developed, in this paper, for low bit rate
coding of speech signals within this framework. The
essential feature of this scheme consists of replacing
the commonly used linear filter with nonlinear
processing based on emerging kernel methods to
account for nonlinear characteristics inherent in
speech signals. In kernel methods, linear algorithms
are applied on the transformed data in reproducing
kernel Hilbert spaces (RKHS) that are nonlinearly
related to the original input space [10, 11].
Reproducing property of the new spaces makes it
possible to calculate inner products in these implicit
high, or possibly infinite, dimensional spaces by
means of the kernel functions evaluated in the low-
dimensional input space. Therefore, in spite of
linearity and convexity in RKHSs, resultant
algorithms, possessing the property of universal
nonlinear approximation, can be solved in a
reasonable complexity. Our previously reported
study, conducted on various kernel adaptive
algorithms, shows the usefulness of the kernel LMS
(KLMS) algorithm in this framework [12].
Nonetheless, as will be emphasized here below, the
operability of the resultant algorithm is limited to the
minimum rate of 2 bits per sample. But, there is room
for further improvement and that is the issue
undertaken in the study reported here. To that end,
two original strategies are incorporated into our
previously proposed KLMS backward ADPCM
speech coding scheme to make it possible for the
coding algorithm to operate at as lower rates as 1 bit
per sample. In fact, this improvement is achieved by
reducing the quantization noise and alleviating its
effect on the quality of the reconstructed speech.

Reducing the quantization noise has been always of
great interest and considerable attempts are always
made to alleviate its effect. The most recent study is
reported in [13].

Inspired by the Viterbi algorithm, which is vastly
used in the context of hidden Markov models and
convolutional channel coding, a novel technique is
developed to increase the accuracy of the adaptive
scalar quantization used. This technique is based on a
look-ahead concept to find the best possible
quantization levels for representing the residual
signal, i.e. to minimize the total reconstruction error
calculated on the present and future samples. In this
way, the decision-making is postponed, for any
residual sample to be quantized, so as to take its effect
on the future samples (in terms of the adaptive
quantization step size and the KLMS prediction filter
to be used) and the impact of the quantized future
samples on the total quantization error into account.
This is done by considering more than one
quantization level for each residual sample and
finding the best possible quantization sequence in a
multipath search manner. This general idea has a long
history of success in source coding in algorithms
generally known as trellis coding [14-16]. A special
form of these algorithms is the trellis coded
quantization (TCQ) motivated by the trellis coded
modulation concept [17]. This scheme and its
variants, e.g. predictive trellis coded quantization [18]
and trellis coded vector quantization [19], make use
of the Ungerboeck’s notion of set partitioning. In
summary, to quantize one sample with b bits, the 2°
codewords used in the traditional adaptive
quantization are doubled (to 2°+! quantization levels)
and then partitioned into 2°** subsets, where b is an
integer less than or equal to b. b of the input bits are
expanded by a rate b/b + 1 convolutional code and
used to select the subsets the quantization level for the
current sample will be chosen from. The remaining

b—b bits are used to select one of the 2°°
codewords in the selected subset. Viterbi decoding is
used to find the sequence of codewords which
minimizes the distortion caused by quantization. The
convolutional code and set partitions are chosen in
such a manner as to increase the Euclidean distance
between allowable sequences of codewords [14-16].

Our technique is straightforward and utilizes the
correlation that exists among subsequent samples in
the coding algorithm and has clear differences with all
these approaches. This technique is incorporated in
the coding scheme along with a pre-emphasized noise
suppression strategy. This strategy is based on cutting
the quantization error back by means of a very simple
one-tap low-pass filter similar to the one used in the
frame-based analysis-by-synthesis coding algorithms
for spectral tilt correction [20, 21]. This filtering is
implemented in a closed-loop form along with its
inverse, placed prior to the quantization block in the
encoder, to minimize its destructive effect on the
quantized speech residual signal. In the decoder, the
low-pass filtering is carried out directly on the
received quantized signal.

