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Abstract—One of the most important issues in the design of CNN accelerators pertains to the accelerator’s ability to
effectively leverage the available opportunities in the type and processing of input data, and the task of achieving this
objective mostly lies with the dataflow. Equal channel size in the input feature map and filter of CNNs is one of these
opportunities, which makes it desirable to design dataflow as Channel Dimension Stationary (CDS). On the other hand,
the complexity of designing computations based on the Cartesian product (due to its all-to-all nature) is lower, especially
in CDS dataflows. But, since the Cartesian product method causes the generation of useless products and, as a result,
reduces performance and energy efficiency, there is less desire for this type of design. This paper presents a frame called
FUCA for Cartesian product-based dataflows, which avoids operations leading to useless products. The analysis
revealed that FUCA reduces runtime and energy consumption in the Cartesian product-based dataflow by 1.5x,
potentially surpassing the sliding window-based dataflow.
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Learning has produced results with excellent accuracy
I. INTRODUCTION [4]. However, these algorithms face challenges in real-
In today's applications, deep neural networks are ~ time applications due to the high volume of input
frequently employed for processes such as machine ~ parameters and computations required. Therefore,
vision, speech recognition, and classification [1-3]. ~ CNN’s hardware accelerators have emerged, and
Using the Convolution Neural Network (CNN) in  research to develop them continues [5].
various Artificial Intelligence (Al) applications, Deep
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Dataflow is one of the crucial aspects in the design
of accelerators, as it greatly influences the utilization of
processing elements, performance, and energy
efficiency [6]. In hardware accelerators that focus on
exploiting opportunities such as data reuse (Eyriss [7]),
sparsity (NullHop [8] and SCNN [9]), parallel
computing (almost all accelerators), etc., most of this
happens through dataflow optimization.

In convolutional layers, an interesting characteristic
is that the number of filter channels (C) is equal to the
number of input feature map (ifmap) channels (Fig. 1).
Crucially, the products obtained by multiplying one
Channel Dimension Array (CDA) of ifmap by one
CDA of filter all pertain to a single value of output
feature map (ofmap) and must be gathered together.
Therefore, the design of the accelerator's dataflow as
the Channel Dimension Stationary(CDS) can
significantly reduce implementation complexity [10].
In particular, this approach can also enhance the
exploitation of the sparsity opportunity. For instance,
by adopting the same technique and without adding
hardware overhead, the MCPS [10] dataflow, which is
based on CDS and focuses on exploiting sparsity, has
been able to increase performance by 2.9x and energy
efficiency by 2.11x at a sparsity of 70%.

The computational method in convolution-based
dataflows is the next issue. This can be either Sliding
Windows based Convolution (SWC) or Cartesian
Product based Convolution (CPC), depending on the
main goal of the accelerator. For example, dataflow in
MAERI [11] and Eyeriss [7] is based on SWC, while
dataflow in SCNN [9] and MCPS [10] is based on CPC.

Applying the CPC method in the dataflow,
particularly in the CDS dataflow, due to the simpler
algorithm (the nature of all to all), can reduce the
complexity of the implementation. Rather, in CPC,
there is a challenge of generating useless products that
manifest as overheads in computation and data transfer,
adversely affecting both energy efficiency and
performance. Due to this issue, the SWC is how more
often employed in accelerators than the CPC.

In the current study, we concentrated on CPC-based
dataflows for CNN accelerators and attempted to create
a constraining frame called FUCA for this kind of
computation, so as to avoid the transfer and processing
of data leading to useless results. To evaluate the
FUCA, we have chosen the MAERI [11] as the target
accelerator. This accelerator is reconfigurable and can
be configured based on various dataflows. With loop
transformations and tiling, we have designed a CDS
dataflow for MAERI that is based on CPC. Then, this
designed dataflow was upgraded based on FUCA in
several steps to prevent the generation of useless
products and overheads.

Due to the nature of computations in CPC-based
dataflow, it is simple to ignore channels with any
position on the ifmap plane. Therefore, FUCA does not
send the channels produced by zero-padding for
computations. Furthermore, because FUCA also avoids
sending channels that lead to useless products, the
volume of computations is significantly reduced
compared to the case without FUCA. Tests
demonstrated that the suggested frame significantly
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lowers runtime and energy consumption when it applies
to CPC-based dataflows. Especially in layers that have
high zero-padding, this is a multi-fold reduction.

