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Abstract—In the present research we have used gray level co-occurrence matrices (GLCM) and Gabor filters to extract
texture features in order to classify satellite images. The main drawback of GLCM algorithm is its time-consuming
nature. In this work, we proposed a fast GLCM algorithm to overcome the mentioned weakness of the traditional
GLCM. The fast GLCM is capable of extracting approximately the same features as the traditional GLCM does, but in
much less time (about 200 times faster). The other weakness of the traditional GLCM is its lower accuracy in the regions
near the class borders. Since features extracted using Gabor filters are more accurate in boundary regions, we combined
Gabor features with GLCM features. In this way we could compensate the latter mentioned weakness of GLCM.
Experimental results show good capabilities of the proposed fast GLCM and the feature fusion method in classification

of very high resolution remote sensing images.
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. INTRODUCTION

Features commonly used in classification of remote
sensing images are categorized into two main groups:
spectral features and spatial features. A spectral feature
vector of a pixel is a vector whose elements are the
reflected energy, from a point in the scene
corresponding to the pixel recorded in different spectral
bands, or linear/nonlinear combinations of these
reflectance values [1]. So, a spectral feature vector is
defined only for colored, multispectral (MS), and
hyperspectral (HS) images. On the other side, spatial
features of a pixel are the ones which are obtained from
processing the gray level values of a pixel and its
neighbors in a single-band image [2-7]. Thus, this kind
of features can be defined for single-band images, such

as panchromatic satellite images, as well as individual
bands of colored, MS, or HS images. Spatial features
used in image processing can be divided into two main
categories: texture and shape features. Texture features
act as a measure of coarseness, size, and directionality
of image details, while the latter assesses the shape of
these details [8-10]. However, there is not a clear
distinction between these two categories, e.g. features
extracted from gray level co-occurrence matrices
(GLCM) are known as texture features while they could
be used as shape measures too [9, 10].

Texture analysis and classification is one of the
active areas in machine vision and image processing,
and is used in various applications such as object
recognition and tracking [2-4], image retrieval [5, 6],
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and satellite image classification [7, 11, 12]. A wide
variety of techniques for image texture analysis have
been proposed. Keen readers may find good
information in [8, 10, 13].

In the present research, we try to utilize two kinds
of spatial features in order to classify single-band
images: statistical features extracted from GLCM
matrices, and structural features obtained using Gabor
filters.

GLCM matrices capture image properties related to
the second-order statistics of the pixel intensities [14] in
an image, and are one of the most well-known texture
feature extraction approaches. Despite their popularity
and the ability to extract texture context, GLCM
features have two main drawbacks; being highly time-
consuming, and having relatively low accuracy in the
regions near the class borders. To address these
deficiencies, we have proposed two solutions: 1) a fast
algorithm to extract GLCM features while preserving
their quality, and 2) fusing GLCM features with the
features obtained from another approach which is more
accurate in border regions, i.e. Gabor features [7, 15-
20]. These features are obtained through processing the
input image in the joint spatial-Fourier domain by
applying Gabor filters; without concerning Heisenberg
uncertainty inequality which is a known issue when
using Fourier transform as a local structural feature
descriptor [13]. Note that this paper is an extended
version of the work published in [21]. We extended our
previous work by providing more detailed discussions,
a comparison between complex and real Gabor
features, some performance evaluations using
analytical computational complexity assessments, and
implementing the method on non-mosaic remote
sensing panchromatic dataset with natural borders
between different land covers.

The outline of the remainder of this paper is as
follows. In section IlI, we briefly introduce GLCM
matrices and Gabor filters, and propose a fast algorithm
for GLCM calculations. In section Il1l, GLCM and
Gabor features are fused to make it possible to use their
advantages  simultaneously. In  addition, the
computational complexities of the feature extraction
methods are analytically compared. Finally, section IV
concludes this work.

