
EMOSS: An Efficient Algorithm to Hide Sequential

Patterns

O. Behbahani

Department of Electrical

and Computer Engineering,

Kharazmi University,

Tehran, Iran

behbahani@khu.ac.ir

K. Badie

Info Society Department,

Cyberspace Research Institute,

Tehran, Iran

k_badie@csri.ac.ir

M.M. Pedram

Department of Electrical

and Computer Engineering,

Kharazmi University,

Tehran, Iran

pedram@khu.ac.ir

B. Rahbarinia

Math and Computer Science Dept.,

Auburn University Montgomery,

Montgomery, AL, USA

brahbari@aum.edu

Received: May 14, 2015- Accepted: July 29, 2015

Abstract—Nowadays data mining is the way of extracting hidden knowledge from raw data whereas sequence mining

aims to find sequential patterns that are frequent in the database, so publishing these data may lead to the disclosure of

private information about organizations or individuals. Knowledge hiding is the process of hiding sensitive knowledge

extracted previously from the database, to ensure that no abuse will be caused. This paper addresses the problem of

sequential pattern hiding and proposes an efficient algorithm which uses a multi-objective approach to overcome the

problem of sequence hiding as well as maintaining database fidelity as much as possible. It also shows that the proposed

algorithm outperforms existing methods in terms of both speed and memory usage.

Keywords-data mining, sequence mining, knowledge hiding, sequential pattern.

NOMENCLATURE

SDB: Sequence Database,

bestSolutions: An array associated with a sequence in

SDB,which contains best solutions for sanitizing the

sequence,

D: The number of distortions,

DBSeqsToCheck: The set of sequences which should

be checked in the next iteration of candidate tree

generation,

S: A database sequence,

nSP: The number of sensitive patterns,

NSP: The number of non-sensitive patterns,

SP: Sensitive pattern,

SPS: The set of sensitive patterns,

𝑟𝑜𝑠𝑠𝑝→𝑠(𝑥: 𝑖): The related occurrence set of x, as the ith

item of SP,in sequence S,

A: An item-set,

minsup(A): The percentage of all transactions that

contain 1's for all the items in A,

maxsup(A): The percentage of transactions that contain

either 1 or "?" for all the items in A,

http://www.jigsaw.com/id181046/the_university_of_georgia_company.xhtml

f(.,.,.): The sanitization objective function which

evaluates the generated solutions,

λ: Hiding threshold,

𝛼: Weight of nSP in the sanitization objective function,

𝛾: Weight of D in the sanitization objective function,

𝛿: Weight of NSP in the sanitization objective function,

M-pruning: A real value which serves as a threshold to

prune the candidate tree,

𝑔𝑎𝑝𝑟𝑜𝑠𝑆𝑃→𝑆(𝑥: 𝑖, min, 𝑚𝑎𝑥): The related occurrence

set of a gap constraint that enforces the number of

elements in S, which are between every two elements

of SP, to be in the interval [min-1, max+1],

𝑑𝑖𝑠𝑟𝑜𝑠𝑆𝑃→𝑆(𝑥: 𝑖, 𝑚𝑖𝑛, 𝑚𝑎𝑥) : The related occurrence

set of a distance constraint that enforces the number of

elements in S, which are between the first and the last

elements of SP, to be in the interval [min, max],

R: The complete set of rules mined from a database

with respect to a minimum support threshold,

RSE: The set of non-sensitive rules,

RR: The set of restrictive rules,

R': The set equal to R – (RR + RSE)

I. INTRODUCTION

Today, data mining methods help owners of
databases extract useful knowledge from their raw data.
Privacy preserving data mining is a relatively new
research area in the data mining community, having
existed for approximately a decade. It investigates the
side effects of data mining methods originating from the
penetration into the privacy of individuals and
organization[7].Privacy-preserving algorithms are
divided into two major groups, the first is data hiding
which proposes various techniques (perturbation,
transformation) for preserving the privacy of raw data
and the second is knowledge hiding which involves
protecting sensitive data after applying data mining
techniques on raw data when the dataset is less
distorted. The altered database is also called the
sanitized database. So far, most sanitization methods
have dealt with classic and simple forms of databases
and knowledge namely, frequent item-sets and
association rules, while the real-world applications are
more structured data, which are named sequential data.
In many applications like web usage logs, biomedical
patient data, spatio-temporal geo-referenced traces and
basket of customer purchasing, sequentiality of data is
obvious. While extracting knowledge from these data
offers several services to the world, it may be abused by
competitors. Consider a medical patient database which
contains clinical measurements at different moments in
time. By publishing this information, rivals abuse it by
sharing several databases to reveal personal
information. Another example is the abuse of spatio-
temporal data which contains sequences of locations
left by mobile phones and other location-aware devices
such as vehicular GPS [1]. Traffic management,
marketing, fuel management and several other
beneficial applications may also use the information
extracted from mobility data, which, if published
provides competitors with the opportunity to engage in
user profiling, unauthorized advertising, terrorist acts,
and so on.