Compared to SWC-based dataflows, the
computation volume of the proposed method is less
when the number of zero-padding (ZP) > 0. This makes
the performance and energy efficiency of the provided
dataflow—which is CPC-based and enhanced by
FUCA—better than the original MAERI dataflow
(which is even improved by various techniques) in at
least half of the cases.

The proposed idea can be used to optimize various
dataflows, particularly CDS dataflows that are based on
CPC, to enhance performance and reduce energy
consumption.

The key contributions of this work are the following:

e The nature of all-to-all in CPC causes the generation
of useless results. We offer a frame for CPC-based
dataflows called FUCA, which avoids transferring and
mapping data, leading to useless products.

e In order to improve performance, we strengthen
FUCA to prevent the processing of zeros resulting from
zero-padding.

o To evaluate the presented frame, we establish a CDS
dataflow based on CPC for the MAERI accelerator.
This dataflow enables the multiplication of all-to-all
between ifmap and filter.

e Our study demonstrates that employing FUCA in
dataflows based on CPC can effectively decrease both
runtime and energy consumption.

The subsequent sections of this work are structured
in the following manner. Section Il presents a concise
explanation of CNN accelerators and the MAERI
architecture. Section Il explores the CPC and how it
generates useless products. The algorithm of the
designed dataflow for the FUCA test is explained in
Section 1V. Section V provides a comprehensive
description of the proposed frame and how it is applied
to a CPC-based dataflow. Section VI includes
evaluation measures, methodologies, and their
corresponding results. Lastly, Section VII offers the
conclusion.

1. BACKGROUND

To further comprehend the details, an introduction
to the MAERI accelerator—the target accelerator in this
work—is required. Thus, this section provides a
summary of MAERI's architecture together with a brief
overview of CNNs.

A. CNNs and CNN Accelerators

Notably, modern CNNs demand billions of
multiply-accumulate (MAC) operations [12]. Each
CNN layer's large computational volume is the reason
for this huge amount of computation. In addition, the
number of layers in advanced CNNs is also
continuously increasing to improve accuracy [7, 13,
14]. For instance, by adding more layers, CNNs like
GoogleNet [15], ResNet50 [16], DenseNet [17], and
various versions of YOLO [18-21] have expanded the
network.
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CNNs generally include two main kinds of layers:
convolutional layers and fully connected layers.
Usually, the number of convolutional layers in CNNs is
much higher. Thus, the majority of the work in CNNs
is done by convolutional layers [22].

Each convolutional layer in CNN performs
computations by applying filters to ifmaps in order to
extract features and generate ofmaps [7]. Ifmaps,
ofmaps, and filters have several dimensions in each
convolutional layer (typically four dimensions). The
dimensions and computations of a convolutional layer
are shown in Fig. 1. Also, Fig. 3 shows a simpler and
more accurate example of convolution layer
computations.

While GPUs can be utilized for training CNNs, they
are inefficient when used for inference in applications,
particularly on energy-constrained mobile devices [8,
9]. Thus, to deal with this issue, CNN accelerators have
been developed to effectively process enormous data
volumes while minimizing energy consumption and
delay. These accelerators incorporate a large number of
MAC units. For example, the google Tensor Processing
Unit (TPU) [23] consists of 64K MACs. The energy
management and parallelization of this large number of
MACs, efficient data transfer management between
MACs, effective delay management and energy
consumption optimization across memory hierarchies,
and adaptability to various types of layers are among
the challenges that accelerators face, and work on them
continues [12].

The efficiency of a spatial accelerator is
significantly influenced by its mapping and dataflow
[24]. Hence, some reconfigurable accelerators are
engineered to adapt to diverse dataflows, with the aim
of enhancing both performance and energy efficiency
across various CNNs. One of these accelerators is
MAERI, which is the target accelerator in the current
work. Its structure is described below.

B. MAERI accelerator

MAERI [11] is the name of the accelerator
developed by Kwon et al. Its main goal is
reconfigurability to support various dataflow patterns.
This accelerator has targeted the connections and
structure of the processing elements. The MAERI
architecture is depicted in Fig. 2.