Il.  FEATURE EXTRACTION ALGORITHMS

A. GLCM

One of the simplest statistics of a two dimensional
image is the information obtained from its one-
dimensional histogram, i.e. the probability of gray level
occurrences. One-dimensional histogram does not
consider the relationship between pixels exactly, thus it
is not a good texture measure. To overcome this
weakness, two-dimensional histogram was introduced
[14] which is in fact the probability of occurrence of
two different gray levels in the neighborhood of a pixel
under examination. In this approach, the relationship
between pixels is considered more accurately, but it is
very time consuming. Again to solve this new problem,
an approach was proposed in which between-pixel
relationships were considered only in a few predefined
directions and distances. To be more accurate, for a
pixel with (Xc,yc) coordination placed at the center of its

neighborhood window W' | the (i, j)-element of its

GLCM{5*)  matrix is defined as the number of the

occurrence of pixels with the gray levels of j, at the
distance d, and at the direction 6 of pixels with the gray
level of i. All these pixels are located in the

neighborhood window W"*) _ This could be
described as

GLCM{Y (i, j) = 2 S[10x,,y,) i ]-8[1x,,y,), ]
(X1,¥1)
(X2,Y2)

st {(Xzah):(xl,yl)+(d cos@,d sin )

@)

(Xl'yl) and (Xz’yz) evv(xc,yc)
in which, 8[.,.] is the Kronecker delta function, | is a
gray level image, i and j are two gray levels from the

range {1,...,G}, W™ is the neighborhood window
centered at (Xc,Yc), and (x2,y2) is a location at the angular
distance (d,8) from (X1,y1).

Using (1), for every distance-direction couple, (d,6),
a GxG GLCM{,*) matrix is obtained, in which G is

the number of gray levels in the image. After obtaining
GLCM matrices for each pixel in the input image, some
statistics such as mean, standard deviation, and entropy
is extracted from these matrices and are dedicated to the
owner pixel. An important parameter in GLCM
computations that should be considered is the size of the
neighborhood window. Small window sizes,
theoretically, result in better discrimination in regions
near borders, while in practice they will generate sparse
GLCM matrices which cause inaccurate feature
extraction process. On the other hand, although large
window sizes will result in more accurate extracted
features, they cause different classes to mix up in the
regions near the class borders. So, choosing appropriate
neighborhood window size is an important step in
GLCM process.

GLCM features provide good description of image
texture, but they need strong processing resources.
Many approaches have been proposed to face this
problem. The simplest one is to reduce G by re-
quantizing the gray levels of the image pixels. This
causes the dimensions of GLCM matrices to decrease.
In addition, this preprocessing phase will reduce the
sparsity of GLCM matrices. Another approach is to
consider less distance-direction couples, (d,0). It is
shown that the features extracted from GLCM matrices
corresponding to “(d,d)=(1,0)" are enough to describe
texture of most images [14].

Although GLCM were introduced about four
decades ago, it is a strong method to extract texture
features and still many attempts are being made to
improve its speed and performance, or to use it in
combination with newer methods. Here, we will
propose a new way to conquer the computational
resource consuming nature of GLCM while
maintaining the strength of the extracted features. In
other words, we make it faster while the accuracy of the
image classification using these features (as a criterion
to assess the quality of the extracted features) is not
affected.
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The proposed method is based on the concept that
the features of spatially-close pixels are closely related.
The simplest type of dependency is linear dependency.
With assumption of this type of correlation, we can
calculate GLCM matrices (and then extract the related
features from them) only for a few pixels (let’s call
them key pixels) by skipping pixels with a step size of
Ls in row and column. Then the extracted features for
these key pixels are assigned to all the pixels in their
neighborhood with a pyramidal weight matrix such as
the matrix shown in Fig 1.(a). Finally, the feature vector
associated to each non-key pixel p is the weighted sum
of all feature vectors from all the weighting windows
which embrace p. In other words, we calculate GLCM
features for the key pixels and use interpolation
technique to estimate the GLCM features of all other
pixels. This could be shown as

(p)= Ya(p) f(x) @

in which, f(p) is the feature vector of any non-key

pixel p; xi is the key pixel located at the center of each
of the overlapping weighting windows which include p;
and a(p) is the weight associated to pixel p in the

weighting window centered at x; (Fig 1). For each non-
key pixel, the number of the overlapping windows, n, is
always less than or equal to 4; e.g. for the sample point
p shown in Fig 1.(b), n=4. The last point that should be
mentioned here is that, GLCM features for the key
pixels are calculated in the original image not in a
subsampled image. However, as said before, the
neighboring key pixels are separated by Ls rows and/or
columns. Also, we select the pixel located at
(x,y)=(|L, /2| L, /2]) as the starting key pixel (|.]
denotes the integer part operator).