This paper proposes a novel algorithm to hide such
sensitive patterns before publishing data while

maintaining most of the quality of information and data.
The benefit of the proposed algorithm is twofold: it
maintains the quality of and the fidelity of the data; and
can reduce the computational requirements by reducing
the computing time and memory usage. The proposed
algorithm is based on an efficient tree pruning and
shows that can improve the method previously
proposed by the authors [10], through reduction of
computing time and memory usage.

The rest of this paper is organized as follows.
Section2 presents the literature on the sanitization field.
The background information and notations are
presented in Section 3. In Section 4, the proposed
algorithm is introduced and the sequential pattern-
hiding problem is described. In addition, the
computational burden of the algorithm in terms of the
time and memory usage and complexity of it is
discussed in the worst case in section 4.2, and a solution
to cope with these problems is proposed in the section.
Section 5 presents the experimental results of two
different datasets. Finally, the conclusion is presented
in Section 6.

II. RELATEDWORKS

Most sanitization methods deal with classic and

simple forms of databases and information, namely

frequent item-sets and association rules. Several

algorithms have been proposed to solve the problem of

sensitive association rule hiding by manipulating

support of or confidence in the rules. In the work done

by Saygin et al. (2001), unknown values are introduced

which define the support and confidence intervals for

an item-set A and for a Rule, i.e. [minsup(A),

maxsup(A)], where the minsup(A) is the percentage of

all transactions that contain 1's for all the items in A

and maxsup(A) is the percentage of transactions that

contain either 1 or "?" for all the items in A. For rule R

the interval is [minconf(R), maxconf(R)]. The objective

is to decline a rule's support or confidence below

minimum support or minimum confidence thresholds.

In order to decline the minimum confidence of a rule

A→B, which is defined as 𝑚𝑖𝑛𝑐𝑜𝑛𝑓(𝐴 → 𝐵) =
𝑚𝑖𝑛𝑠𝑢𝑝(𝐴𝐵)

𝑚𝑎𝑥𝑠𝑢𝑝(𝐴)
, they decrease minsup(AB) and/or

increase maxsup(A). Nevertheless, by replacing "?"

with items in the A's or B's item-sets, the

minconf(A→B) will be reduced, but it is preferable to

alter B's items, because otherwise 𝑚𝑎𝑥𝑐𝑜𝑛𝑓(𝐴 →

𝐵) =
𝑚𝑎𝑥𝑠𝑢𝑝(𝐴𝐵)

𝑚𝑖𝑛𝑠𝑢𝑝(𝐴)
 might rise. Also to increase

maxsup(A), “?” marks are substituted for 0’s in the

transactions. Reducing support of a rule is trivial. They

proposed two sets of algorithms for decreasing either

support of or confidence in the rules.

In Verykios et al [12], disjoint-sensitive association
rules (association rules whose constituent item-sets are
disjointed) are hidden one at a time by reducing their
support or confidence. Reducing the support is done by
reducing a rule's antecedent or its consequent item-sets.
In addition, either by increasing the support of a rule's
antecedent item-set in transactions that partially support
it, or by decreasing the support of the rule's consequent
item-set, they decreased confidence in the rule.

Oliveira et al [9], proposed a different idea which

concerns sharing association rules rather than the data,

and tries to restrict the rules to be published. Let R be

the complete set of rules mined from a database with

respect to a minimum support threshold, and RR be the

restrictive rules, then the goal is to transform R to R'

where sensitive rules in R cannot be extracted by

analyzingR'. Clearly, by merely subtracting RR from R,

an adversary could infer restrictive rules. So the

algorithm finds a set of non-sensitive rules: RSE, and

sets R' = R –(RR + RSE), and as a result, all inference

channels are closed. In the frequent item-set graph,

either by obliterating at least one subset of each leaf

item-set whose corresponding sensitive rules had to be

hidden, or by erasing all supersets of each non-terminal

node whose rules were considered restrictive, they

reached to their objectives.

Aggarwal et al [4] introduced an algorithm for

protecting sensitive entries in a database. Some entries

in each tuple are considered sensitive by users, and the

objective is to guard them from being revealed. The

correlation that exists among entries in the database

alleviates the contingence of the values of hidden

entries by harnessing mined association rules. So some

non-sensitive entries should be erased to reduce

confidence in the revealing of rules. This is called Rule

Invalidation. Another method, termed Rule

Marginalization, precludes guessing the values of

entries by blanking out the entries in the sensitive

records corresponding to the antecedent of the rules, so

the rule will not fire on those records. In this algorithm,

first a set of rules, named Adversarial Rules which can

be utilized by an adversary to predict values of hidden

entries, are identified, then a set of non-sensitive

entries, with the help of these rules, are removed from

the database. Thus, Adversarial Rules become

inaccessible.

A new form of practical knowledge and approaches

for hiding it were proposed by Abul et al [2]. Co-

occurring frequent item-sets are a set of item-sets that

appear all together in mining results, and to keep them

secret it suffices to impede one of them from being

divulged. In another words, one piece of information

will not contain secrecy unless it comes into view

simultaneously with others. Therefore, if C = {C1,

C2, …,Cn} is the set of sensitive co-occurring frequent

item-sets, the two-staged hiding process elects one

item-set from each Ck C at the first stage, then

conceals it as the second stage. Four different heuristic

algorithms were proposed for the first stage.