The paper is organized as follows. The KLMS
algorithm and its employment within the ADPCM
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technique for speech coding are briefly described in
section 11, following a general introduction to kernel
methods.  Strategies adopted to improve the
performance of the resultant codec are addressed in
section Il and sectionlV is dedicated to simulation
results. Finally some conclusion remarks are
presented in sectionV.

Il.  EMPLOYING KLMS PREDICTION IN SPEECH
CODING

The core part of the proposed scheme is an
ADPCM-based coding algorithm with adaptive
backward prediction. The quantization is carried out,
in this technique, on the residual or what remains of
the speech signal when its predictable parts have been
removed adaptively. Linear prediction is the simplest
choice in this paradigm where prediction is performed
by a linear combination of a finite number of past
samples. However, several researchers have
investigated, theoretically and experimentally, the
presence of nonlinearities in speech signals [22, 23].
These nonlinearities, which are mainly due to
amplitude-dependent vocal folds oscillation and
interaction between the vocal folds and the vocal
tract, can be observed, for example, from higher order
statistics measures and chaotic behavior of speech
signals. Therefore, replacing the linear model with
nonlinear models should enable us to obtain a
more accurate description of the speech signal.
This in turn may lead to a better performance of
practical speech processing applications. On the
other hand, our previously reported study shows the
usefulness of nonlinear processing based on emerging
methods of kernel adaptive filtering in this context
[12]. In fact as mentioned later an improvement of up
to 3.4 dB in the SNR of the decoded speech is
achieved when employing the kernel LMS (KLMS)
algorithm, which is judged the best for this purpose in
that study. The KLMS algorithm is briefly introduced
in this section, but further details can be found in [12].

A. KLMS Adaptive Algorithm

It can be shown that for any RKHS # with the
kernel function K, one can imagine a space, known as
the feature space, in which the inner product can be
calculated through evaluating its kernel function K in
the original input space [10, 11]. The mapping that
projects the input vector x € X as the function
¢(x)(*) = K(x,”) € His termed feature mapping and
denoted by ¢ . In other words, representing the
function ¢ (x)(-)as ¢(x), the kernel K corresponds to
a feature mapping ¢ for which:

K(x,y) ={(p(x),¢(y)), xyeX (1)

Equation (1) is known as the kernel trick and
states that the inner product in the feature space can
be expressed in terms of the kernel function
evaluation. Kernel trick has the central role in kernel
methods based on which all linear inner-product-
based algorithms can be implicitly applied to the
feature space while remaining in the input space.
Therefore, one can implicitly extend linear
algorithms, such as those used in optimization
problems, to a high-dimensional feature space while
performing all calculations in the low-dimensional
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input space. The resultant algorithms possess the
properties of convexity and universal nonlinear
approximation.  Furthermore, nonlinear  kernel
methods are quite flexible so that one can change the
nonlinear model just by changing the kernel function
used. In addition to successful applications of kernel
methods in batch mode, developing kernel adaptive
algorithms for online applications, e.g. the situation
entailed in the backward ADPCM technique, have
also recently witnessed a significant attention [24].
Extending linear adaptive algorithms to RKHSs are
mostly based on reformulating the original algorithms
in terms of inner products and then replacing the inner
products with the kernel function evaluations. This
will be equivalent to implicitly solving the linear
adaptive algorithms in the feature spaces induced by
the kernel functions, where transformed signals are
more likely to be linearly related to the so called
desired signal.

The milestone in the evolution of kernel adaptive
algorithms is the kernel LMS (KLMS) algorithm
which is a straightforward extension of the linear least
mean square (LMS) algorithm into RKHS [25]. In the
framework of ADPCM speech coding with backward
prediction, we aim at predicting the current speech
sample s(i) based on P past samples of the
reconstructed speech §. Using the normalized LMS
(NLMS) algorithm, the weight update equation, at
instant i, is:

uxi€(i) )