In order to evaluate the proposed fast GLCM, we
implemented the algorithm on three single-band images
with different sizes: (a) a 1024x1024-pixel image, (b) a
512x512-pixel image, and (c) a 256x256-pixel image
(Fig 2). Each of these images contains 5 different
textures from Brodatz set. The parameters used in this
implementation are selected as follows (see TABLE I):

e The size of the GLCM extraction window,

W%) s considered to be 33x33. Although
more complex methods for window size
selection, such as adaptive algorithms [22],
could be adopted, we used a fixed size window
for simplicity.

e As mentioned before, to reduce the
computational burden of GLCM matrices
extraction process, and also to decrease the
sparsity of GLCM matrices, input image gray
levels are usually re-quantized in order to
reduce G. Here, G is reduced from 256 levels
to 32 levels. So the generated GLCM matrices
will be 32x32.

e Contrast, Correlation, Energy, Homogeneity,
Entropy, and Variance, are the 6 features
extracted from GLCM matrices. According to
the authors’ experiences, it is good practice to
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apply a principal component transform (PCT)
on these features to reduce the redundancy.

To evaluate the effect of the main parameter of the
fast GLCM algorithm, i.e. the skip length (Ls), on the
extracted features quality, Ls is picked from the range 1
to 16. Note that, “Ls=1" corresponds to hormal GLCM.
To assess the quality of the extracted features, we have
used overall ML classification accuracy as quality
measure. In order to train ML classifier, 5% of pixels
are selected randomly. The other 95% of pixels are used
as test samples. The overall ML classification accuracy
and the relative GLCM feature extraction times are
illustrated in Fig 3 against various skip lengths,
Ls=1,...,16. The given processing times are normalized
to the processing time for the case of Ls=1, i.e. normal
GLCM. As can be seen, fast GLCM algorithm can
significantly ~ reduce  the  processing  time
(approximately, by a factor of Ls2) while preserving the
features quality.

A point that should be mentioned here is the effect
of the minimum size of objects (connected areas of the
same texture) in the input image, on the maximum
value of the algorithm parameter, Ls. It goes without
saying that the skip length should be less than the
dimensions of the smallest connected area of the same
texture in the image; otherwise the smaller regions may
be dismissed. Thus a prior knowledge about the image
is required to select an appropriate value for Ls.

I I
L] | |
L Ls
x1le—»x2 |
1111 ]1]2]1 L"‘i LJ D
1]2]2]2]2]2]1 ]
1]2]3]3]3]2]1 | v !
112/3/4(3|2|1 . x3 © x4
1]2]3]3]3]2[1 | I
1l2]2]2]2]2]1 . :
1)1]1]1]1]1]1 o |
(@) (b)
Fig 1. (a) Linear (pyramidal) weighting window for a window

length of L,=7, and (b) four L,xL,, weighting windows with an
overlap of length L,,; features of pixel p are the weighted sum of

that of x;s.
TABLE I. PARAMETERS USED IN EVALUATING FAST GLCM
ALGORITHM
Parameter value
(d,0) in (1) (1,0

G (The number of gray
levels of the image after
re-quantization)

2% bits = 32 levels
GLCM matrices: 32x32

Primary features (6 features):
Contrast, Correlation, Energy,
Homogeneity, Entropy, Variance

Features extracted from

GLCM matrices Final features (5 features):

First, applying PCT to the
primary features and then
selecting the first 5 components

G!_CM extraction 33x33

window

Weighting window 33%33 pyramid (Fig 1.)
L; (skip length) 1,...,16
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Fig 2. Single-band images, containing 5 different textures
synthetized from Brodatz set, used to evaluate the proposed fast
GLCM algorithm: (a) 1024x1024, (b) 512x512, and (c) 256x256.