A relatively new and more applicable form of data

which has been presented recently, is sequential data

[5], so knowledge preserving methods should be

applied to this category of data, too. Although it is more

likely to represent some real world data by a sequential

database, few studies focus on this topic with the

possible exception of Abul[3] which introduced the

first sequence-pattern hiding algorithm. In this work the

authors first define the matching set which is the set of

all sets with the size of sensitive patterns, which each

sequence supports, then the algorithm finds the

occurrences of items of sensitive patterns in each

sequence. Next it sorts the database in ascending order

according to matching set size, then removes all

matches in the top |𝑆𝐷𝐵| − 𝜆 input sequences. [10],

introduced a novel method capable of low distortion

and infidelity. The algorithm constructs candidate trees

for each sequence, which contain all the solutions with

respect to the multi-objective sequence-selection

framework defined by the user, then it finds the best

solution for the database and finally sanitizes the

sequence. While the support of sensitive patterns is

greater than a defined hiding threshold, this process

iterates. The process of knowledge hiding is discussed

in the next section.

III. PROBLEMSTATEMENT

In this section, some basic definitions of sequence

data mining are presented and a discussion about the

problem of sequential pattern hiding is provided.

Definition1. Sequence: A sequence is an ordered list

𝑆 = 𝑠1𝑠2 … 𝑠𝑙 , where each 𝑠𝑖(1 ≤ 𝑖 ≤ 𝑙) is an itemset

called an element which is denoted as (𝑥1𝑥2 … 𝑥𝑚)

such that each 𝑥𝑘(1 ≤ 𝑘 ≤ 𝑚) ∈ Σ, and Σ is a finite set

of distinct items. A sequence 𝛼 = 𝑎1𝑎2 … 𝑎𝑛 is called

a subsequence of another sequence 𝛽 = 𝑏1𝑏2 … 𝑏𝑚

and 𝛽 a super-sequence is 𝛼denoted as 𝛼 ⊑ 𝛽, if there

exist integers 1 ≤ 𝑗1 < 𝑗2 < ⋯ < 𝑗𝑛 ≤ 𝑚 such that

𝑎1 ⊆ 𝑏𝑗1, 𝑎2 ⊆ 𝑏𝑗2, … , 𝑎𝑛 ⊆ 𝑏𝑗𝑛 . In addition, a

sequence database SDB contains a set of sequences.

Definition2. Support of a Sequence: The support of a

sequence 𝛼 in a SDB is the number of sequences in

SDB that are super-sequences of 𝛼 : 𝑠𝑢𝑝𝑆𝐷𝐵(𝛼) =
|{𝑆 ∈ 𝑆𝐷𝐵|𝛼 ⊑ 𝑆}| . A sequence 𝛼 is called a

sequential pattern in SDB if 𝑠𝑢𝑝𝑆𝐷𝐵(𝛼) ≥min-sup.

Given a sequence 𝑆 = 𝑠1 … 𝑠𝑛 and a subsequence 𝑆′ =
𝑠′1 … 𝑠′𝑚, a set of positions {𝑖1, 𝑖2, … , 𝑖𝑚} is called an

occurrence of 𝑆′ in 𝑆 , if 1 ≤ 𝑖1 < ⋯ < 𝑖𝑚 ≤ 𝑛 and

𝑠′𝑘 = 𝑠𝑖𝑘 for each 1 ≤ 𝑘 ≤ 𝑚.

Problem definition1. Sequential Pattern Mining:

Given a sequence database and a minimum support

threshold, the sequential pattern mining problem is to

find the complete set of sequential patterns in the

database.

Definition3. Related occurrence set of an item in a

sequence: given a sequence S, a sequential pattern SP,

and an item x which is the ith item ofSP, the related

occurrence set of x from SP in S encircles item numbers

in S which corresponds to item x and is denoted as

𝑟𝑜𝑠𝑠𝑝→𝑠(𝑥: 𝑖) .As an example consider s =

bab(cd)(abd)bb(cbd), and sp= (cd)bb, then the related

occurrence set of 3th item from SP, i.e. b, in S is

𝑟𝑜𝑠(cd)bb→𝑠(𝑏: 3) ={7, 9, 10}.

Definition4. Sensitive Patterns: Experts determine

some sequential patterns to be hid. These sequential

patterns are called sensitive patterns. In addition, it is

referred to items in sensitive patterns as sensitive

items.

Problem definition2. SequentialPattern Hiding:
Given a sequence database SDB, a sensitive pattern set

SPS, and a hiding threshold λ, the goal is to change the

SDB at least to hide all of the sensitive patterns in it by

reducing their support to λ.

There are four important issues in the definition.

First, the sequences of database should be changed.

This is done by replacing some items of the element by

an unknown value "?".The number of items to be

changed are called distortions. Second, the term "at

least" dictates that the distortions should be as few as

possible, due to the fact that distortions decrease the

quality of the data. Then, the support of sensitive

patterns must be reduced exactly to λ, because

excessive support diminishes the database's quality.

