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Abstract—Nowadays data mining is the way of extracting hidden knowledge from raw data whereas sequence mining 

aims to find sequential patterns that are frequent in the database, so publishing these data may lead to the disclosure of 

private information about organizations or individuals. Knowledge hiding is the process of hiding sensitive knowledge 

extracted previously from the database, to ensure that no abuse will be caused. This paper addresses the problem of 

sequential pattern hiding and proposes an efficient algorithm which uses a multi-objective approach to overcome the 

problem of sequence hiding as well as maintaining database fidelity as much as possible. It also shows that the proposed 

algorithm outperforms existing methods in terms of both speed and memory usage. 

Keywords-data mining, sequence mining, knowledge hiding, sequential pattern.  

 

NOMENCLATURE 

SDB: Sequence Database, 

bestSolutions:  An array associated with a sequence in 

SDB,which contains best solutions for sanitizing the 

sequence, 

D: The number of distortions, 

DBSeqsToCheck: The set of sequences which should 

be checked in the next iteration of candidate tree 

generation, 

S: A database sequence, 

nSP: The number of sensitive patterns, 

NSP: The number of non-sensitive patterns, 

SP: Sensitive pattern, 

SPS: The set of sensitive patterns, 

𝑟𝑜𝑠𝑠𝑝→𝑠(𝑥: 𝑖): The related occurrence set of x, as the ith 

item of  SP,in sequence S, 

A: An item-set, 

minsup(A): The percentage of all transactions that 

contain 1's for all the items in A, 

maxsup(A): The percentage of transactions that contain 

either 1 or "?" for all the items in A, 
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f(.,.,.): The sanitization objective function which 

evaluates the generated solutions, 

λ: Hiding threshold, 

𝛼: Weight of nSP in the sanitization objective function, 

𝛾: Weight of D in the sanitization objective function, 

𝛿: Weight of NSP in the sanitization objective function, 

M-pruning: A real value which serves as a threshold to 

prune the candidate tree, 

𝑔𝑎𝑝𝑟𝑜𝑠𝑆𝑃→𝑆(𝑥: 𝑖, min, 𝑚𝑎𝑥): The related occurrence 

set of a gap constraint that enforces the number of 

elements in S, which are between every two elements 

of SP, to be in the interval [min-1, max+1], 

𝑑𝑖𝑠𝑟𝑜𝑠𝑆𝑃→𝑆(𝑥: 𝑖, 𝑚𝑖𝑛, 𝑚𝑎𝑥) : The related occurrence 

set of a distance constraint that enforces the number of 

elements in S, which are between the first and the last 

elements of SP, to be  in the interval [min, max], 

R: The complete set of rules mined from a database 

with respect to a minimum support threshold, 

RSE: The set of non-sensitive rules, 

RR: The set of restrictive rules, 

R': The set equal to R – (RR + RSE) 

I. INTRODUCTION 

Today, data mining methods help owners of 
databases extract useful knowledge from their raw data. 
Privacy preserving data mining is a relatively new 
research area in the data mining community, having 
existed for approximately a decade. It investigates the 
side effects of data mining methods originating from the 
penetration into the privacy of individuals and 
organization[7].Privacy-preserving algorithms are 
divided into two major groups, the first is data hiding 
which proposes various techniques (perturbation, 
transformation) for preserving the privacy of raw data 
and the second is knowledge hiding which involves 
protecting sensitive data after applying data mining 
techniques on raw data when the dataset is less 
distorted. The altered database is also called the 
sanitized database. So far, most sanitization methods 
have dealt with classic and simple forms of databases 
and knowledge namely, frequent item-sets and 
association rules, while the real-world applications are 
more structured data, which are named sequential data. 
In many applications like web usage logs, biomedical 
patient data, spatio-temporal geo-referenced traces and   
basket of customer purchasing, sequentiality of data is 
obvious. While extracting knowledge from these data 
offers several services to the world, it may be abused by 
competitors. Consider a medical patient database which 
contains clinical measurements at different moments in 
time. By publishing this information, rivals abuse it by 
sharing several databases to reveal personal 
information. Another example is the abuse of spatio-
temporal data which contains sequences of locations 
left by mobile phones and other location-aware devices 
such as vehicular GPS [1]. Traffic management, 
marketing, fuel management and several other 
beneficial applications may also use the information 
extracted from mobility data, which, if published 
provides competitors with the opportunity to engage in 
user profiling, unauthorized advertising, terrorist acts, 
and so on. 

This paper proposes a novel algorithm to hide such 
sensitive patterns before publishing data while 

maintaining most of the quality of information and data. 
The benefit of the proposed algorithm is twofold: it 
maintains the quality of and the fidelity of the data; and 
can reduce the computational requirements by reducing 
the computing time and memory usage. The proposed 
algorithm is based on an efficient tree pruning and 
shows that can improve the method previously 
proposed by the authors [10], through reduction of 
computing time and memory usage. 

The rest of this paper is organized as follows. 
Section2 presents the literature on the sanitization field. 
The background information and notations are 
presented in Section 3. In Section 4, the proposed 
algorithm is introduced and the sequential pattern-
hiding problem is described. In addition, the 
computational burden of the algorithm in terms of the 
time and memory usage and complexity of it is 
discussed in the worst case in section 4.2, and a solution 
to cope with these problems is proposed in the section. 
Section 5 presents the experimental results of two 
different datasets. Finally, the conclusion is presented 
in Section 6.  