The curves plotted in Fig 3.(a) show variations in
classification accuracy versus Ls for all test images
of Fig 2. These trends are approximately increasing for
all 3 cases. As mentioned before, if we take a look at
(2), we see that fast GLCM features are actually
estimations obtained from linear interpolations of key-
pixels’ features. Employing linear interpolation always
causes smoothness. Therefore, the proposed GLCM
features will be smoother than traditional GLCM
features. Consequently, the proposed GLCM features
are able to provide more homogeneous classification
maps with higher classification accuracies.

On the other hand, as Fig 3.(b) suggests, increasing
skip length will dramatically increase the speed of the
algorithm. In fact, the algorithm is faster approximately
by a factor of L2 This is because GLCM features are
calculated for N/Ls out of N pixels, where N is the
number of all pixels in the image. This will be discussed
analytically in subsection 111.C.

To sum up, according to the obtained results of the
experiments and the above discussions, for the test
images shown in Fig 2, choosing Ls=16 would be an
appropriate choice.

B. Gabor Filters

Gabor filters have been widely used in different
areas of image processing such as texture classification,
edge detection, fingerprint identification, and image
coding [7, 15-20]. Also, different methods have been
developed to use Gabor filters in image classification
[16, 18]. In [7], Gabor wavelets are utilized to extract
image texture features. The idea is based on detecting
linear directional elements in the image.

1024 #3512 -+ 256
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(b)
Fig 3. (a) Overall ML classification accuracy for the images

shown in Fig 2 using fast GLCM features, (b) the computational
load reduction ratio; The horizontal axis shows the main parameter
of the fast GLCM algorithm, i.e. skip length (Ls); The legends
represent the dimensions of the input images.

. Gaussian
s s, > Sk
1) » by magnitude low pass filter > o)

£ PCT PC(.,.)

“Ngx Ny~ features

i=1...Npe , Npe<Nex Ny

Fig 4. Gabor features extraction process. Refer to context for
details.

In this method, a set of wavelets
{h,4ls=1...N;,d =1...N,} is generated using (4)

from a mother wavelet given by (3):

2

1 1[ x?
o(X,y)=———expi—= —2+y—2 +2mjU, X
2rno, 0, 2\ oy y

®)

=[50 o) @

(LLJTIJ; (X—Xo)cos(g—t}t(y—yo)sin(z_ﬂ

and, s=1,...,Nsand d=1,...,Nq are the scale and direction
parameters of wavelets; (xo,yo) is the filter center
coordination in the spatial domain; U, and Uy are
respectively the minimum and maximum center

where,

=

X
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frequency of filters on the horizontal axis in Fourier
domain.

Then the whole input image is fed as the input of the
wavelet set (see Fig 4). Moreover, in order to reduce the
within-class variances, and consequently reducing
classification errors, a Gaussian LPF is applied to these
values [7]. To reduce the number of features and also to
lower the information redundancy —which is due to the
overlapping of filters— principal component transform
(PCT) is usually applied to the outputs of Gabor
wavelets. The main characteristic of PCT is that the
output components of the transform are theoretically
uncorrelated. Typically, after applying this transform to
input feature wvectors, a number of the output
components (elements of the output vector) which their
cumulative sum of energy is bigger than a user defined
threshold are preserved and the rest are discarded. The
number of preserved components depends on the
selected threshold, as well as the input data
characteristics.

Since the filters output values are complex, we may
use the magnitude of these values or their real parts.
According to our experiences, the magnitudes of the
complex global Gabor features are much more powerful
than the real Gabor features. To show this, we
compared these two approaches. The results are
depicted in Fig 5. As can be seen, magnitudes of
complex Gabor features are far preferable to the real
features.