The proposed algorithm is described in the next

Section.

IV. THEPROPOSEDALGORITHM

In this section we first review some fundamental
implications of our previous work which constitutes the
basis of the proposed algorithm here[10].

A. MOSS algorithm

As outlined in the previous section, we need to

explain how a sequential pattern vanishes from a

sequence; for this purpose, all the occurrences of the

sequential pattern must be cleared from the sequence.

Consider the sequence s=(cd)b(cd)bebe and the

sequential pattern sp = (cd)bb and ebe. The sanitized

s=(cd)b(cd)?e?eis gained by two distortion, because

𝑟𝑜𝑠(𝑐𝑑)𝑏𝑏→𝑠(𝑏: 3) = {4,6}, 𝑟𝑜𝑠𝑒𝑏𝑒→𝑠(𝑏: 2) = {4} .

Note that the sequence should be sanitized with as few

distortions as possible. It is worth mentioning that an

optimal sanitization, namely that of hiding all

occurrences of sensitive patterns in a sequence, is NP-

Hard [3].

A multi-objective sequence selection framework to

surmount the sensitive patterns hiding problem,was

introduced in[10]. Then the the algorithm finds the best

candidate solution for each sequence to sanitize the

dataset and then, by comparing all the best candidates

in the database, it selects the best overall candidate. It

is then applied to the corresponding sequence, so the

support of some sensitive patterns will reduce by one

unit. This process will iterate until all sensitive pattern

supports descend to the exact value of λ.

The candidate solution selection process considers

the following factors [10]:

1. Number of sensitive patterns (nSP) to be

maximized .

2. Number of distortions (D) of the candidate

solution that needs to be minimized.

3. Number of non-sensitive patterns (NSP) that

needs to be minimized.

Thus, the problem of hiding all sequences sSPS in
a sequential database SDB is defined as finding s'
⊑s to be hidden and changing SDB into SDB' so that:

𝑚𝑎𝑥 𝑛𝑆𝑃(𝑠′), 𝑚𝑖𝑛 𝐷(𝑠′) , 𝑚𝑖𝑛 𝑁𝑆𝑃(𝑠′) (1)

𝑠. 𝑡. 𝑠′ ⊑ 𝑠 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆𝑃𝑆

 𝑠𝑢𝑝𝑆𝐷𝐵′(𝑠) = , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆𝑃𝑆

To solve the above multi-objective optimization

problem, a weighted summation of the above

objectives is introduced:

𝐹(𝑛𝑆𝑃(𝑠′), 𝐷(𝑠′), 𝑁𝑆𝑃(𝑠′)) = 𝛼 ∗ 𝑛𝑆𝑃(𝑠′) −

 (𝛾 ∗ 𝐷(𝑠′) + 𝛿 ∗ 𝑁𝑆𝑃(𝑠′)) (2)

Where 𝛼,γ and δ are scaling factors and belong to [0,1].
The sequence analysis process, which results in the best
solution, is conducted by constructing a candidate tree
which again was introduced completely in (Rahbarinia
et al., 2010). The candidate tree is composed of all
possible solutions to sanitize a sequence in such a way
that each of its nodes is a solution. Note that solutions
which construct the ith level of the tree must be the
combination of a pair of items from (i-1)thlevel. Based
on this criterion a huge number of unnecessary and
useless solutions will be pruned beforehand.

B. Handling Constraints

Two types of constraints, namely max/min gap and

max/min distance (sliding window), could be

conveniently enforced to hide the algorithm where no

change is required in the algorithm and only the

definition of the related occurrence set needs

reconsideration. If a sequence S contains a

subsequence SP, then a max/min gap constraint

demands the number of elements in S that are

between every two elements of SP, to be less than (max

+ 1) and more than (min – 1). In this case, the related

occurrence set is denoted as

𝑔𝑎𝑝𝑟𝑜𝑠𝑆𝑃→𝑆(𝑥: 𝑖, 𝑚𝑖𝑛, 𝑚𝑎𝑥) . Moreover, a Sliding

window constraint states that the number of elements

in the sequence that are between the first and the last

elements of SP, is in the interval [min, max]. In this

case the related occurrence set is denoted as

𝑑𝑖𝑠𝑟𝑜𝑠𝑆𝑃→𝑆(𝑥: 𝑖, 𝑚𝑖𝑛, 𝑚𝑎𝑥) . The following

definitions about the related occurrence sets are

obvious:

𝑔𝑎𝑝𝑟𝑜𝑠𝑆𝑃→𝑆(𝑥: 𝑖, 𝑚𝑖𝑛, 𝑚𝑎𝑥) ⊆ 𝑟𝑜𝑠𝑆𝑃→𝑆(𝑥: 𝑖) (3)

𝑑𝑖𝑠𝑟𝑜𝑠𝑆𝑃→𝑆(𝑥: 𝑖, 𝑚𝑖𝑛, 𝑚𝑎𝑥) ⊆ 𝑟𝑜𝑠𝑆𝑃→𝑆(𝑥: 𝑖) (4)

To generate the new related occurrence sets, the

𝑟𝑜𝑠𝑆𝑃→𝑆(𝑥: 𝑖) is computed first.Then those item

numbers which do not satisfy the constraints are

excluded from it. The modified algorithm, i.e.,

EMOSS, will be introduced in the next part.

