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Abstract—The capacity region of a two-user linear Gaussian compound Multiple Access Channel with common 
message (CMACC) and intersymbol interference (ISI) under an input power constraint is derived. To obtain the 
capacity region we first convert the channel to its equivalent memoryless one by defining an n-block memoryless 
circular Gaussian CMACC model. We then make use of the discrete Fourier transform (DFT) to decompose the n-
block circular Gaussian CMACC into a set of independent parallel channels whose individual capacities can be found 
easily. Finally we derive the capacity of this n-block memoryless circular Gaussian CMACC (n-CGCMACC) based on 
the DFT decomposition. Since our channel is a special case of a synchronous multi-terminal channel, the capacity 
region of the Gaussian CMACC with ISI is the same as the capacity region of the n-CGCMACC in the limit of infinite 
block length. We also investigate the capacity regions for some special cases of the Gaussian CMACC with ISI using 
the obtained capacity region, and finally, provide some numerical results to show the loss in the rate caused by ISI. 
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I. INTRODUCTION  
The two-user compound multiple-access channel 

(CMAC) is a two-sender two-receiver communication 
channel in which two senders want to transmit 
messages to both receivers concurrently and each of 
the two receivers need to decode all messages sent 
from both senders [1]–[4]. In the CMAC two basic 
and important multi-user channels MAC (uplink 
channel) and broadcast channel (BC) (downlink 

channel) can be seen concurrently. In other words, 
from the receivers standpoint the CMAC can be 
considered as a combination of two MACs, and from 
the senders standpoint it can be considered as two 
BCs. The CMAC was first studied by Maric et al. [1] 
where they established the capacity regions of CMAC 
with common message (MACC) and of CMAC with 
conferencing encoders. Simeone et al. [2] extended the 
channel models in [1] to the case with conferencing 
decoders and studied the CMACC with conferencing 
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decoders and CMAC with both conferencing encoders 
and decoders. More recently, achievable rate regions 
have been provided for the CMACC with specially 
correlated channel states [3] and for the CMACC with 
generalized feedback [4].  

One of the main causes of performance 
degradation in digital communication systems that 
makes the communication less reliable is intersymbol 
interference (ISI). ISI is an inevitable and undesirable 
phenomenon in which symbols interfere with the 
previous or subsequent transmitted symbols. Two 
major causes of the ISI are (i) multipath propagation 
and (ii) the passing of a signal through a bandlimited 
channel. The capacity characterization of the channel 
with ISI because of having memory is not so easy. The 
main idea, which until now has been the basis of all 
approaches for deriving the capacity regions of the 
various channels with ISI, is to convert the ISI channel 
to its equivalent memoryless one using n-block 
memoryless circular Gaussian channel model and then 
apply the discrete Fourier transform (DFT) to 
decompose the n-block channels into independent 
channels whose capacities can be found easily. This 
idea was first introduced by Hirt and Massey [5] 
where they employed this method to derive the 
capacity of a single-user discrete Gaussian channel 
with ISI. Cheng and Verdu [6] found the capacity 
region of a two-user linear Gaussian MAC with ISI. 
Goldsmith and Effros [7] derived the capacity region 
of a finite-memory BC with ISI and colored Gaussian 
noise and showed that this capacity region is equal to 
the capacity region of an n-circular Gaussian BC as n 
grows to infinity. They also proved a more general 
result that states that any synchronous multi-terminal 
channel and its circular approximation have the same 
capacity region. Recently, Choudhuri and Mitra [8] 
derived single-letter expressions for the achievable 
rates and an upper bound on the capacity of a relay 
channel with ISI and additive colored Gaussian noise. 

 In this paper we characterize the capacity region 
of the two-user Gaussian compound MAC with 
common message (GCMACC) and in the presence of 
ISI using the same approach that has been used to 
obtain the capacity of the single-user and synchronous 
multi-user channels with ISI [5]–[9]. We first define a 
similar channel model, n-block memoryless circular 
Gaussian CMACC. We next make use of the DFT to 
decomposed our circular Gaussian CMACC into a set 
of n-parallel, memoryless and independent scalar 
channels whose individual capacities are given by 
prior results. Then we derive the capacity of this n-
block memoryless circular Gaussian CMACC based 
on the DFT decomposition. Since in the CMACC both 
senders are allowed to transmit a common message 
cooperatively, the channel is block (or frame)-
synchronous and hence, we can utilize the obtained 
result in [7] for our synchronous two-user channel.  
Finally, we derive the capacity region of the original 
Gaussian CMACC using this fact that this capacity 
region equals that of the n-block circular Gaussian 
CMACC in the limit of infinite block length [5]–[9]. 
One of the benefits of studying the CMACC with ISI 
is that we can examine the capacity regions of the 
strong interference channel with common message 
(SICC) and ISI, of the MAC with ISI and with/without 

common message and of the CMAC with 
unidirectional cooperation and ISI as special cases of 
it. The remainder of this paper is organized as follows. 
In Section II, we define the linear GCMACC with ISI 
and n-block circular GCMACC. The main result is 
presented in Section III. In Section IV, we discuss 
some corollaries of the main result. Some numerical 
results are provided in Section V to show the loss in 
the rate caused by ISI. The derived capacity region in 
Theorem 1 is proved in Section VI. Finally, a 
conclusion is prepared in Section VII. 