Two key parameters of Gabor filters are the number
of scales and directions, Ns and Ng. To find the optimum
values for these parameters, we classified the images
shown in Fig 2 using Gabor features extracted for
different values of Ns and Ng, by applying an ML
classifier. The parameters used in this implementation
are listed in TABLE II. Again, the overall classification
accuracy is used as the selection criteria. According
to Fig 6, although the optimal choice of Ns and Ng
differs for different input images, there is an obvious
distinction between accuracy values for “Ng>4 and
Ns>6”. So, the boundary values of Ng=4 and Ns=6,
would be appropriate choices regardless of the input
data.

Il.  IMPLEMENTATION

In the previous section, we saw that by utilizing the
proposed fast GLCM algorithm we were able to
overcome the main drawback of GLCM —i.e. its slow
nature— while benefiting from its strength in extracting
texture features. Also, according to the diagrams in Fig
3, a good choice for skip length in fast GLCM was
Ls=16. In addition, we saw that selecting the number of
directions and scales, Ng=4 and Ns=6, for Gabor filters
could be a practical option.

Here, we will extract fast GLCM and Gabor features
from two sets of images: a set of images synthesized
from different Brodatz textures (see Fig 2), and two
panchromatic satellite image gathered over Tehran/Iran
(Fig 10). It should be noted that the synthesized images
shown in Fig 2.(b), and (c) are not the resized versions

Volume 7- Number 3- Summer 2015 |J|CTRE

of the image depicted in Fig 2.(a). Actually they all
include Brodatz textures of the same resolution.

The test setup flowchart is illustrated in Fig 7.

A. Implementation on Brodatz textures

Fast GLCM and Gabor features are extracted from
the images shown in Fig 2. The parameters are selected
as shown in Fig 7. The results are illustrated in Fig 8.(al
and b1) through Fig 8.(a3 and b3), respectively for the
images shown in Fig 2.(a) through Fig 2.(c). As can be
seen in these Figs, Gabor features have good ability to
find class boundaries, but there is a tendency to generate
small speckle like objects in output class maps.

On the other hand, GLCM features are less accurate
in areas close to class borders, but small objects in
output class maps are rare. Therefore, it seems that by
combining these two types of features, we may be able
to use the advantages of them both.

TABLE Il PARAMETERS USED IN GABOR FEATURE
EXTRACTION

Parameter Value

Filter parameters 21x21 window, U, =0.01, U,=0.049

Number of filters NgxNs (Ng directions and N, scales)

Primary features: NgxNs features

Final features:
Extracted by applying PCT to the primary
features and using a threshold level of 95%
(the number of final features, Ny, depends
on this threshold and characteristics of
input features)

Extracted features

Gaussian LPF (wxw), ox = oy = W/3, w = 21

= Magnitude of complex Gabor features m Real Gabor features

~ 100

95 =+
90 —+
85

80 +
75 1
70 +

Overall Accuracy (%

Number of seales and directions of Gabor filters, (Vs , Nd)

Fig 5. Overall classification accuracies with different numbers
of scales (Ns) and directions (Ng) for “magnitudes of complex
Gabor features” vs. “real Gabor features”.

B 024x1024 m512x512 m256x256
100 7

o g
)
-

Overall Accuracy (%)

=
=

*
-

6.8

4.6
4,10

Number of seales and directions of Gabor filters, (Vs , Na)

Fig 6. Overall ML classification accuracy for the images
shown in Fig 2, using Gabor features for different numbers of
scales (Ns) and directions (Ng).
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Fig 7. The proposed algorithm with parameters values.