Wi =W, 1+—
O'Sl-

x;=[8(-1) 3(—P)]" and é(i) are the
input vector and the quantized value of the prediction
error at instant i, respectively. 0 < u « 1is the
convergence parameter to control the memory span of
the predictor filter and therefore the convergence
speed of the algorithm and ﬁsf is an estimate of the
input signal variance. The KLMS algorithm [24, 25]
is derived by employing the NLMS algorithm to
predict s(i) based on the transformed input ¢; =
¢(x;). Denoting by w the estimated value of the
filtering coefficients in the feature space and
assuming w, = 0, it is easily seen that:

“rs i-1 Q)
() = w9 = kIS K(G X)) G)
J

@,]2, = a@pj_l + (1 - )K(x;, x;) 4)

@,Jz_is an estimate of the variance of the transformed

data at instant j and « is the forgetting factor in this
estimation. In conclusion, adaptive NLMS filtering
can be implicitly carried out in the high-dimensional
feature space without direct access to the feature map
and the filtering coefficients. More interestingly, it
has been shown that the KLMS algorithm possesses
the property of self-regularization that makes an extra
regularization unnecessary [25]. In addition to
simplifying the implementation, this property
improves the performance because regularization
biases the optimal solution.

As one can see from (3), the size of the network
over which the signal is expanded or the number of
past samples based on which the signal is estimated,
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called the dictionary, increases with the size of the
data. This dictionary, at any time, consists of all
previous input data, i.e. x; vectors as well as all
previous normalized residual samples %) Alleviating
this problem is the main implementatic;nal challenge
in online applications where the number of
observations continuously increases. In practice,
redundancy among input data makes it possible to
drastically reduce the size of the network, at the cost
of a negligible effect on the quality of the model. This
is generally carried out based on selecting the most
informative data and discarding the others from the
dictionary. This procedure is termed sparsification
and many approaches have been proposed for this
purpose in both batch and online modes. One of the
first and still widely used measures is the novelty
criterion (NC) proposed in [26] which acts based on a
simple distance measure in the input space. In this
approach, at iteration i, the minimum distance of the
new input vector x; to all the vectors retained in the

dictionary ¢;_, (i.e. min ||x; —x;||) is calculated.
ijCi_l

The new input vector will be accepted as a new
element of the dictionary only if this measure is larger
than a preset threshold, and the quantized prediction
residual é(i) is also larger than another predefined
constant.  Sparsification drastically reduces the
complexity of the online algorithm. This in turn
makes Kkernel adaptive filtering a competitive
candidate for nonlinear adaptive signal processing.

B. Utilizing KLMS Prediction in the Framework of
the ADPCM technique

The main source of performance improvement for
the ADPCM coder is the reduced dynamic range of
the quantizer’s input signal. This reduction is
achieved by removing the short term redundancy of
the speech waveform that is, in turn, accomplished by
subtracting an adaptively predicted signal from the
input signal. In backward prediction, used in this
work, the coding parameters, i.e. the kernel adaptive
predictor and adaptive quantizer’s step size, are
sequentially estimated from the past quantized
residual signal, also available at the decoder. This
scheme is shown in Fig 1 for the encoder. Prediction
is usually performed linearly. But, speech is
inherently nonlinear and nonlinear filters with higher
ability to cope with this nonlinearity ought to be used.
Volterra filters are nonlinear models widely used for
this purpose [27, 28]. However, in addition to their
inherent instability, the fact that their computational
complexity grows exponentially with the memory size
and the degree of nonlinearity involved is the major
obstacle for their practical use.

Nonlinear adaptive Volterra filtering can be also
accomplished using kernel adaptive algorithms [29].
Corresponding to the quadratic Volterra filter with
memory span P, a kernel function is adopted in [12]
as:

K(x;, %)= (x,"x;) + (xiij)Z (5)

The relevant mapping function ¢, that constitutes an
RKHS, transforms the input vector x; € R to
¢(x;) € F = RPHP(P+D/2 that is a vector containing

Kernel Adaptive # +
Predictor Al
S(i) A+

¥

Fig 1 General scheme of the backward ADPCM
encoder utilizing adaptive backward prediction

all possible first and second order permutations of the
elements of x;. In contrast to the Volterra filter, the
estimation complexity is now linearly dependent on
the input dimensionality. The selected polynomial
kernel exactly implements the quadratic Volterra
filter. But, implementing this adaptive filter in the
lower-dimensional input space avoids some instability
characteristics the Volterra filters suffer from.
Moreover, the self-regularization property of the
KLMS algorithm makes numerical solutions more
reliable.