 
Fig. 1. Two-user compound MACC. 

 

II. DEFINITIONS AND CHANNEL MODEL 
We use notations and formulations similar to [7] 

and [8]. We use  and  to denote the linear and 
circular convolutions, respectively.  equals  
modulo  except when  is zero or an integer multiple 
of , in which case . We denote sequence 

 by , subsequence  as 
 and vector  by .  and  

denote the transpose and the conjugate transpose of 
, respectively, and . Also, for a matrix , 
 denotes the absolute value of the determinant of . 

Definition 1: A tow-user discrete memoryless 
CMACC (shown in Fig. 1) denoted by 

 consists of two input 
alphabets , two output alphabets , and a 
transition probability  which is a 
conditional channel probability of  
given . The channel is memoryless 
in the sense that  

 

In this channel, encoder , , wants to send a 
private message  along with a 
common message  to both 
receivers. The common message  and the private 
messages  are assumed to be independently and 
uniformly generated over , respectively. 
Encoder , , maps the messages  and  
using encoding function  into a codeword  as 

. 

Decoder , , using decoding function   

, 

estimates ,  and  based on received sequence 
 as .  

A  code for the CMACC 
consists of three message sets , , , two 
encoding functions , and two decoding 
functions , such that , 
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where , , denotes the average error 
probability at the decoder  and is defined as  

 

 

A triple  of nonnegative real values is 
called an achievable rate for the CMACC if for any 
given , and for any sufficiently large  
there exists a  code. The 
capacity region of the CMACC is the closure of all 
achievable rate triples .  

The capacity region of the CMACC, determined 
by Maric et al. [1], is  

 

 
 

 
 

 (1) 

where the union is over all joint distributions that 
factor as 

 
 (2)

In this paper, we consider the discrete-time linear 
Gaussian CMACC with ISI shown in Fig. 2, where 
there are four different sets of ISI coefficients 

, , one for each link. In this 
channel, the input sequences transmitted by user 1 and 
user 2 are given by  and , respectively. The 
output sequences produced by these input sequences 
are  (at the first receiver) and  (at the 
second receiver), with ( ) 

 

 (3)

 

 (4)

where  and  are zero-mean stationary 
Gaussian noise processes with autocorrelation 
functions  and , respectively. These 
autocorrelation functions are assumed to have a 
common finite support , i.e.,  
for . We also assume that all channel 
impulse responses ,  have 
common memory length . We only consider the case 
that . For the case that , the 
channel impulse responses can be zero padded to 
make them equal. Since the outputs are linear 
combinations of the inputs, for a given , this channel 
is called the linear Gaussian CMACC (LGCMACC) 
with finite memory . Moreover, since the channel 
outputs at a time instance depend on the input symbols 

of that time and also previous input symbols, the 
channels have ISI. 

The input sequences are subjected to the following 
average power constraints for all : 

 (5) 

 
Fig. 2. Two-user linear Gaussian CMACC with ISI. 

 
 

The noise power spectral densities of the channels are 

 (6)

The transfer functions of the channel links (the DFTs 
of channel impulse responses) are 

 (7)

which are periodic in  with period . 
Block (or frame)-synchronism refers to the ability 

of the senders to transmit their codewords 
simultaneously. Since in the LGCMACC both 
transmitters are allowed to send a common message 
cooperatively, the channel is block (or frame)-
synchronous. Therefore, to compute the capacity 
region of the LGCMACC with ISI, we modify our 
channel and define an equivalent n-block memoryless 
circular channel model called n-block circular 
Gaussian CMACC (n-CGCMACC) for . Thus, 
the capacity region of the LGCMACC with ISI can be 
computed as the limit of the n-CGCMACC, as n 
grows to infinity. Note that a CMACC is n-block 
memoryless if for any integer  

 

 

  (8) 

In other words, in the n-block memoryless CMACC 
the outputs over any n-block are independent of 
channel inputs and noise samples of other n-blocks.  