II. RELATEDWORKS 

Most sanitization methods deal with classic and 

simple forms of databases and information, namely 

frequent item-sets and association rules. Several 

algorithms have been proposed to solve the problem of 

sensitive association rule hiding by manipulating 

support of or confidence in the rules. In the work done 

by Saygin et al. (2001), unknown values are introduced 

which define the support and confidence intervals for 

an item-set A and for a Rule, i.e. [minsup(A), 

maxsup(A)], where the minsup(A) is the percentage of 

all transactions that contain 1's for all the items in A 

and maxsup(A) is the percentage of transactions that 

contain either 1 or "?" for all the items in A. For rule R 

the interval is [minconf(R), maxconf(R)]. The objective 

is to decline a rule's support or confidence below 

minimum support or minimum confidence thresholds. 

In order to decline the minimum confidence of a rule 

A→B, which is defined as  𝑚𝑖𝑛𝑐𝑜𝑛𝑓(𝐴 → 𝐵) =
𝑚𝑖𝑛𝑠𝑢𝑝(𝐴𝐵)

𝑚𝑎𝑥𝑠𝑢𝑝(𝐴)  
, they decrease minsup(AB) and/or 

increase maxsup(A). Nevertheless, by replacing "?" 

with items in the A's or B's item-sets, the 

minconf(A→B) will be reduced, but it is preferable to 

alter B's items, because otherwise 𝑚𝑎𝑥𝑐𝑜𝑛𝑓(𝐴 →

𝐵) =
𝑚𝑎𝑥𝑠𝑢𝑝(𝐴𝐵)

𝑚𝑖𝑛𝑠𝑢𝑝(𝐴)
  might rise. Also to increase 

maxsup(A), “?” marks are substituted for 0’s in the 

transactions. Reducing support of a rule is trivial. They 

proposed two sets of algorithms for decreasing either 

support of or confidence in the rules. 

In Verykios et al [12], disjoint-sensitive association 
rules (association rules whose constituent item-sets are 
disjointed) are hidden one at a time by reducing their 
support or confidence. Reducing the support is done by 
reducing a rule's antecedent or its consequent item-sets. 
In addition, either by increasing the support of a rule's 
antecedent item-set in transactions that partially support 
it, or by decreasing the support of the rule's consequent 
item-set, they decreased confidence in the rule.  



Oliveira et al [9], proposed a different idea which 

concerns  sharing association rules rather than the data, 

and tries to restrict the rules to be published. Let R be 

the complete set of rules mined from a database with 

respect to a minimum support threshold, and RR be the 

restrictive rules, then the goal is to transform R to R' 

where sensitive rules in R cannot be extracted by 

analyzingR'. Clearly, by merely subtracting RR from R, 

an adversary could infer restrictive rules. So the 

algorithm finds a set of non-sensitive rules: RSE, and 

sets R' = R –(RR + RSE), and as a result, all inference 

channels are closed. In the frequent item-set graph, 

either by obliterating at least one subset of each leaf 

item-set whose corresponding sensitive rules had to be 

hidden, or by erasing all supersets of each non-terminal 

node whose rules were considered restrictive, they 

reached to their objectives. 

Aggarwal et al [4] introduced an algorithm for  

protecting sensitive entries in a database. Some entries 

in each tuple are considered sensitive by users, and the 

objective is to guard them from being revealed. The 

correlation that exists among entries in the database 

alleviates the contingence of the values of hidden 

entries by harnessing mined association rules. So some 

non-sensitive entries should be erased to reduce 

confidence in the revealing of rules. This is called Rule 

Invalidation. Another method, termed Rule 

Marginalization, precludes guessing the values of 

entries by blanking out the entries in the sensitive 

records corresponding to the antecedent of the rules, so 

the rule will not fire on those records. In this algorithm, 

first a set of rules, named Adversarial Rules which can 

be utilized by an adversary to predict values of hidden 

entries, are identified, then a set of non-sensitive 

entries, with the help of these rules, are removed from 

the database. Thus, Adversarial Rules become 

inaccessible. 

A new form of practical knowledge and approaches 

for hiding it were proposed by Abul et al [2]. Co-

occurring frequent item-sets are a set of item-sets that 

appear all together in mining results, and to keep them 

secret it suffices to impede one of them from being 

divulged. In another words, one piece of information 

will not contain secrecy unless it comes into view 

simultaneously with others. Therefore, if C = {C1, 

C2, …,Cn} is the set of sensitive co-occurring frequent 

item-sets, the two-staged hiding process elects one 

item-set from each Ck C at the first stage, then 

conceals it as the second stage. Four different heuristic 

algorithms were proposed for the first stage. 