Ill.  STRATEGIES TO IMPROVE THE PERFORMANCE
OF THE ENCODING ALGORITHM

Although the KLMS algorithm results in a
considerable improvement over the LMS algorithm,
the operability of the resultant algorithm is only
limited to the minimum rate of 2 bits per sample. But,
there is still room to further improve the performance
of this coding scheme. Two strategies devised for this
purpose are described in this section.

A. Look-Ahead Adaptive Quantization based on the
Viterbi Algorithm

Since the quantization error is of critical
importance, an adaptive scalar quantizer is used to
quantize the residual samples. The adaptive
memoryless quantizer, at any given time, is assumed
to have a symmetric uniform transfer characteristic
with a fixed scheme and an unknown variable step
size Aj. The optimum step size, Ao, IS related to the
residual’s standard deviation oe Via a parameter, say p,
that depends only on and is mmse optimized for the
input probability density function (pdf) and the
number of bits per sample (bps) used. For a
nonstationary input, o. is time-varying and adaptive
guantization means estimating it continuously.
Therefore, the operation of an adaptive quantizer can
be defined in the form of A;= pa,,, where o, is an
adaptive estimate of o. at time i. With the adaptive
backward prediction, this estimation is also performed
in backward manner [9].

Traditionally scalar quantization is nothing more
than selecting a value among the codewords that best
represents the current sample of the residual signal,
independent of others. This memoryless method can
be improved if one can consider the effect of the
current decision on the following samples and also its
subsequent impact on the total reconstruction error in
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State i=1 i=2 i=3 i=4 i=5

Deciding on the quantization value at i=1
-
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Selected branch for i=1

i=1 i=2 i=3 i=4 i=5 i=6

Fig 2 Tree formed by the look-ahead scalar quantization technique, for D=2, M=5 and L=5. Pruned leaves
are shown with dashed lines

a look-ahead procedure. This can be easily performed
by picking more than one codeword, at each time
instant, to keep the future evolution of this error in
sight. This way the decision-making among these
picked candidates is carried out, after a short delay,
based on their effect on the subsequent samples. This
is done by forming a so-called tree and finding the
best possible quantization sequence among the
possible paths. This is the essence of the method used
in this study to improve on the traditional memoryless
adaptive quantizer described before.

All parameters of the codec are assumed to have
started from known initial values based on which the
first speech sample is estimated which in turn yields
the first residual sample. The KLMS starts with an
empty dictionary whereas the two energy estimates,
used in normalizing the KLMS algorithm and
adapting the quantization step size, are initialized with
a small positive value. In the proposed look-ahead
adaptive quantization (LAQ) technique, the D; (to be
called the tree depth) closest codewords are picked as
the candidates for representing the first residual
sample. The encoding algorithm subsequently steps
forward a sample, considering all possible quantized
values, resulting in Dy different residual samples for
the second time instant. It should be noted that, in the
backward scheme, values of the residual samples and
all other parameters depend on the previous
quantization levels. Therefore there will be D
possible residual values for i=2. Each possible
residual sample, at the second time instant, is in turn
represented using D: different quantization levels.
This branching continues for the subsequent samples
resulting in a tree, as illustrated in Fig 2. Each path
through the tree represents a possible encoding
sequence for the corresponding sequence of speech
samples. In other word, there is a one-to-one
correspondence between each path and an encoding
sequence. These paths can be retrieved by saving the
guantization levels as well as all other signals and
parameters belonging to each path.