The n-CGCMACC over every n-block has input 
vectors ,  which generate output 
vectors  and  at the first and second 
receivers, respectively, so that for  
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 (9) 

 

 (10)

where  

for , i.e.,  is an extended version 
of  which is extended with  
zeros. We can also rewrite (9) and (10) in the 
following vector forms: 

 (11) 
 (12) 

where for , , 
,  and  is the 

circulant matrix of the input vector , whose first row 
is defined as , and each row 
vector is rotated one element to the right relative to the 
preceding row vector. Note that in (9)-(12), the 
channel impulse responses are fixed vectors and input 
vectors are circular. We can obtain similar results by 
considering the fixed input vectors and circular 
channel impulse response vectors as follows.  

 (13)
 (14)

where for ,  and  are defined as 
above, , and  is the circulant 
channel matrix between the transmitter p and the 
receiver q, whose first row is defined as 

. In this paper we 
utilize (9) and (10) to derive the capacity region. The 
only difference between the circular channel model 
(9)-(10) and the linear channel model (3)-(4) is that the 
channel outputs in (9) and (10) are the circular 
convolutions of the input codewords with the channel 
impulse responses, whereas the channel outputs in (3) 
and (4) are the linear ones. Since the n-CGCMACC is 
an n-block memoryless channel, the noise samples  
and  are n-block independent with the same means 
and variances as  and , respectively, which 
their autocorrelation functions  and  are 
periodic repetitions of  and , respectively, 
for noise samples within an n-block. The same average 
power constraints (5) are assumed for n-CGCMAC. 
Note that the n-CGCMAC is not l-block memoryless 
if l is not an integer multiple of n. 

We now decompose the n-CGCMACC defined in 
(9) and (10) into a set of n-parallel, memoryless and 
independent scalar GCMACC channels in DFT 
domain which the capacities of these independent 
channels can be found easily by prior results. It is 
worth noting that, due to the invertibility of the DFT, 
applying the DFT to (9) and (10) does not affect the 
corresponding capacity region. So, after applying the 
DFT to both sides of (9) and (10) we obtain 

 (15)
 (16)

where for  and , , , 
, and  are the DFTs of , , , and 
, respectively. Consequently, the n-CGCMACC is 

equivalent to a collection of n parallel CMACCs that 
the kth-component channel is as shown in Fig. 3.   

 
Fig. 3. The kth-component channel. 

 

III. MAIN RESULT: THE CAPACITY REGION OF THE 
LINEAR GAUSSIAN COMPOUND MAC WITH COMMON 

MESSAGE AND ISI 
In this section, we obtain the capacity region of the 

n-CGCMACC which is the same as the capacity 
region of the LGCMACC with ISI in the limit of 
infinite block length.   

Let  and  denote the capacity regions of the 
LGCMACC with ISI, and of the n-CGCMACC, 
respectively. Since our channel is a special case of a 
synchronous multi-terminal channel, we can utilize the 
results in [7] and [9] and obtain the capacity region of 
the LGCMACC with ISI, which is the same as the 
capacity region of the n-CGCMACC in the limit of 
infinite block length.  Note that by considering the 
time-sharing principle [5], the capacity region of the 
block-synchronous CMACC with finite memory is a 
convex set. Applying the results in [3], [5]-[9] we 
have: 

 
 

(17) 
where  is  

 

 

 

 

 

 (18) 

40 Volume 6- Number 2- Spring  20144



where the union is over all input vectors  and  
subjected to the average power constraints (5). Indeed 
since the n-CGCMACC defined in (9)-(10) is an n-
block memoryless CMACC, its capacity region, i.e., 
(18), follows directly from (1) if we replace 

 by . The 
auxiliary random variable  denotes the common 
message. 

Theorem 1: The capacity region of the two-user 
linear Gaussian CMAC with common message and ISI 
is given by  

 

 

 (19) 
where the terms  are defined as (20), at 
the bottom of the page. The union is over power 
allocation across all the parallel sub-channels. 
Moreover, . 

Proof: Refer to Section V. 

IV. COROLLARIES OF MAIN RESULT  
In this section, we discuss some special cases of 

the derived capacity region to demonstrate the breadth 
of our main result.  

A. Compound MAC with ISI 
Corollary 1: It is easy to show that the capacity 

region of the synchronous CMAC with ISI but without 
common message is similar to (19) provided that we 
let .   

B. MAC with ISI 
As we mentioned above, in the CMAC each 

receiver sees a MAC. Therefore, we can study the 
MAC by considering one of the receivers.   

Corollary 2: Without loss of generality, assume 
that . Then similar to Theorem 1 we can show 
that the capacity region of the two-user linear 
Gaussian MAC with common message and ISI is 
given by  

 

 

 (21) 

where the terms  are defined as (20). 
Moreover, by setting  in Corollary 2, the 
capacity region of the synchronous MAC with ISI but 
without common message is derived from (21).   