A relatively new and more applicable form of data 

which has been presented recently, is sequential data 

[5], so knowledge preserving methods should be 

applied to this category of data, too. Although it is more 

likely to represent some real world data by a sequential 

database, few studies focus on this topic with the 

possible  exception of Abul[3] which introduced the 

first sequence-pattern hiding algorithm. In this work the 

authors first define the matching set which is the set of 

all sets with the size of sensitive patterns, which each 

sequence supports, then the algorithm finds the 

occurrences of items of sensitive patterns in each 

sequence. Next it sorts the database in ascending order 

according to matching set size, then removes all 

matches in the top |𝑆𝐷𝐵| − 𝜆 input sequences.  [10], 

introduced a novel method capable of low distortion 

and infidelity. The algorithm constructs candidate trees 

for each sequence, which contain all the solutions with 

respect to the multi-objective sequence-selection 

framework defined by the user, then it finds the best 

solution for the database and finally sanitizes the 

sequence. While the support of sensitive patterns is 

greater than a defined hiding threshold, this process 

iterates. The process of knowledge hiding is discussed 

in the next section. 

III. PROBLEMSTATEMENT 

In this section, some basic definitions of sequence 

data mining are presented and a discussion about the 

problem of sequential pattern hiding is provided. 

Definition1. Sequence: A sequence is an ordered list 

𝑆 = 𝑠1𝑠2 … 𝑠𝑙 , where each 𝑠𝑖(1 ≤ 𝑖 ≤ 𝑙) is an itemset 

called an element which is denoted as (𝑥1𝑥2 … 𝑥𝑚) 

such that each 𝑥𝑘(1 ≤ 𝑘 ≤ 𝑚) ∈ Σ, and Σ is a finite set 

of distinct items. A sequence 𝛼 = 𝑎1𝑎2 … 𝑎𝑛 is called 

a subsequence of another sequence 𝛽 = 𝑏1𝑏2 … 𝑏𝑚 

and 𝛽 a super-sequence is 𝛼denoted as 𝛼 ⊑ 𝛽, if there 

exist integers 1 ≤ 𝑗1 < 𝑗2 < ⋯ < 𝑗𝑛 ≤ 𝑚  such that 

𝑎1 ⊆ 𝑏𝑗1,  𝑎2 ⊆ 𝑏𝑗2, … ,  𝑎𝑛 ⊆ 𝑏𝑗𝑛 . In addition, a 

sequence database SDB contains a set of sequences.  

Definition2. Support of a Sequence: The support of a 

sequence 𝛼 in a SDB is the number of sequences in 

SDB that are super-sequences of 𝛼 : 𝑠𝑢𝑝𝑆𝐷𝐵(𝛼) =
|{𝑆 ∈ 𝑆𝐷𝐵|𝛼 ⊑ 𝑆}| . A sequence 𝛼  is called a 

sequential pattern in SDB if 𝑠𝑢𝑝𝑆𝐷𝐵(𝛼) ≥min-sup. 

Given a sequence 𝑆 = 𝑠1 … 𝑠𝑛  and a subsequence 𝑆′ =
𝑠′1 … 𝑠′𝑚, a set of positions {𝑖1, 𝑖2, … , 𝑖𝑚} is called an 

occurrence of 𝑆′  in 𝑆 , if 1 ≤ 𝑖1 < ⋯ < 𝑖𝑚 ≤ 𝑛  and 

𝑠′𝑘 = 𝑠𝑖𝑘 for each 1 ≤ 𝑘 ≤ 𝑚.  

Problem definition1. Sequential Pattern Mining: 

Given a sequence database and a minimum support 

threshold, the sequential pattern mining problem is to 

find the complete set of sequential patterns in the 

database. 

Definition3. Related occurrence set of an item in a 

sequence: given a sequence S, a sequential pattern SP, 

and an item x which is the ith item ofSP, the related 

occurrence set of x from SP in S encircles item numbers 

in S which corresponds to item x and is denoted as 

𝑟𝑜𝑠𝑠𝑝→𝑠(𝑥: 𝑖) .As an example consider s = 

bab(cd)(abd)bb(cbd), and sp= (cd)bb, then the related 

occurrence set of 3th item from SP, i.e. b, in S is 

𝑟𝑜𝑠(cd)bb→𝑠(𝑏: 3) ={7, 9, 10}. 

Definition4. Sensitive Patterns: Experts determine 

some sequential patterns to be hid. These sequential 

patterns are called sensitive patterns. In addition, it is 

referred to items in sensitive patterns as sensitive 

items. 

Problem definition2. SequentialPattern Hiding: 
Given a sequence database SDB, a sensitive pattern set 



SPS, and a hiding threshold λ, the goal is to change the 

SDB at least to hide all of the sensitive patterns in it by 

reducing their support to λ. 

There are four important issues in the definition. 

First, the sequences of database should be changed. 

This is done by replacing some items of the element by 

an unknown value "?".The number of items to be 

changed are called distortions. Second, the term "at 

least" dictates that the distortions should be as few as 

possible, due to the fact that distortions decrease the 

quality of the data. Then, the support of sensitive 

patterns must be reduced exactly to λ, because 

excessive support diminishes the database's quality. 

The proposed algorithm is described in the next 

Section. 

IV. THEPROPOSEDALGORITHM 

In this section  we first review some fundamental 
implications of our previous work which constitutes the 
basis of the proposed algorithm here[10]. 