C. Enhanced Multi-objective Sequence Selection

(EMOSS)

The proposed algorithm aimed to reduce the time

complexity as well as the memory usage of the

previous work. As mentioned before, in order to hide

sensitive patterns, the algorithm constructs a candidate

tree. The height of the tree depends on the number of

sensitive patterns. The enhancement is achieved by

pruning the candidate tree. The objective function (2)

is computed for each solution and is used as a measure

to rank them as sanitizing candidates. It should be

noted that a deeper solution in the tree offers more

distortions, which leads to a lower objective function.

Thus, deeper solutions in the candidate tree are of

lower quality. This shows the idea of pruning the

candidate tree, i.e. during the construction of the

candidate tree, the sub-tree starting from a solution will

be pruned if the objective function value for the

solution is lower than the current best objective value

for some thresholds.

Definition5. Measure of Pruning Or M-pruning:a

real value which serves as a threshold to prune the

candidate tree. The current best objective function

value is compared with the objective function value of

each solution, and the subtree starting from the solution

is pruned if the difference is greater than M-pruning.

The mechanism of pruning is as follows:

a. The first level of tree is constructed and the best

objective function value is saved as the current

best objective value.

b. For the 2nd level or higher, the process of tree

construction continues as described below:

i. If the difference between the current best

objective value and the new solution is less

than or equal to M-pruning, the solution will

be added to the tree.

ii. If the difference is bigger than M-prunnig,

prune the subtree starting at the solution.

iii. If the objective value of the solution is better

than the current best objective value, then the

current best objective value is updated.

Fig.1 shows the steps of the proposed algorithm.

The algorithm DBSeqsToCheck, which holds the s-id

of all sequences, is used to determine which SDB

sequences should be checked in the next iteration. The

algorithm iterates until all sensitive patterns become

hidden. In the first step it finds the best candidate

solution for each sequence and then finds the best

solution for the entire SDB. This solution is applied to

the corresponding sequence and as a result the supports

of sensitive patterns in that sequence will be reduced

by one unit. At this point, those sensitive patterns

which are successfully hidden will be removed from

the SPS.

After the first iteration, only those sequences that

contain hidden sensitive patterns are rechecked and the

sequences are updated taking into account the fact that

their candidate tree will not include the hidden

sensitive patterns anymore. Other sequences' candidate

trees will remain intact. Therefore, a small number of

sequences are checked in each iteration.

With the respect of discussion in this section, the

complexity of the algorithm in worst case will be

computed as below:

In the worst case, if every sequence supports all

sensitive patterns (maximum size of the candidate tree

for the sequence) and each sensitive pattern has one

occurrence in the sequence, then first level of the tree

has the complexity of:

NSP*LSP (5)

So with respect to figure 1, the other levels have the

complexity of:

 (NSP-2)*(NSP^2) (6)

Finally, the complexity of the whole of the while loop

is:

 [(NSP*LSP)+(NSP-2)*(NSP^2)]*DBSize*NSP (7)

The abbreviation of LSP and NSP is described below:

LSP means Length of Sensitive Pattern and NSP points

to Number of Sensitive Patterns which the sequence

supports.

It is well worth mentiong that the result is for non-

pruning tree. The complexity will be much less than

the above result when the pruninig process is used, and

the complexity is dependent to the depth of the tree

which the pruning occurs.

In the proposed approach in[3], the authors sanitize

selected sequences by hiding all the occurrences of

sensitive patterns in them. In this method, when a

sequence to be sanitized is decided upon, all the

sensitive patterns are removed from it. The process of

hiding all the sensitive patterns from the selected

sequence may lead to the loss of the chance to sanitize

the database with fewer distortions[10].

In order to illustrate the proposed algorithm,

consider sequence s=bab(cd)(abd)bb(bcd) and its

candidate tree in Fig.2 with a sensitive pattern set

𝑆𝑃𝑆 = {(𝑐𝑑)𝑏𝑏, 𝑎𝑐(𝑎𝑑)}. For the sake of simplicity

the effect of NSP is ignored, i.e. 𝛿 = 0 . Other

parameters are considered as𝛼 = 1, 𝛾 = 1 , and M-

Pruning=1.

In Fig.2, EMOSS is applied to the sample sequence

and the candidate tree will be described. Each solution

is in the form of (nSP,D),Obj, wherenSPis the number

of sensitive patterns,D is the distortions, and “Obj” is

the objective function value for the solution,

respectively and NSP is ignored for simplicity.