C. Compound MAC with Unidtrectional Cooperation 
and ISI 
Consider a special case of the CMACC in which 

one transmitter does not have private message. 
Without loss of generality, we assume that transmitter 
1 only has the common message  to send, while 
transmitter 2 needs to transmit both the common 
message  and the private message . We call this 
channel model the CMAC with unidirectional 
cooperation or the CMAC with degraded message 
sets.   

 

 
 

 
 

 
 

 
 

 
 

 

 

 (20) 

40Volume 6- Number 2- Spring  2014 5



Theorem 2: An achievable rate region for the 
CMAC with unidirectional cooperation and ISI is 
given by  

 

 

 (22) 

where the terms  are defined as (23), 
at the top of the next page.  

Proof: The proof follows immediately by setting 
 in Theorem 1 and removing redundant 

ones from the resulting inequalities. 

D. Strong Interference Channel with Common 
Message and ISI  
We now consider the Gaussian strong interference 

channel with common message (GSICC) [7] and in the 
presence of ISI. Similar above, we can define linear 
GSICC (LGSICC) with ISI, and its equivalent n-block 
memoryless circular channel model called the n-block 
circular Gaussian SICC (n-CGSICC), for . In 
fact, an n-CGCMACC is an n-CGSICC if   

 (24)
 (25)

Theorem 3: The capacity region of the two-user 
linear Gaussian strong interference channel with 
common message and ISI is given by (26), where the 
terms  are defined as (20), at the 
bottom of the previous page.  

Proof: The proof is the same as the proof of 
Theorem 1 but with this difference that by applying 
the conditions (24) and (25) to (18), we have 

 and . 

 

 

 (26) 
 

V. SIMULATION RESULTS   
In this section, we consider the following examples 

representing different levels of ISI to show the loss in 
the rate caused by ISI.  

 ,  
 ,  

 ,  

 ,  

In these examples, we assume that the transmitters are 
subjected to the average power constraints , 

, the white Gaussian noises have unit variance, 
and the impulse responses of all channels are 
normalized to have unit energy, i.e., 

 ,   

 ,   

 ,   

 ,   

Intersymbol interference in example 1 is mild while in 
example 2 it is stronger. Fig. 4 shows the rate regions 
of the channels in examples 1 and 2 as well as the rate 
region of the channel without ISI. It is obvious that 
with fixed energy for the transfer functions, the rate 
region decreases as ISI increases as shown in Fig. 4. 
Note that since the comparison of the regions in a 3-
dimensional plot (in terms of ) is difficult 
to illustrate, we have used Corollary 1 to have a better 
comparison of the regions in a 2-dimensional plot (in 
terms of ). In fact, we have compared the 
regions for the Gaussian CMAC with ISI but without 
common message (i.e., ). 

 

 
Fig. 4. Comparison of the rate regions of the channels in 
examples 1 and 2 as well as of the channel without ISI. 

 

VI. PROOF OF THEOREM 1 
Let , , and  be Gaussian random variables 

distributed according to . Considering the 
joint probability distribution (1) we define the 
following mappings. 

  

  

  

where  and  for . 
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 (23) 

  

By using these mappings, and considering the channel 
model described by (15) and (16), we obtain 

  

  

 (27)

  

  

 (28)

By the invertibility of the DFT and considering (27) 
and (28), we evaluate the mutual information terms in 
(18). Let us choose  and 

 for evaluation. The other terms can 
be evaluated similarly. It is worth noting that for any 
real sequence , its DFT  has the property that 

, , where  denotes the 
complex conjugate of . Thus, without losing any 
information, we can reconstruct the entire sequence  
using the DFT terms , where . 
Therefore, we have: 

  

 
 

 

 

 

 

 

 

 

 

 
 

  

 
 

  

Therefore,  can be expressed as  

 

 

 (29) 

where the terms  are defined as (30), at 
the top of the next page. The , for 

, is the transfer function of the kth-component 
channel between the transmitter p and the receiver q; 
the  is the noise power spectral density of the 
kth-component channel of the receiver q. The  
is the total power allocated to the kth-component 
channel by the user , and  is the fraction of 

 allocated to the user  on channel  for 
common message, and  is the fraction of 

 allocated to the user  on channel  for private 
message. Finally, using properties of Riemann 
integration, we reach to the desired result in the limit 
as .   
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 (30) 

VII. CONCLUSION  
We derived in this paper the capacity region of a 

finite-memory compound MAC with common 
message and ISI under an average input power 
constraint. Since our channel is a special case of a 
synchronous multi-terminal channel, this capacity 
region is equal to the capacity region of an n-circular 
Gaussian compound MAC with common message as n 
grows to infinity. We also investigated some special 
cases of the Gaussian compound MACC with ISI, and 
by using the obtained capacity region and employing 
the same method we derived the capacity regions for 
them. Moreover, some numerical results have been 
provided to show the loss in the rate caused by ISI. 
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