A. MOSS algorithm 

As outlined in the previous section, we need to 

explain how a sequential pattern vanishes from a 

sequence; for this purpose, all the occurrences of the 

sequential pattern must be cleared from the sequence. 

Consider the sequence s=(cd)b(cd)bebe and the 

sequential pattern sp = (cd)bb and ebe. The sanitized 

s=(cd)b(cd)?e?eis gained by two distortion, because 

𝑟𝑜𝑠(𝑐𝑑)𝑏𝑏→𝑠(𝑏: 3) = {4,6}, 𝑟𝑜𝑠𝑒𝑏𝑒→𝑠(𝑏: 2) = {4} . 

Note that the sequence should be sanitized with as few 

distortions as possible. It is worth mentioning that an 

optimal sanitization, namely that of hiding all 

occurrences of sensitive patterns in a sequence, is NP-

Hard [3]. 

A multi-objective sequence selection framework to 

surmount the sensitive patterns hiding problem,was 

introduced in[10]. Then the the algorithm finds the best 

candidate solution for each sequence to sanitize the 

dataset and then, by comparing all the best candidates 

in the database, it selects the best overall candidate. It 

is then applied  to the corresponding sequence, so the 

support of some sensitive patterns will reduce by one 

unit. This process will iterate until all sensitive pattern 

supports descend to the exact value of λ. 

The candidate solution selection process considers 

the following factors [10]: 

1. Number of sensitive patterns (nSP) to  be 

maximized . 

2. Number of distortions (D) of the candidate 

solution that  needs to be minimized. 

3. Number of non-sensitive patterns (NSP) that  

needs to be minimized. 

Thus, the problem of hiding all sequences sSPS in 
a sequential database SDB is defined as finding s' 
⊑s to be hidden and changing SDB into SDB' so that: 

𝑚𝑎𝑥      𝑛𝑆𝑃(𝑠′), 𝑚𝑖𝑛 𝐷(𝑠′) , 𝑚𝑖𝑛 𝑁𝑆𝑃(𝑠′)     (1) 

𝑠. 𝑡.       𝑠′ ⊑ 𝑠 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆𝑃𝑆  

            𝑠𝑢𝑝𝑆𝐷𝐵′(𝑠) =   , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆𝑃𝑆 

To solve the above multi-objective optimization 

problem, a weighted summation of the above 

objectives is introduced: 

𝐹(𝑛𝑆𝑃(𝑠′), 𝐷(𝑠′), 𝑁𝑆𝑃(𝑠′)) = 𝛼 ∗ 𝑛𝑆𝑃(𝑠′) −

                                     (𝛾 ∗ 𝐷(𝑠′) + 𝛿 ∗ 𝑁𝑆𝑃(𝑠′))      (2) 

Where 𝛼,γ and δ are scaling factors and belong to [0,1]. 
The sequence analysis process, which results in the best 
solution, is conducted by constructing a candidate tree 
which again was introduced completely in (Rahbarinia 
et al., 2010). The candidate tree is composed of all 
possible solutions to sanitize a sequence in such a way 
that each of its nodes is a solution. Note that solutions 
which construct the ith level of the tree must be the 
combination of a pair of items from (i-1)thlevel. Based 
on this criterion a huge number of unnecessary and 
useless solutions will be pruned beforehand. 

B.  Handling Constraints 

Two types of constraints, namely max/min gap and 

max/min distance (sliding window), could be 

conveniently enforced to hide the algorithm where no 

change is required in the algorithm and only the 

definition of the related occurrence set needs 

reconsideration. If a sequence S contains a 

subsequence SP, then a max/min gap constraint 

demands  the number of elements in S  that  are 

between every two elements of SP, to be less than (max 

+ 1) and more than (min – 1). In this case, the related 

occurrence set is denoted as 

𝑔𝑎𝑝𝑟𝑜𝑠𝑆𝑃→𝑆(𝑥: 𝑖, 𝑚𝑖𝑛, 𝑚𝑎𝑥) . Moreover, a Sliding 

window constraint states that the number of elements 

in the sequence that  are between the first and the last 

elements of SP, is in the interval [min, max]. In this 

case the related occurrence set is denoted as 

𝑑𝑖𝑠𝑟𝑜𝑠𝑆𝑃→𝑆(𝑥: 𝑖, 𝑚𝑖𝑛, 𝑚𝑎𝑥) . The following 

definitions about the related occurrence sets are 

obvious: 

𝑔𝑎𝑝𝑟𝑜𝑠𝑆𝑃→𝑆(𝑥: 𝑖, 𝑚𝑖𝑛, 𝑚𝑎𝑥) ⊆ 𝑟𝑜𝑠𝑆𝑃→𝑆(𝑥: 𝑖)     (3) 

𝑑𝑖𝑠𝑟𝑜𝑠𝑆𝑃→𝑆(𝑥: 𝑖, 𝑚𝑖𝑛, 𝑚𝑎𝑥) ⊆ 𝑟𝑜𝑠𝑆𝑃→𝑆(𝑥: 𝑖)      (4) 

To generate the new related occurrence sets, the 

𝑟𝑜𝑠𝑆𝑃→𝑆(𝑥: 𝑖) is computed first.Then those item 

numbers which do not satisfy the constraints are 

excluded from it. The modified algorithm, i.e., 

EMOSS, will be introduced in the next part. 