Three networks—the Distribute Network (DN),
Multiplier Network (MN), and Reduce Network
(RN)—make MAERI's Network On Chip (NOC), as
shown in Fig. 2. DN and RN networks are built based
on tree topology, and the MN network has a linear
topology. The role of the DN tree is to transfer the ifmap
values and weights from the prefetch buffer to the MN.
On the other hand, the RN is responsible for
accumulating the MN products at several levels to
generate the ofmap values or psums. The computed
values of ofmap are first modified by activation units,
such as Rectified Linear Units (ReLU), and
subsequently stored back into the prefetch buffer.

VN construction. The major characteristic of
MAERI is the Virtual Neuron (VN) construction, which

'R, S, and C are the dimensions of a single filter, and VN is the
number of MSes in each VN.
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involves the segmentation of MAERI's NOC and the
setting of the MN, RN, and DN according to this
division. Every VN, independently, concurrently, and
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C Number of channels(plans) in per ifmap and filter
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R/S Number of rows/Number of columns in filter plane
XY Number of rows/Number of columns in Ofmap plane

Figure 1. Convolutional layer dimensions and operations [7, 10,
25]
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Figure 2. The MAERI accelerator's architecture [11]

parallelly with other VNs, executes the necessary MAC
operations to generate a single ofmap value or psum.

A simple example of VN construction. A simple
convolution layer with the dimensions N =1, X =4, Y
=4,C=2,R=2,S=3, K=2,X"=3,andY' =21is
shown in Fig. 3. Fig. 4 depicts the mapping of the same
layer on MAERI, providing a clear visual
representation of MAERI's primary mapping method,
which is based on SWC. It also illustrates VN
Construction. In this case, the mapping strategy is
according to the VNsize = R x S x C * and the NOC has
been set up in accordance. As shown, the MN has been
divided into VNnumber VNS based on equation 1 [11]. The
MSnumoer  represents all of the Multiplier Switches
(MSes) in the MN.
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— MSnumber
VNnumber - VNo: (1)
size

Since C is equal to 2, the VN;i has been determined
to be 12, which is equal to the total number of weights
of the one filter's planes. In this example, the dataflow
is Weight Stationary (WS), which means that the
weights are initially transferred to and kept in MSes.
Subsequently, fresh ifmap values are inserted into
MSes in each cycle. For example, following the
depicted cycle, the next window values from the two
ifmap channels (a2, a3, a4, a6, a7, a8, b2, b3, b4, b6,
b7, b8) will be transmitted to MSes for computation.

IIl.  GENERATION OF USELESS PRODUCTS IN CPC

The CPC-based convolution involves multiplying
all possible combinations. This method is simple but
generates useless products, resulting in computational
and transmission overheads.

A. The Side

A portion of the ifmap plane is defined by the term
"Side" in this paper. It is described as follows: "All
multiplications of the ifmap values that are not on the
Side are certainly useful, but multiplying some of the
ifmap values on the Side may lead to useless products".
In the CPC-based convolution operation, depending on
the dimensions of the filter plane, one or more rounds
of the ifmap plane edges are the Side. In Fig. 5(a), the
filter plane is 2 x 2. This has caused one round of ifmap
plane edges to be the Side. Increasing the size of the
filter will result in a larger Side size. For example, in a
convolution operation with 7 x 7 filter plane
dimensions, six rounds from the ifmap plane edges are
the Side. Fig. 5(a) illustrates an example of CPC-based
convolution. As seen, only 12 of the 32 products of
ifmap values that are on the Side are useful. In this
example, only the A5 is not on the Side, and all its
products have become useful.

B. The impact of zero-padding on the quantity of
useless products

The majority of convolution layers have zero-
padding. In these types of layers, if the CPC operation
is modified to eliminate the computation of additional
data caused by zero-padding, the number of useless
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products will be reduced. Fortunately, during CPC
operations, it is simple to avoid computing ifmap values
that result from zero-padding.

Fig. 5(b) demonstrates the impact of ignoring added
data by zero-padding. In this example, ZP is 1, and the
multiplication of its values has been skipped. This has
caused the number of useless products to be reduced to
zero.

When this approach is applied in CPC, the number
of multiplications needed is often even lower than when
the SWC method is used. For example, the SWC
method requires 64 multiplications in the layer of Fig.
5(b), whereas the CPC with the mentioned approach
only requires 36 multiplications.