In the first level of the tree, the best objective value

is zero, thus it is saved as the current best objective

value, then all the solutions that appear in the level two

of the tree are evaluated at step 1.2.1 in Fig.1, and the

underlined ones are pruned. Then the current best

objective value is updated to 1.The final best solution

of this candidate tree is solution cc(2,1),1, which is

shown doubly underlined, having an object value equal

to 1.The Result of applying EMOSS is the sanitized

sequence s=bab(?d)(abd)bb(bcd), in which the two

sensitive patterns are hidden solely by one distortion.

Fig.1: EMOSS Algorithm

Now suppose the number of sensitive patterns is

three or more, then the candidate tree will deepen more

than 2 levels and there will be opportunities for

pruning, resulting in less computational burdens and

memory usage.

Table 1 shows the results of applying the pruning

method on two sequences, where the first one is a DNA

sequence and the second is a page view of a user during

a 24-hour period. In this study, NSP is ignored, i.e.

𝛿 = 0 andother parameters are considered as 𝛼 =
1, 𝛾 = 1 and M-pruning=1. The sensitive pattern set

contains 4 sensitive patterns for both sequences as

shown in the third column. The MOSS algorithm

generated a candidate tree with 30731 solutions, while

the EMOSS algorithm generated a candidate tree with

21 solutions. MOSS and EMOSS generated 6331 and

33 solutions, respectively for the second sequence. The

results show that the EMOSS algorithm pruned the tree

considerably, which decreases the time complexity

efficiently.

V. EXPERIMENTAL RESULTS

In this section the performance of EMOSS is tested

on two datasets. The first dataset is the Molecular

Biology dataset [6], with 106 DNA sequences of length

57. The MSNBC.com Anonymous Web dataset [8]

is the second dataset which incorporates 989818

sequences over integers from 1 to 17 as its items. Each

sequence is a page view of a user during a 24-hour

period, and the first 5000 sequences have been

considered in the experiments. These datasets are

denoted as DNA, and WEB respectively. The proposed

algorithm, i.e. EMOSS, was implemented in C# and all

the experiments were conducted on a system equipped

with 2.66GHz Intel core duo processor and 3MB

physical memory, running the Windows XP operating

system.

The EMOSS is compared to MOSS in subscection

5.1, and another study between EMOSS and OSH [3],

is performed in subsection 5.2. These comparative

studies were performed using the following criteria:

the number of distortions imposed on the dataset,

running-time, and infidelity. It is worth while

mentioning that infidelity is a measure that

encompasses those non-sensitive patterns with their

support falling below the support threshold after

sanitization,[10].

Information regarding the datasets is shown in

Table2.The support threshold used to find frequent

Table 1: Results for Appling the Pruning Method

file:///C:/Users/PE/Desktop/AR(85)-d.docx%23_ENREF_5
file:///C:/Users/PE/Desktop/AR(85)-d.docx%23_ENREF_7
file:///C:/Users/PE/Desktop/AR(85)-d.docx%23_ENREF_7

patterns for each dataset sequence miner algorithm is

shown in Column two of Table2, and the third column

of the table shows the number of frequent patterns.

Each figure is supplied with legends in the form of

“algorithm-name,(α,γ,δ,M-pruning), constraint”,

where algorithm-name refers to the algorithm used in

the test. (α,γ,δ,M-pruning) are the parameters used in

the test of the algorithm, and constraint shows the

settings for the constraint(s). It should be noted that the

parameter M-pruning is defined for the EMOSS

algorithm. Experiments showed that M-pruning = 0.7

is a proper value.

Fig.2: Candidate tree for the sample sequence with pruning

Table 2: Test Datasets[6,8]

A. Comparisson study on EMOSS & MOSS

In this subsection, MOSS and EMOSS are

compared in running-time, distortion, infidelity, and

the total number of solutions produced during a run,

which indicates the memory usage of each algorithm.

In Fig. 3(a)-3(d), the experiments are performed on

a DNA dataset, for sets with sensetive patterns, i.e.

4SPs (Sensitive Patterns) and no constraint has been

included. All experiments were performed for different

values of the hiding threshold(λ). Fig.3(a) and 3(b)

show that EMOSS performs much better than MOSS in

terms of running-time and memory usage, due to the

proposed pruning method in EMOSS, while the

distortion and infidelity of both algorithms are the

same, according to Fig.3(c)-3(d). The same

experiments were repeated with two different types of

constraints, i.e. min-max distance (sliding window)

and min-max gap. Fig.4(a)-4(h) show the results

considering the constraint of 18-20 distance, while

Fig.5(a)-5(h) shows the results for the constraint of 4-

9 gap. These Figures confirm the results obtained by

Fig.3(a)-3(d). There are sudden drops in Fig. 4(a), 4(b),

4(c), 4(d), 5(b), and 5(d) for MOSS and EMOSS, and

the EMOSS algorithm performs like the MOSS

algorithm after some hiding thresholds. These happen

because the support of some sensitive patterns

becomes less than the hiding threshold for some hiding

thresholds, and these sensitive patterns are ignored in

the candidate tree construction. When the number of

sensitive patterns reduces to 2, the depth of the

candidate tree will be 2 and no further deepening

happens, which means no pruning, thus EMOSS

performs like MOSS. Similar experiments were

conducted on the Web usage dataset, and the same

results are observed in Fig.6(a)-6(h) and Fig.7(a)-

7(d). It should be noted that the number of non-

sensitive patterns affected by the algorithms was also

considered in Fig.7(a)-7(d) by δ=1, which leads to

better infidelity.