C. Enhanced Multi-objective Sequence Selection 

(EMOSS) 

The proposed algorithm aimed to reduce the time 

complexity as well as the memory usage of the 

previous work. As mentioned before, in order to hide 

sensitive patterns, the algorithm constructs a candidate 

tree. The height of the tree depends on the number of 

sensitive patterns. The enhancement is achieved by 

pruning the candidate tree. The objective function (2) 

is computed for each solution and is used as a measure 

to rank them as sanitizing candidates. It should be 

noted that a deeper solution in the tree offers more 

distortions, which leads to a lower objective function. 

Thus, deeper solutions in the candidate tree are of 

lower quality. This shows the idea of pruning the 



candidate tree, i.e. during the construction of the 

candidate tree, the sub-tree starting from a solution will 

be pruned if the objective function value for the 

solution is lower than the current best objective value 

for some thresholds. 

Definition5. Measure of Pruning Or M-pruning:a 

real value which serves as a threshold to prune the 

candidate tree. The current best objective function 

value is compared with the objective function value of 

each solution, and the subtree starting from the solution 

is pruned if the difference is greater than M-pruning.  

The mechanism of pruning is as follows: 

a. The first level of tree is constructed and the best 

objective function value is saved as the current 

best objective value. 

b. For the 2nd level or higher, the process of tree 

construction continues as described below: 

i. If the difference between the current best 

objective value and the new solution is less 

than or equal to  M-pruning, the solution will 

be added to the tree. 

ii. If the difference is bigger than M-prunnig, 

prune the subtree starting at the solution. 

iii. If the objective value of the solution is better 

than the current best objective value, then the 

current best objective value is updated. 

Fig.1 shows the steps of the proposed algorithm. 

The algorithm DBSeqsToCheck, which  holds the s-id 

of all sequences, is used to determine which SDB 

sequences should be checked in the next iteration. The 

algorithm iterates until all sensitive patterns become 

hidden. In the first step it finds the best candidate 

solution for each sequence and then finds the best 

solution for the entire SDB. This solution is applied to 

the corresponding sequence and as a result the supports 

of sensitive patterns in that sequence will be reduced 

by one unit. At this point, those sensitive patterns 

which are successfully hidden will be removed from 

the SPS. 

After the first iteration, only those sequences that 

contain hidden sensitive patterns are rechecked and the 

sequences are updated taking into account the fact that 

their candidate tree will not include the hidden 

sensitive patterns anymore. Other sequences' candidate 

trees will remain intact. Therefore, a small number of 

sequences are checked in each iteration. 

With the respect of discussion in this section, the 

complexity of the algorithm in worst case will be 

computed as below: 

In the worst case, if every sequence supports all 

sensitive patterns (maximum size of the candidate tree 

for the sequence) and each sensitive pattern has one 

occurrence in the sequence, then first level of the tree 

has the complexity of: 

NSP*LSP                                     (5) 

So with respect to figure 1, the other levels have the 

complexity of:  

     (NSP-2)*(NSP^2)                        (6) 

Finally, the complexity of the whole of the while loop 

is: 

 [(NSP*LSP)+(NSP-2)*(NSP^2)]*DBSize*NSP    (7) 

The abbreviation of LSP and NSP is described below: 

LSP means Length of Sensitive Pattern and NSP points 

to Number of Sensitive Patterns which the sequence 

supports. 

It is well worth mentiong that the result is for non-

pruning tree. The complexity will be much less than 

the above result when the pruninig process is used, and 

the complexity is dependent to the depth of the tree 

which the pruning occurs. 

In the proposed approach in[3], the authors sanitize 

selected sequences by hiding all the occurrences of 

sensitive patterns in them. In this method, when a 

sequence to be sanitized is decided upon, all the 

sensitive patterns are removed from it. The process of 

hiding  all the sensitive patterns from the selected 

sequence may lead to the loss of the chance to sanitize 

the database with fewer distortions[10]. 

In order to illustrate the proposed algorithm, 

consider sequence s=bab(cd)(abd)bb(bcd) and its 

candidate tree in Fig.2 with a sensitive pattern set 

𝑆𝑃𝑆 = {(𝑐𝑑)𝑏𝑏, 𝑎𝑐(𝑎𝑑)}. For the sake of simplicity 

the effect of NSP is ignored, i.e.  𝛿 = 0 . Other 

parameters are considered as𝛼 = 1, 𝛾 = 1 , and  M-

Pruning=1. 

In Fig.2, EMOSS is applied to the sample sequence 

and the candidate tree will be described. Each solution 

is in the form of (nSP,D),Obj, wherenSPis the number 

of sensitive patterns,D is the distortions, and “Obj” is 

the objective function value for the solution, 

respectively and NSP is ignored for simplicity. 

In the first level of the tree, the best objective value 

is zero, thus it is saved as the current best objective 

value, then all the solutions that appear in the level two 

of the tree are evaluated at step 1.2.1 in Fig.1, and the 

underlined ones are pruned. Then the current best 

objective value is updated to 1.The final best solution 

of this candidate tree is solution cc(2,1),1, which is 

shown doubly underlined, having an object value equal 

to 1.The Result of  applying EMOSS is the sanitized 

sequence s=bab(?d)(abd)bb(bcd), in which the two 

sensitive patterns are hidden solely by one distortion. 