Decision is made, for each node, after a delay of
L: (to be called the trace-back length) samples, using
the Viterbi algorithm. By doing so, at time instant
L+i the best path, among the retained paths of the
tree, which results in the best reconstructed speech
sequence is found. The root branch of this path is
chosen at instant i as the branch to be selected and all
corresponding signals (to form the predictor or the
sparsed dictionary) and parameters are therefore

substantiated for that instant. Selection of the best
path is, in turn, carried out on the basis of a merit
criterion assigned to each path. This criterion shows
the distortion caused by going through the path and is
defined as the cumulative difference between the
value of the speech samples and their reconstructed
counterparts available at the encoder. That is, the
criterion C; assigned at instant i to the path k, is
defined as:

Cir = Ci—yp + |s(@) — 3, (DI

3y is the reconstructed speech signal following the kth
path.

In practice, if the trace-back length L. is
sufficiently large, most of the surviving paths emerge
from the root branch that leads to the selected best
path. Our experiments showed that this is the case, on
average, for more than 90% of decision time
instances. However, once the selected path is chosen
only those paths that emerge from the selected branch
are kept and all other existent paths are cut away as
they are no more valid. This notion is also depicted in
Fig 2. To control the size of the resultant tree and
hence the complexity and storage, the number of
surviving paths is limited, at each instant, to a
maximum value of M; (to be called the tree mass).
This is done by keeping the M, best paths, with less
cumulative distortion, and truncating the others. It
should be noted that, at each instant, all processes
(including analysis, quantization and reconstruction)
should be carried out over all nodes and hence
restricting the number of the survivors drastically
reduces the computational complexity as well as the
storage. It is noted that in addition to the increased
complexity, the LAQ procedure implies a short delay
of L;samples. Notice that the LAQ is implemented in
the encoder whilst the decoder uses a conventional
dequantizer without delay. It is important to state that
this quantization scheme is quite general and can be
considered as a novel and efficient adaptive
quantization method that could be used, in principle,
in any other relevant application, especially when it is
accompanied by the pre-emphasized noise reduction
outlined next.

B. Pre-Emphasized Noise Reduction

A very simple noise reduction technique is
adopted in this study to reduce the effect of the
quantization error. In its simplest form the
quantization error g(i) can be modeled as an additive
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noise, i.e. é(i) =e(i) +q(i). For the employed
uniform quantizer, the quantization error g can be
modeled as a white noise with a fairly flat power
spectrum. This is while the residual signal e still bears
some similarity to the speech signal s and hence can
be considered somewhat low-band. The proposed
noise reduction technique is based on low-pass
filtering the quantized residual signal é so as to
attenuate the quantization noise g while keeping the
residual component e unaffected, as much as possible.
This is done by applying a one-tap integrator (7 +az)
on the quantized residual signal.

The main feature of this method is that the effect
of this noise reduction filter on the original signal is
compensated beforehand by applying an inverse high-
pass filter (/+oz?!)™? to the residual signal before
guantization. Although quantization is a nonlinear
function and hence the superposition property is not
applicable, simultaneous deployment of the two
filters, in the encoder, results in low-pass filtering of
the quantization error with minimum effect on the
residual signal. Therefore, this strategy gives rise to
suppressing the reconstruction error due to
quantization noise while minimizing its destructive
effect on the speech signal. This scheme is depicted in
Fig 3. Notice that incorporating this noise reduction
scheme is achieved by a slight increase in the
complexity as now the two filters, whose relevant
data must be kept as others for each path, are part of
the LAQ implemented by Viterbi algorithm in the
encoder. The low-pass noise reduction filter is
applied, in the decoder, on the received quantized
residual signal.

IV. RESULTS

Results reported throughout this paper are
averaged over all 504 Sl speech signals in the test set
of the DARPA TIMIT [30]. These signals have an
average length of about 3.5 seconds containing each a
whole sentence in English, uttered by both male and
female speakers. They were originally sampled at 16
kHz and are down-sampled to 8 kHz, after applying a
20th order anti-aliasing low-pass filter, and then
quantized uniformly at 16 bps. These results are
obtained by setting the adaptive filtering memory
span to P=10 samples. The quality assessment of

s(i) +I ‘I e(i) (1+az-1)-1H Quantizer

Kernel Adaptive
Predictor

¥

Fig 3 General scheme used for deploying the noise
reduction filter along with its inverse filter in the
encoder

reconstructed speech signals is based on two objective
criteria of signal to noise ratio (SNR) and perceptual
evaluation of speech quality (PESQ). PESQ
evaluation is conducted as suggested by ITU-T P.862
recommendation [31] that has a good correlation with
the subjective measure of mean opinion score (mos).