Equation 2, where R =S; K=1; C=1; N =1,
determines the number of useless products in the CPC
operation when zero-padding values are ignored. Fig. 1
describes R, S, K, C, and N. X represents the width and
height of the ifmap plane after removing the zero-
padding data. This equation clearly shows that as ZP
increases, the number of useless products decreases.

R—-ZP)(R-ZP (2)
o200 )

Uselessyumper = 4 X (
4 X
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Figure 3. The computations in a simple example of a convolutional
layer
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mapping over MAERI and VN Construction ( mapping the example layer of Fig. 3 based on the main dataflow of MAERI )
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Figure 5. An illustration of CPC operation. (a) CPC with full computations. (b) CPC with ignoring computations of added zeros by zero-

padding

IV. [IMPLEMENTING A CDS DATAFLOW BASED ON

CPC TO TEST THE PROPOSED FRAME

To evaluate the proposed frame aimed at improving
dataflows based on the Cartesian product, we have
designed a new data flow for the MAERI architecture.
To maintain simplicity and focus on the study's core
theme, this data flow's chosen type is CDS. Because to
implement the computations of CPC operation,
exploiting channel features can significantly reduce
design complexity. In the designed dataflow, we have
taken advantage of two of these features. First, the
number of filter channels (C) in convolutional layers is
identical to the number of ifmap channels. Second, the
psums produced by multiplying a Channel Dimension
Array (CDA) of ifmap by a CDA of filter all belong to
one ofmap value and need to be summed. Fig. 1 depicts
this feature along with ifmap CDA and filter CDA.

The designed dataflow is shown in Fig. 6. The
description of this dataflow can be summarized as

follows: The CPC operation is completed during
processes whose number is equal to the number of
Ifmap CDAs. Each process executes and finishes all
computations relating to a single ifmap CDA.

Initially, MAERI is configured based on the channel
length (C), and VNs are established. Following the
operation's commencement, each process begins with
multicasting the current ifmap CDA to all VNs.
Subsequently, in each following cycle, co-location
CDAs of multiple filters are unicasted! to VNs for
multiplication. Once all the filter CDAs are sent, the
operation proceeds with the next process.

Equation 3 provides a mathematical representation
of the convolution layer's operation based on the
designed dataflow. As it is known, psums are produced
by multiplying and accumulating filter CDAs in the
ifmap CDAs, and then co-location psums are added
together to produce one ofmap value.

T_K Psums

+
+ +
% + + + +
ffes ’ P s
s ﬁ B 3
: EIREINFIRFINEINED

Multicast to all VNs

The mapped ifmap CDA
in current process
(current ifmap CDA)

Unicast to VNs
»

Figure 6. The designed CPC-based dataflow to test the FUCA (designed as CDS)

Lj.e., each filter CDA is transmitted to one VN.
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3)
psum(n, k,x —r,y —s)
c-1
= z W(k,c,r,s)xI(nc,x,y)

c=0

0 k,x',y")
= Z all of the psums with position(n, k,x',y")

0<n<N, 0<k<K, 0<x<X,
0<y<Y, 0<r<R, 0<s<S,
0<x'" <X, X'=X-R+1
0<y' <Y/, Y=Y-S+1

Of course, in order to simplify the equation, the
stride equal to 1 has been considered, and the ReLU
function and the array of biases have not been applied.
The parameters used in this equation are described in
Fig. 1.

V. THEPROPOSED FRAME (FUCA)

This section describes the method of developing and
implementing the proposed frame over the designed
CPC-based dataflow. It begins by presenting the
designed dataflow as pseudo-code and then proceeds
with applying the FUCA in several steps.

A. Pseudo-code of designed dataflow

Fig. 7 shows the evolution of the main idea of the
current work in three sequential segments. The pseudo-
codes of the designed dataflow without any prevention
of unnecessary and inefficient computations are
depicted in the first segment (Figures 7(a) and 7(b)). In
the second segment (Figures 7(c) and 7(d)), the
dataflow of the previous segment has been modified to
prevent the computation of added zeros by zero-
padding. Lastly, the dataflow has been modified in the
third segment (Figures 7(e) and 7(f)) such that, in
addition to eliminating computations involving zero-
padding zeros, it also avoids computations resulting in
useless products; in other words, the dataflow has been
fully equipped with FUCA.