 

 

 



 

Fig.1: EMOSS Algorithm 

Now suppose the number of sensitive patterns is 

three or more, then the candidate tree will deepen more 

than 2 levels and there will be opportunities for 

pruning, resulting in less computational burdens and 

memory usage. 

Table 1 shows the results of applying the pruning 

method on two sequences, where the first one is a DNA 

sequence and the second is a page view of a user during 

a 24-hour period. In this study, NSP is ignored, i.e.  

𝛿 = 0 andother parameters are considered as 𝛼 =
1, 𝛾 = 1 and M-pruning=1. The sensitive pattern set 

contains 4 sensitive patterns for both sequences as 

shown in the third column. The MOSS algorithm 

generated a candidate tree with 30731 solutions, while 

the EMOSS algorithm generated a candidate tree with 

21 solutions. MOSS and EMOSS generated 6331 and 

33 solutions, respectively for the second sequence. The 

results show that the EMOSS algorithm pruned the tree 

considerably, which decreases the time complexity 

efficiently. 

V. EXPERIMENTAL RESULTS 

In this section the performance of EMOSS is tested 

on two datasets. The first dataset is the Molecular 

Biology dataset [6], with 106 DNA sequences of length 

57. The MSNBC.com Anonymous Web dataset     [8] 

is the second dataset which incorporates 989818 

sequences over integers from 1 to 17 as its items. Each 

sequence is a page view of a user during a 24-hour 

period, and the first 5000 sequences have been 

considered in the experiments. These datasets are 

denoted as DNA, and WEB respectively. The proposed 

algorithm, i.e. EMOSS, was implemented in C# and all 

the experiments were conducted on a system equipped 

with 2.66GHz Intel core duo processor and 3MB 

physical memory, running the Windows XP operating 

system. 

The EMOSS is compared to MOSS in subscection 

5.1, and another study between EMOSS and OSH [3], 

is performed in subsection 5.2. These comparative 

studies were performed using the following criteria: 

the number of distortions imposed on the dataset, 

running-time, and infidelity. It is worth while 

mentioning that infidelity is a measure that 

encompasses those non-sensitive patterns with  their 

support falling below the support threshold after 

sanitization,[10].  

Information regarding the datasets is shown in 

Table2.The support threshold used to find frequent 

Table 1: Results for Appling the Pruning Method 
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patterns for each dataset sequence miner algorithm is 

shown in Column two of Table2, and the third column 

of the table shows the number of frequent patterns.  

Each figure is supplied with legends in the form of 

“algorithm-name,(α,γ,δ,M-pruning), constraint”,  

where algorithm-name refers to the algorithm used in 

the test. (α,γ,δ,M-pruning) are the parameters used in 

the test of the algorithm, and constraint shows the 

settings for the constraint(s). It should be noted that the 

parameter M-pruning is defined for the EMOSS 

algorithm. Experiments showed that M-pruning = 0.7 

is a proper value. 

 

Fig.2: Candidate tree for the sample sequence with pruning 

Table 2: Test Datasets[6,8]

 

A. Comparisson study on EMOSS & MOSS 

In this subsection, MOSS and EMOSS are 

compared in running-time, distortion, infidelity, and 

the total number of solutions  produced during a run, 

which indicates the memory usage of each algorithm. 

In Fig. 3(a)-3(d), the experiments are performed on 

a DNA dataset, for sets with sensetive patterns, i.e. 

4SPs (Sensitive Patterns) and no constraint has been 

included. All experiments were performed for different 

values of the hiding threshold(λ). Fig.3(a) and 3(b) 

show that EMOSS performs much better than MOSS in 

terms of running-time and memory usage, due to the 

proposed pruning method in EMOSS, while the 

distortion and infidelity of both algorithms are the 

same, according to Fig.3(c)-3(d). The same 

experiments were repeated with two different types of 

constraints, i.e. min-max distance (sliding window) 

and min-max gap. Fig.4(a)-4(h) show  the results 

considering the constraint of 18-20 distance, while 

Fig.5(a)-5(h) shows the results for the constraint of 4-

9 gap. These Figures confirm the results obtained by 

Fig.3(a)-3(d). There are sudden drops in Fig. 4(a), 4(b), 

4(c), 4(d), 5(b), and 5(d) for MOSS and EMOSS, and 

the EMOSS algorithm performs like the MOSS 

algorithm after some hiding thresholds. These happen 

because the support of some sensitive patterns 

becomes less than the hiding threshold for some hiding 

thresholds, and these sensitive patterns are ignored in 

the candidate tree construction. When the number of 

sensitive patterns reduces to 2, the depth of the 

candidate tree will be 2 and no further deepening 

happens, which means no pruning, thus EMOSS 

performs like MOSS. Similar experiments were 

conducted on the Web usage dataset, and the same 

results are observed in Fig.6(a)-6(h) and Fig.7(a)-

7(d). It should be noted that the number of non-

sensitive patterns affected by the algorithms was also 

considered in Fig.7(a)-7(d) by δ=1, which leads to 

better infidelity. 
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Fig.3: DNA dataset experimental results comparing EMOSS and MOSS with no constraint: (a) time for  4SPs, (b) number 

of total solutions for 4SPs, (c) infidelity for 4 SPs, (d) distortion for 4 SPs. 
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(h) 