It was shown in [12] that utilizing the KLMS
algorithm in the framework of the backward-
prediction ADPCM coding results in a considerable
improvement in the overall performance of the
encoder, as compared to its linear counterpart. This
improvement is up to 3.4 dB in the SNR of the
decoded speech. Moreover, it was seen in that study
that the linear LMS-based coding algorithm reveals
instability for bit-rates less than 3 bps whereas the
KLMS-based codec’s stability is restricted to bps
values greater than 1. To further improve the
performance of the nonlinear scheme, the use of the
proposed LAQ as well as the well-known TCQ
techniques with adaptive scalar quantizer are
investigated in this scheme. These tests are conducted
with four bps values of 1, 2, 3 and 4. The LAQ
technique is implemented as described in section Il
in which the Viterbi parameters are set as D=4, L =7
and M=5.

Furthermore,  the  rate-1/2  feedback-free
convolutional encoder whose block diagram is
depicted in Fig 4 is used for the TCQ coder. This
coder was also tested with some other convolutional
encoders and best results are reported in this paper. In
any case, decision is again made with a delay of 7
samples. Incorporating the TCQ technique in this
structure makes the encoder stable for bps=1. On the
other hand, even though the LAQ encoder is still
unstable for bps=1, both LAQ and TCQ techniques
increase the quality of the reconstructed speech. This
improvement is achieved at the cost of an increased
complexity and introducing a short delay of L;
samples. Overall quality of the reconstructed speech
utilizing these techniques is tabulated in Table 1,
along with the results achieved using the memoryless
adaptive quantizer. These results reveal that the
proposed LAQ technique outperforms the TCQ
technique for bps values greater than 1. The averaged
processing time is comparable for both techniques.

The incorporation of the proposed pre-emphasized
noise reduction filter is also studied, using both LAQ
and TCQ techniques as well as the original adaptive
memoryless quantizer. Results, tabulated in Table 2,
show that this noise reduction filtering does not

Table 1 Overall quality of the reconstructed speech
using the KLMS algorithm, with different
quantization techniques

bps=1 bps=2 bps=3 bps=4

(@) SQ
PESQ Unstable 2.76 356  3.98
SNR (dB) Unstable 837 1921 24.03

(b) TCQ
PESQ 22287 2.79 3.36 3.84
SNR (dB) 7.9 1268 17.80 22.28
(©) LAQ

PESQ Unstable 2.93 3.66 4.03
SNR (dB) Unstable 11.04 20.42 24.33
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Fig
4 Feedback-free convolutional encoder used in the
TCQ encoder. D stands for delay

Y
Y

increase the overall quality of the TCQ encoder.
However, this technique improves significantly the
performance of the LAQ encoder for bps=1 and 2.
The LAQ encoder is now stable even at 1 bit per
sample quantization and the resultant scheme again
outperforms, in this structure, the well-known TCQ
technique. However, it was noted that the noise
reduction technique cannot stabilize the scheme by
itself i.e. without being used as part of the LAQ. It is
worth mentioning that the « parameter used in the
noise reduction filtering is adjusted for each coding
scheme separately on the basis of the averaged PESQ
measure calculated on a training database. These best
values are also included in Table 2. It can be seen that
the positive effect of this technique is considerable for
LAQ coder with bps=1. This effect diminishes with
increasing bit-rates expecting less noise reduction.
Using the TCQ technique with bps values of 2 and 3
best results are achieved with o=0 i.e. bypassing the
noise  reduction  filter. Therefore, results
corresponding to this scheme are the same in both
tables. It is should be noted that the LAQ parameters
are selected so as the algorithm leads to the best
possible results. As an example, Fig 5 shows the
average PESQ measure against the trace-back length
for the LAQ algorithm with the pre-emphasized noise
suppression filter. It can be seen that increasing the L
parameter beyond 7 has no significant effect on the
codec’s quality.