The first segment of Fig. 7 only shows the pseudo-
codes of the designed dataflow, where the tiling and
transformations applied over nested loops of the
convolution layer to achieve the designed dataflow can
be seen. As visible, the loops of dimensions K and C
have moved to the lowest level. This is because the
designed dataflow operates on a CPC basis, where all
ifmap CDAs are multiplied by all filter CDAs. In the
presented dataflow, tiling is applied only to dimensions
K or C. In most layers, due to the limited number of
MSes, it is not possible to complete the computations of
all filter CDAs with the current ifmap CDA in a single
cycle. Therefore, tiling is applied to dimension K so that
a portion of the filter CDAs is sent to the MSes in each
cycle. Also, it is possible for the channel length (C) in
some layers to be longer than the number of MSes, in
which case even the computation of one filter CDA
cannot be completed in a single cycle. For these
situations, tiling has been applied to dimension C.
Fortunately, MAERI's reconfigurability allows us to
apply tiling to the different dimensions. In pseudo-

1 The stride of convolution.
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codes 7(a), 7(c), and 7(e), tiling has been applied to the
dimension K and is for layers in which C < MSnumber-
Also, pseudo-codes 7(b), 7(d), and 7(f) are equivalent
to Figures 7(a), 7(c), and 7(e), respectively, for layers
in which C > MSnumper. In these pseudo-codes, tiling has
been applied to dimension C.

The red dotted part in Fig. 7(a) illustrates the
computations of each cycle. As clear, during each cycle,
computations occur out on one ifmap CDA and
multiple CDAs from various filters. The dataflow's
CPC-based structure has resulted in the offsets +r and
+s being negative, and, together with d*, they have been
transferred from I[n][c][x][y] to O[n][KI[X][y].

In the second segment of Fig. 7, we provided
another dataflow to better demonstrate the impact of the
FUCA. This dataflow performs similarly to pseudo-
codes 7(a) and 7(b), but it ignores computations of zero
values resulting from zero-padding. This can be
considered the first step in improving the CPC-based
dataflow. Because preventing the transmission and
computation of ineffective data will save energy and
reduce runtime. Based on this, Figures 7(c) and 7(d) are
improvements of pseudo-codes 7(a) and 7(b),
respectively.

B. The FUCA's foundation and applying it to CPC-
based dataflow

As mentioned in the description of CPC (Section
I), if an ifmap value located at position (n, X, y)
relative to R and S is on the Side of the ifmap plane,
multiplying that ifmap value by a number of weights
will result in useless products. Here, we have articulated
this issue in a formulaic manner. In a way, the result of
multiplying an ifmap value at position (n, X, y) by a filter
weight at position (r, s) will be useless if at least one of
the following conditions is met (where the zero-padding
zeros are ignored in the computations).
(x—r+2ZP<0) (O]
(y—s+2ZP<0)

(x—r>X—-R+7ZP)
(y—s>Y-=S+27P)

In the convolution layer, if K =1 and C = 1,
multiplying the position (n, X, y) by the position (r, s)
under the above conditions results in a single useless.
However, K and C typically have values greater than 1,
so multiplying those two positions instead of one leads
to K x C useless products. This amount is certainly
considerable and hurts performance and efficiency.

In contrast, the advantage of CDS dataflow based
on CPC is that the K and C loops have moved to the
lowest level (Fig. 7(a)). As a result, only one ifmap
plane position and one filter plane position are
processed in each tile. Consequently, either all
multiplications will be useless in a cycle or all will lead
to useful products. Therefore, we can simply avoid the
cycles that result in useless products. To do this, we
could put the conditions of equation 4 into pseudo-code
7(c) or 7(d) after the loops for dimensions R and S. So
that a comparison between the position (r, s) of the filter
and the position of the current ifmap CDA is performed
first, and if one of the conditions is true, the sending and
processing of all filter values with position (r,s) are
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prevented. In this case, though, the issue is that the
equation 4 comparisons will be executed a great
number of times. Notably, if C > MSnumper (Fig. 7(d)),
the frequency of these comparisons will also be
increased. This issue, as the overhead, can negatively
impact the runtime and the energy consumption.