(a)

(b)

(c)

(d)

Fig.3: DNA dataset experimental results comparing EMOSS and MOSS with no constraint: (a) time for 4SPs, (b) number

of total solutions for 4SPs, (c) infidelity for 4 SPs, (d) distortion for 4 SPs.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig.4: DNA dataset experimental results comparing EMOSS & MOSS with distance constraint:

(a) time for 3SPs,(b) time for 4SPs, (c) number of total solutions for 3SPs,

(d) number of total solutions for 4SPs,(e) distortion for 3 SPs,

(f) distortion for 4 SPs,(g) infidelity for 3 SPs,(h) infidelity for 4 SPs.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig.5: DNA dataset experimental results comparing EMOSS & MOSS with gap constraint:

(a) time for 3SPs,(b) time for 4SPs,(c) number of total solutions for 3SPs,

(d) number of total solutions for 4SPs,(e) distortion for 3 SPs,(f) distortion for 4 SPs,

(g) infidelity for 3 SPs,(h) infidelity for 4 SPs.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)
Fig.6: Web dataset experimental results, comparing MOSS & EMOSS: (a) time for 3SPs,(b) time for 4SPs,

(c) number of total solutions for 3SPs,(d) number of total solutions for 4SPs,(e) distortion for 3 SPs,

(f) distortion for 4 SPs,(g) infidelity for 3 SPs,(h) infidelity for 4 SPs

(a)

(b)

(c)

(d)
Fig.7: Web dataset experimental results, comparing MOSS & EMOSS with interfering non-sensitive patterns: (a) time for

3SPs,(b) number of total solution for 3 SPs,(c) distortion for 3SPs,(d) infidelity for 3SPs.

(a)

(b)

(c)

Fig. 8: DNA dataset experimental results comparing EMOSS & OSH with no constraint: (a) time for 4SPs,

 (b) distortion for 4SPs, (c) infidelity for 4 SPs

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 10: DNA dataset experimental results comparing EMOSS & OSH with distance constraint: (a) time for 3SPs, (b)

time for 4SPs, (c) distortion for 3SPs,(d) distortion for 4SPs, (e) infidelity for 3 SPs, (f) infidelity for 4 SPs

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 11: DNA dataset experimental results, comparing EMOSS & OSH with gap constraint: (a) time for 3SPs, (b) time

for 4SPs, (c) distortion for 3SPs, (d) distortion for 4SPs, (e)infidelity for 3 SPs,

(f) infidelity for 4SPs

B. Comparative Study on EMOSS & OSH

 In this subsection, EMOSS and OSH are compared

in terms of running-time, distortion, infidelity.

Fig.8(a)-8(c) show experimental results for DNA

dataset with no constraint. Fig.8(b) compares the

number of distortions for both algorithms and shows

that EMOSS performs better, while EMOSS

outperforms OSH in running-time in Fig.8(a).The

running-time figure is a descending ramp for OSH, due

to the removal of some sequences during the

sanitization process.

 Fig.8(c) shows that EMOSS and OSH are the same

in terms of fidelity for most values of the hiding

threshold, and EMOSS performs better in the higher

hiding threshold.Fig.9(a)-9(f) show experimental

results for the DNA dataset with distance constraint. In

Fig.9(c) and 9(d), the previous result is seen again. In

Fig.9(a) and 9(b), the curve of running-timeslopes

down for EMOSS is just like that of Fig.4(b) which was

mentioned earlier. Fig.9(e) and (f) show a similar

performance to that seen in Fig.8(e) and 8(f).

 Fig.10(a)-10(f) show experimental results for the

DNA dataset with a gap constraint and similar

performances are seen. Fig. 11(a)-11(f) show

experimental results for the Web dataset which

compares EMOSS and OSH. Fig.11(a) and 11(b)

indicate that EMOSS performs better than OSH in

running-time, but in Fig. 11(c) and 11(d) as well as

11(e) and 11(f), EMOSS(1,1,1,1) performs better

where infidelity has been taken into account. The

major reason for the drop in the running-time for OSH

is that it removes some sequences from its processing

list with respect to the hiding threshold.

VI. CONCLUSION

In this paper the problem of hiding sequential

patterns has been addressed. The main contributions

are that it proposes a more efficient algorithm with

fewer distortions and lower infidelity. Furthermore, it

considers a highly flexible weighted objective function

to find the best solution among all candidate solutions

to sanitize sequences. Handling constraints is the other

advantage of the proposed method. Experimental

studies based on two datasets proved the advantages of

the algorithm mentioned. The results demonstrate that

the proposed algorithm outperforms the other existing

algorithm in terms of computing time and memory

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 12: Web dataset experimental results, comparing EMOSS & OSH: (a) time for 3SPs,(b) time for 4SPs,(c) distortion

for 3SPs,(d) distortion for 4SPs,(e) infidelity for 4 SPs,(h) infidelity for 3 SPs

usage. Further studies include investigating other

algorithmic solutions taking into account other types of

data, like multi-dimensional data which the authors are

working on.