(a3) (b3) (©3)

Fig 8. ML classification maps for the images shown in Fig 2, using (a) fast GLCM features, (b) Gabor features, and (c) fused features;
Upper row shows results for the 1024x1024-pixel image, middle row for the 512x512-pixel image, and lower row for the 256x256-pixel
image.

g
Z
g
Y m Fast GLCM
Z B Gabor
= ® Fast GLCM + Gabor
g
=}

1024=1024 512x512 256%256

Image dimentions

Fig 9. Overall ML classification accuracy for the images shown in Fig 2 using Gabor, Fast GLCM, and fused features (Fast GLCM +
Gabor); 5% of pixels for each case are selected randomly to train ML classifier.
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Fig 10. (a) PAN satellite image of north-west of Tehran/Iran, a 988x1890-pixel scene containing 11 different land covers; (b) the ground
truth map (GTM) of (a); (c) PAN satellite image of north-east of Tehran/Iran, an 822x1154-pixel scene containing 5 different land covers;
(d) the GTM of (c).

To verify this idea, we fused Gabor and GLCM
feature vectors by simply stacking them. Then we
classified these new vectors. The results are shown
in Fig 8.(c1) through Fig 8.(c3). Also, in Fig 9, overall
ML classification accuracies are illustrated for different
feature sets. These results clearly confirm the
superiority of the fused feature vectors over the
individual feature vectors.

B. Implementation on satellite data

The classification results for the synthesized images
in the previous subsection demonstrated the power of
the extracted features and the fusion idea. Now we will
try to implement the proposed fast GLCM feature
extraction method and the fusion technique (see Fig 7)
on two panchromatic (PAN) satellite images. The
scenes are subsets of a large PAN data gathered over
Tehran/Iran, with 1-meter spatial resolution. The first
scene — Fig 10.(a) — corresponds to a region located in
north-west of Tehran, and contains 908x1892 pixels
and 11 different land cover classes. The ground truth
map of the data is shown in Fig 10.(b). The second
scene — Fig 10.(c) — belongs to a region located in north-
east of Tehran. This scene has 822x1154 pixels and
contains 5 land cover classes. The corresponding
ground truth map is depicted in Fig 10.(d). The output
ML classification maps are depicted in Figs 11 and 12,

respectively: (a) the classification map using fast
GLCM features, (b) the map obtained from Gabor
features, and (c) the map resulted from fused features.
The overall classification accuracies are given in
TABLE III.

As the table shows, for the first PAN data, the
overall accuracy provided by GLCM is much lower
than that delivered by Gabor features (78.86% versus
92.81%). Moreover, the classification map of Gabor
features is much more satisfactory through visual
inspection and the borders’ of the classes are much
more preserved. However, speckle-like errors are more
on its map.

TABLE Ill.  OVERAL ACCURACIES (OA) OF ML CLASSIFICATION
USING DIFFERENT FEATURES. FOR TRAINING THE CLASSIFIER, 5% OF
THE LABELED SAMPLES ARE RANDOMLY SELECTED.

Features
OA (%)
Fast GLCM Gabor both
PAN1
(Fig 10.(a)) 78.86 92.81 96.05
PAN2
(Fig 10.(c)) 88.37 95.70 98.25
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Fig11l.  Output ML classification map for the PAN image shown
in Fig 10.(a) using: (a) Fast GLCM, (b) Gabor, and (c) fused
features; 5% of labeled pixels are selected randomly to train the
classifier.

The classification map obtained using both types of
features — Fig 10.(c) — not only has a higher accuracy
in terms of OA (96.05%) , but is more homogeneous
than the map of Gabor (this is an inheritance from
GLCM features) and also has inherited the border
preservation property from Gabor features.

The above discussion is also valid for the second
PAN data. Therefore, we can conclude that by
combining GLCM features with Gabor features
extracted from PAN satellite images, we are able to

achieve the classification map homogeneity offered by
GLCM features while preserving class borders
provided by Gabor features.

C. Computational complexity assessment

As shown in Fig 3.(b), the proposed fast algorithm
for GLCM feature extraction process reduces the
computational load approximately by a factor of Lg?,
where L is the skip parameter of the algorithm. In this
subsection, we will compare the computational load of
feature extraction processes, i.e. GLCM, fast GLCM,
Gabor, and “fast GLCM+Gabor”, analytically.