Fig.4: DNA dataset experimental results comparing EMOSS & MOSS with distance constraint:  

(a) time for 3SPs,(b) time for 4SPs, (c) number of total solutions for 3SPs, 

(d) number of total solutions for 4SPs,(e) distortion for 3 SPs, 

(f) distortion for 4 SPs,(g) infidelity for 3 SPs,(h) infidelity for 4 SPs. 
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Fig.5: DNA dataset experimental results comparing EMOSS & MOSS with gap constraint: 

(a) time for 3SPs,(b) time for 4SPs,(c) number of total solutions for 3SPs, 

(d) number of total solutions for 4SPs,(e) distortion for 3 SPs,(f) distortion for 4 SPs, 

(g) infidelity for 3 SPs,(h) infidelity for 4 SPs. 
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(h) 
Fig.6: Web dataset experimental results, comparing MOSS & EMOSS: (a) time for 3SPs,(b) time for 4SPs, 

(c) number of total solutions for 3SPs,(d) number of total solutions for 4SPs,(e) distortion for 3 SPs, 

(f) distortion for 4 SPs,(g) infidelity for 3 SPs,(h) infidelity for 4 SPs 
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(d) 
Fig.7: Web dataset experimental results, comparing MOSS & EMOSS with interfering non-sensitive patterns: (a) time for 

3SPs,(b) number of total solution for 3 SPs,(c) distortion for 3SPs,(d) infidelity for 3SPs. 
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Fig. 8: DNA dataset experimental results comparing EMOSS & OSH with no constraint: (a) time for 4SPs, 

 (b) distortion for 4SPs, (c) infidelity for 4 SPs 
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Fig. 10: DNA dataset experimental results comparing EMOSS & OSH with distance constraint: (a) time for 3SPs, (b) 

time for 4SPs, (c) distortion for 3SPs,(d) distortion for 4SPs, (e) infidelity for 3 SPs, (f) infidelity for 4 SPs 
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Fig. 11: DNA dataset experimental results, comparing EMOSS & OSH with gap constraint: (a) time for 3SPs, (b) time 

for 4SPs, (c) distortion for 3SPs, (d) distortion for 4SPs, (e)infidelity for 3 SPs,  

(f) infidelity for 4SPs 



B. Comparative Study on EMOSS & OSH 

    In this subsection, EMOSS and OSH are compared 

in terms of running-time, distortion, infidelity. 

Fig.8(a)-8(c) show experimental results for DNA 

dataset with no constraint. Fig.8(b) compares the 

number of distortions for both algorithms and shows 

that EMOSS performs better, while  EMOSS 

outperforms OSH in running-time in Fig.8(a).The 

running-time figure is a descending ramp for OSH, due 

to the removal of some sequences during the 

sanitization process.  

    Fig.8(c) shows that EMOSS and OSH are the same 

in terms of fidelity for  most values of the hiding 

threshold, and EMOSS performs better in the higher 

hiding threshold.Fig.9(a)-9(f) show experimental 

results for the DNA dataset with distance constraint. In 

Fig.9(c) and 9(d), the previous result is seen again. In 

Fig.9(a) and 9(b), the curve of running-timeslopes 

down for EMOSS is just like that of Fig.4(b) which was 

mentioned earlier. Fig.9(e) and (f) show  a similar 

performance to that seen in Fig.8(e) and 8(f). 

      Fig.10(a)-10(f) show experimental results for the 

DNA dataset with a gap constraint and similar 

performances are seen.  Fig. 11(a)-11(f) show 

experimental results for the Web dataset which 

compares EMOSS and OSH. Fig.11(a) and 11(b) 

indicate that EMOSS performs better than OSH in 

running-time, but in Fig. 11(c) and 11(d) as well as 

11(e) and 11(f), EMOSS(1,1,1,1) performs better 

where infidelity has been taken into account. The 

major reason for the drop in the running-time for OSH 

is that it removes some sequences from its processing 

list with respect to the hiding threshold. 

VI. CONCLUSION 

In this paper the problem of hiding sequential 

patterns has been addressed. The main contributions 

are that it proposes a more efficient algorithm with 

fewer distortions and lower infidelity. Furthermore, it 

considers a highly flexible weighted objective function 

to find the best solution among all candidate solutions 

to sanitize sequences. Handling constraints is the other 

advantage of the proposed method. Experimental 

studies based on two datasets proved the advantages of 

the algorithm mentioned. The results demonstrate that 

the proposed algorithm outperforms the other existing 

algorithm in terms of computing time and memory 
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Fig. 12: Web dataset experimental results, comparing EMOSS & OSH: (a) time for 3SPs,(b) time for 4SPs,(c) distortion 

for 3SPs,(d) distortion for 4SPs,(e) infidelity for 4 SPs,(h) infidelity for 3 SPs 

 



usage. Further studies include investigating other 

algorithmic solutions taking into account other types of 

data, like multi-dimensional data which the authors are 

working on. 