ACKNOWLEDGMENT

 This research was partially supported by The

Research Institute for Information and Communication

Technology of Iran.

REFERENCES

[1] O. Abul, F. Bonchi, and F. Giannotti, “Hiding Sequential and
Spatiotemporal Patterns,” IEEE Transactions on Knowledge
and Data Engineering, 22, 2010 ,pp.1709-1723.

[2] O. Abul, “Hiding co-occurring frequent itemsets,” 2nd
Intenational Workshop on Privacy and Anonymity in the
Information Society(PAIS'09), ACM, 2009.

[3] O. Abul, M. Atzori, F. Bonchi, and F. Giannotti, “Hiding
sequences,” IEEE 23rd International Conference on Data
Engineering Workshop(ICDEW 2007), 2007, pp. 147-156.

[4] C. C. Aggarwal, J. Pei, and B. Zhang, “On privacy preservation
against adversarial data mining,” 12th ACM SIGKDD
international conference on Knowledge discovery and data
mining, ACM, 2006.

[5] R. Aggrawal, R. Srikant, “Mining sequential patterns,” 11th
International Conference on Data Engineering (ICDE95),
IEEE, 1994.

[6] C. Harley, R. R. Molecular Biology (Promoter Gene
Sequences) Data Set UCI Machine Learning Repository, 1987.

[7] A. Gkoulalas-Divanis, V. S. Verykios, “Association Rule
Hiding for Data Mining,” New York,USA, Springer Verlag,
2010, pp. 45 - 52.

[8] D. Heckerman, MSNBC.com Anonymous Web Data UCI
Machine Learning Repository, 1999.

[9] S. R. M. Oliveira, O. R. Zaïane, Y. Saygin, “Secure association
rule sharing,” 8th Pacific-Asia Coference, Advances in
Knowledge Discovery and Data Mining (PAKDD'04), 2004,
Springer, pp.74-85.

[10] B. Rahbarinia, M. M. Pedram, H. R. Arabnia, Z. Alavi, “A
multi-objective scheme to hide sequential patterns,” 2nd
International Conference on Computer and Automation
Engineering(ICCAE), 2010, IEEE, pp.153-158.

[11] Y. Saygin, V. S. Verykios, C. Clifton, “Using unknowns to
prevent discovery of association rules,” ACM SIGMOD
Record, vol. 30, no. 4, 2001, pp. 45-54.

[12] V. S. Verykios, A. K. Elmagarmid, E. Bertino,Y. Saygin, and
E. Dasseni, “Association rule hiding,” IEEE Transaction on
Knowledge and Data Engineering, 16, 2004, pp. 434-447.

Olya Sadat Behbahani received

her M.Sc. degree in Artificial

Intelligent (Computer Sceince)

from the Kharazmi University,

Tehran, Iran, 2011, and B.Sc.

degree in Computer Hardware

Engineering from Sanati Babol

University, Mazandaran, Babol,

Iran, 2004. She is currently a

lecturer in the department of

Computer Engineering at Islamic Azad University-

North Tehran Branch. Her Research areas are Expert

Systems, Machine Learning, Data Mining and

Operating Systems problems.

Mir Mohsen Pedram received

his Ph.D. degree in Electrical

Engineering from the Tarbiat

Modarres University, Tehran,

Iran, 2003,his M.Sc. degree in

Electrical Engineering from

Tarbiat Modarres University,

Tehran, Iran, 1994 and his B.Sc.

degree in Electrical Engineering

from Isfahan University of Technology, Isfahan, Iran,

1990. He is currently an Assistant Professor in the

Department of Electrical and Computer Engineering at

Kharazmi University. He is also the head of the Data

Mining and Cognitive Science research laboratories at

Kharazmi University. His main areas of research are

Intelligent Systems, Machine Learning, Data Mining

and Cognitive Science.

Babak Rahbarinia is

currently an Assistant

Professor in the Mathematics

and Computer Science

Department at Auburn

University at Montgomery

(AUM). He obtained his Ph.D.

degree in Computer Science in May 2015 from

University of Georgia. He has a M.Sc. degree in

Computer Science from Azad University, Iran (2010),

and a B.Sc. degree in Software Engineering from

University of Science and Culture, Iran (2007). His

research focuses on Computer Networks, Cyber

Security, and Machine Learning.

Kambiz Badie received all his

degrees from Tokyo Institute of

Technology, Japan, majoring in

pattern recognition. Within the

past years, he has been actively

involved in cognitive modeling

& systemic knowledge

processing in general and

analogical knowledge

processing, and modeling interpretation process in

particular, with emphasis on creating new ideas,

techniques and contents. Dr. Badie is an active

researcher, in the areas of interdisciplinary and

transdisciplinary studies in Iran. At present, he is a

member of scientific board of IT Research Faculty, and

in the meantime, Deputy Director for Research Affairs

in ICT Research Institute.