TABLE IV and TABLE V show the computational
complexity of GLCM and Gabor feature extraction
processes. As can be seen, the computational
complexity of GLCM is of the order of O(G?), where G
is the number of gray levels of the input image after re-
quantization process in GLCM (see TABLE 1 and
subsection I1.A).

TABLE IV.  ORDER OF COMPUTATIONAL COMPLEXITY FOR
GLCM ALGORITHM.

Process Number of Operations
GLCM matrix w(w-1) = w?
generation
Feature extraction Multiplication | Summation | Other
Contrast | 2G? 2G? -
Correlation | 4G? 3G? -
Energy | G? G? -
Homogeneity | G2 3G? -
Entropy | G? G? G?
Variance | 2G? 2G? -
All features | 11G? 12G? G?
TOTAL w? (Comparisons) +11G?

(Multiplications)
+ 12G? (Summations) + G2 (log)

(for each pixel)

Order of With the assumption of w having the
complexity same order of magnitude as G: O(G?)

Note: G is the number of the gray levels of the input image after
initial re-quantization, and w is the length of the neighborhood
window in GLCM feature extraction

TABLE V. ORDER OF COMPUTATIONAL COMPLEXITY FOR
GABOR FEATURE EXTRACTION ALGORITHM.

Parameter Value

Number of 2D FFT operations NxNy logz(NxNy)
(for the whole image)

Number of Gabor filters NsNg

TOTAL number of operations | 3NNy 10g2(NxNy) NsNg
(for the whole image)

Order of complexity O(loga(NxNy))

Note: Ny and Ny are the dimensions of the input image, and N
and Ng are the number of scales and directions of Gabor
wavelets, respectively
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Fig12.  Output ML classification map for the PAN image shown
in Fig 10.(c) using: (a) Fast GLCM, (b) Gabor, and (c) fused
features; 5% of labeled pixels are selected randomly to train the
classifier.

Similarly, the computational complexity for Gabor
feature extraction process is of the order of
O(logz(NxNy)), in which Ny and Ny are the dimensions
of the input image. The calculation of the computational
complexity for fast GLCM is straight forward:
O(G?/Ls?). This is approximately the same result as that
of Fig 3.(b). TABLE VI summarizes the discussion and
as can be seen, the proposed method (Gabor + Fast
GLCM) has good performance in terms of
computational load, too.

Volume 7- Number 3. Summer 2015 IJIC TR IZL IR

TABLE V1. ORDER OF COMPUTATIONAL COMPLEXITY FOR
DIFFERENT METHODS OF FEATURE EXTRACTION.

Order of complexity
Parametric Numerical
Method example for our
experiments®
GLCM 0(G?) 1024
Fast GLCM | O(GYLJ) 4
Gabor O(logz(NxNy)) 20
Gabor + 2| 2
FastGLom | QUI0G(NN)*GILS) | 24

) G=32, L=16, N,=N,=1024.

Note: G and w are respectively the number of the gray levels
of the input image after initial re-quantization and the length
of the neighborhood window in GLCM feature extraction.
Nx and Ny are the dimensions of the input image, and N, and
Ng are the number of scales and directions of Gabor
wavelets, respectively.

IV. CONCLUSIONS

In this paper, we tried to utilize two well-known
methods for extracting texture features from single-
band satellite images: GLCM and Gabor filters.
Although the traditional GLCM method has good
performance in texture feature extraction, it is very time
consuming. Here, we proposed a fast GLCM algorithm
which significantly improved the speed of GLCM:
about 200 times faster (corresponding to the skip length
of Ls=16). This increase in speed was obtained while
preserving the quality of extracted features.

The overall ML classification using the extracted
features was used as the measure of quality for the
features. The classification results showed that Gabor
features are more powerful than GLCM features in the
areas close to the class borders, while GLCM features
are preferable in the areas within classes. Using these
findings, we could test the idea of fusing these two
types of features in order to benefit the advantages of
both. The implementation results were acceptable and
confirmed the idea. In addition, we compared the
computational complexity of the feature extraction
methods and showed that the proposed method has a
very good performance in terms of computational load,
too.
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