In any case, the main achievement is that utilizing
the noise reduction strategy along with the look-ahead
quantization results in a waveform encoding
algorithm that reveals a good performance in terms of
average PESQ measure of about 2.5 at the rate of 1 bit
per sample. This result is even better than that of the
TCQ technique. Nonetheless, the algorithm suffers
from high complexity. Moreover, as a backward
adaptive all-pole filter is used to model the speech
signal, the codec has high sensitivity to transmission
errors. In addition to resorting to pole-zero models,
the sensitivity of the developed encoder to channel
errors can be reduced by including a leakage factor in
the prediction adaptation algorithm [5]. Leakage
allows the system to forget past values of the
dictionary contents. Our tests showed that including
the leakage factor considerably increases the
robustness of the encoder against transmission error
with a negligible effect on its transmission noise-free
performance. It is noted that the inclusion of a leakage
factor, introduced here in passing, is by itself a
novelty in the context of kernel based methods. The
issue of robustness to channel error and its remedy is
not dwelled on here as this problem is beyond the
scope of this paper. It is only noted that it may be
mitigated by way of utilizing the proposed Viterbi
algorithm in a joint source and channel coding
scheme.
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Table 2 Overall quality of the reconstructed speech
incorporating noise reduction (NR) in the coding
scheme

bps=1 bps=2 bps=3 bps=4

() SQ
PESQ Unstable 2.90 3.59 3.98
SNR (dB) Unstable 10.76 18.89 24.03

o Unstable 0.2 0.15 0
(b) TCQ
PESQ 2.25 2.80 3.36 3.84
SNR (dB) 7.99 12.65 17.80 22.28
a 0.1 0.025 0 0
(c) LAQ
PESQ 2.47 3.07 3.67 4.03
SNR (dB) 8.56 14.4 20.59 24.39
a 0.97 0.4 0.2 0.05

) / [—bps=1

[--bps=2

7
Trace-Back Length

Fig 5 Averaged PESQ vs. trace-back length for the
LAQ algorithm

V. CONCLUSION

Despite the proven usefulness of the celebrated
KLMS algorithm in ADPCM based backward speech
coding, its operability was limited to bit-rates values
of 2 bps, i.e. bit-rate of 16 kbps for 8 KHz sampling
frequency. Two original strategies are investigated in
the current study to improve the performance of this
coding algorithm so as to develop a waveform
encoder able to operate at low bit-rate of 1 bit per
sample, i.e. bit-rate of 8 kbps for 8 KHz sampling
frequency. The first developed strategy is based on
the Viterbi algorithm to refine the adaptive scalar
quantization of the residual samples. This method is
based on a look-ahead concept to consider the effect
of the current quantization level on the following
samples and the impact of future samples in the total
reconstruction error. Although this quantization
technique increases significantly the quality of the
reconstructed speech and outperforms the well-known
trellis coded quantization, the resultant coding scheme
does not still operate at 1bps. The performance of the
scheme is further improved by applying a noise
reduction filter. The main feature of this procedure is
that the low-pass filtering is carried out in a closed-
loop form, in the encoder, along with an inverse filter
to minimize its destructive effect on the reconstructed
speech signal. Simultaneous deployment of these
strategies brings about a waveform encoder that
operates at low bit rates of 1 bit per sample.

This basic study in turn shows the usefulness of
the proposed strategies and paves the way for further
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study and improvements. To the best of our
knowledge, this is the first proposed low delay and
low bit rate ADPCM-based speech coding algorithm.
As a waveform coding algorithm, the developed
scheme is expected to benefit from some appealing
advantages of ADPCM coders e.g. robustness against
background noise, less degradation in tandem
connection, having low delay and being independent
from the nature of the signals. Extending the KLMS
algorithm to block processing and combining the
proposed LAQ strategy with vector quantization, to
represent the residual signal more efficiently,
constitute the main line of our future research work.
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