ACKNOWLEDGMENT  

    This research was partially supported by The 

Research Institute for Information and Communication 

Technology of Iran. 

 

REFERENCES 

[1] O. Abul, F. Bonchi, and F. Giannotti, “Hiding Sequential and 
Spatiotemporal Patterns,” IEEE Transactions on  Knowledge 
and Data Engineering, 22, 2010 ,pp.1709-1723. 

[2] O. Abul, “Hiding co-occurring frequent itemsets,” 2nd 
Intenational Workshop on Privacy and Anonymity in the 
Information Society(PAIS'09), ACM, 2009. 

[3] O. Abul, M. Atzori, F. Bonchi, and F. Giannotti, “Hiding 
sequences,” IEEE 23rd International Conference on Data 
Engineering Workshop(ICDEW 2007), 2007, pp. 147-156. 

[4] C. C. Aggarwal, J. Pei, and B. Zhang, “On privacy preservation 
against adversarial data mining,” 12th ACM SIGKDD 
international conference on Knowledge discovery and data 
mining, ACM, 2006. 

[5] R. Aggrawal, R. Srikant, “Mining sequential patterns,” 11th 
International Conference on Data Engineering (ICDE95), 
IEEE, 1994. 

[6] C. Harley, R. R. Molecular Biology (Promoter Gene 
Sequences) Data Set UCI Machine Learning Repository, 1987. 

[7] A. Gkoulalas-Divanis, V. S. Verykios, “Association Rule 
Hiding for Data Mining,” New York,USA, Springer Verlag, 
2010, pp. 45 - 52. 

[8] D. Heckerman, MSNBC.com Anonymous Web Data UCI 
Machine Learning Repository, 1999. 

[9] S. R. M. Oliveira, O. R. Zaïane, Y. Saygin, “Secure association 
rule sharing,” 8th Pacific-Asia Coference, Advances in 
Knowledge Discovery and Data Mining (PAKDD'04), 2004, 
Springer, pp.74-85. 

[10] B. Rahbarinia, M. M. Pedram, H. R. Arabnia, Z. Alavi, “A 
multi-objective scheme to hide sequential patterns,” 2nd 
International Conference on Computer and Automation 
Engineering(ICCAE), 2010, IEEE, pp.153-158. 

[11] Y. Saygin, V. S. Verykios, C. Clifton, “Using unknowns to 
prevent discovery of association rules,” ACM SIGMOD 
Record, vol. 30, no. 4, 2001, pp. 45-54. 

[12] V. S. Verykios, A. K. Elmagarmid, E. Bertino,Y. Saygin, and 
E. Dasseni, “Association rule hiding,” IEEE Transaction on 
Knowledge and Data Engineering, 16, 2004, pp. 434-447. 

 

Olya Sadat Behbahani received 

her M.Sc. degree in Artificial 

Intelligent (Computer Sceince) 

from the Kharazmi University, 

Tehran, Iran, 2011, and B.Sc. 

degree in Computer Hardware 

Engineering from Sanati Babol 

University, Mazandaran, Babol, 

Iran, 2004. She is currently a 

lecturer in the department of 

Computer Engineering at Islamic Azad University- 

North Tehran Branch. Her Research areas are Expert 

Systems, Machine Learning, Data Mining and 

Operating Systems problems. 

 

 

Mir Mohsen Pedram received 

his Ph.D. degree in Electrical 

Engineering from the Tarbiat 

Modarres University, Tehran, 

Iran, 2003,his M.Sc. degree in 

Electrical Engineering from 

Tarbiat Modarres University, 

Tehran, Iran, 1994 and his B.Sc. 

degree in Electrical Engineering 

from Isfahan University of Technology, Isfahan, Iran, 

1990. He is currently an Assistant Professor in the 

Department of Electrical and Computer Engineering at 

Kharazmi University. He is also the head of the Data 

Mining and Cognitive Science research laboratories at 

Kharazmi University. His main areas of research are 

Intelligent Systems, Machine Learning, Data Mining 

and Cognitive Science. 

 
 

Babak Rahbarinia is 

currently an Assistant 

Professor in the Mathematics 

and Computer Science 

Department at Auburn 

University at Montgomery 

(AUM). He obtained his Ph.D. 

degree in Computer Science in May 2015 from 

University of Georgia. He has a M.Sc. degree in 

Computer Science from Azad University, Iran (2010), 

and a B.Sc. degree in Software Engineering from 

University of Science and Culture, Iran (2007). His 

research focuses on Computer Networks, Cyber 

Security, and Machine Learning.  

 

Kambiz Badie received all his 

degrees from Tokyo Institute of 

Technology, Japan, majoring in 

pattern recognition. Within the 

past years, he has been actively 

involved in cognitive modeling 

& systemic knowledge 

processing in general and 

analogical knowledge 

processing, and modeling interpretation process in 

particular, with emphasis on creating new ideas, 

techniques and contents. Dr. Badie is an active 

researcher, in the areas of interdisciplinary and 

transdisciplinary studies in Iran. At present, he is a 

member of scientific board of IT Research Faculty, and 

in the meantime, Deputy Director for Research Affairs 

in ICT Research Institute. 

 
 