Therefore, we have converted the comparison
operation into a constrained frame named FUCA (Fig.
7(e) and Fig. 7(f)). The FUCA, at two higher levels of
pseudo-code after the Y loop, establishes the frame for
filter positions. With the assurance that none of its
positions in computation with the current ifmap CDA
would generate useless products. Thus, at the start of a
process, when the current ifmap CDA is mapped to
MSes, the FUCA sets the frame at the same time. Then,
only the filter CDAs in the frame are sent to MSes for
computations in subsequent cycles of the process. This
strategy results in the number of comparisons being
equivalent to the number of ifmap CDAs, which is
significantly lower than in the preceding case. Figures
7(e) and 7(f) depict the final pseudo-codes of the
designed dataflow that improved with FUCA.

VI. EVALUATION

First, this section discusses the functionality of the
selected tool to evaluate the FUCA. Then, it details the
chosen layers and dataflows for the experiment. Finally,
the merits and weaknesses of the suggested idea are
analyzed by illustrating the results.

A. Analyzer tool

We assessed the designed and enhanced dataflows
using the mRNA tool (mapper for Reconfigurable
Neural Accelerators) [25]. Based on the MAERI
architecture, mRNA is an open-source tool for
analyzing dataflow and mapping strategies at various
layers and finding the best mappings.

The mRNA first receives the parameters of the input
layer (dimension sizes, stride, etc.) and accelerator
resources (number of MSes, bandwidth, etc.) and then
lists mapping strategies with the most potential for MS
utilization. Next, it assesses each strategy listed and
presents the results of all of them, including metrics like
energy consumption, runtime, utilization, etc.

The convolutional layer’s dataflow in mRNA is the
same as the MAERI dataflow and is based on SWC.
This dataflow is described in Section I1-B. In reality,
MRNA defines and evaluates different tilings on input
layer dimensions as mapping strategies and then finds
the optimal one from the set. Thus, the dataflow is
constant across all mapping strategies, and only the
values of the tiling parameters vary. For this reason and
also because the purpose and focus of this work are to
evaluate the dataflows, not different strategies, we have
considered the average results of different strategies in
a dataflow as the results of that dataflow.

To support the designed and enhanced dataflows, we
have upgraded the mRNA. We have included a
parameter in the mRNA input file that, when set to
"true”, lets mRNA run the extended part and evaluate
the input layer mapping according to the designed
dataflow.
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B. Methodology

To illustrate the impact of FUCA, four distinct
dataflows, each with the names and characteristics
listed below, have been taken into consideration for
analysis and comparison.

MAERI-MDF (MAERI’s Main DataFlow) [11, 25].
The basic MAERI’s dataflow for convolutional layers,
which is based on SWC (described in Section I1-B). The
original dataflow in mMRNA is likewise this one.

CPDF (Cartesian Product based DataFlow). The
presented CDS dataflow, which is based on CPC
(described in Section 1V and displayed as pseudo-code
in Figures 7(a) and 7(b)). No improvements have been
made to this dataflow.

CPDF-AlZ (Cartesian Product based DataFlow
with the Ability to Ignore Zero-padding Zeros). The
same dataflow as CDPS, where only the transmission
and computation of zeros resulting from zero-padding
are prevented (displayed as pseudo-code in Figures 7(c)
and 7(d)).

CPDF-FUCA (Improved Cartesian Product-based
DataFlow with FUCA). Improved final dataflow by
FUCA, which not only prevents unnecessary
computations caused by zero-padding but also avoids
processing data with useless results (displayed as
pseudo-code in Figures 7(e) and 7(f)).

To better compare the mentioned dataflows and
evaluate the influence of zero-padding, we defined a set
of identical custom convolution layers with different
numbers of zero-paddings and, consequently, different
output dimensions. Table 1 presents the parameters for
these layers. We also chose multiple convolutional
layers from various advanced DNNs with varying
strides and zero-paddings to assess the effectiveness of
the proposed approach across different DNNs. These
layers are displayed in Table 2.

C. Results

The findings from evaluating the impact of
FUCA on CPC-based dataflow. The runtime and
energy consumption of convolution layers in Table 1
have been evaluated by the mRNA in four dataflows
(MAERI-MDF, CPDF, CPDF-AlZ, and CPDF-
FUCA), and the results are shown in Fig. 8 as two
charts. Figures 8(a) and 8(b) show the results of
normalized runtime and normalized energy
consumption, respectively. As can be observed, both in
terms of runtime and energy consumption, the final
presented dataflow (CPDF-FUCA) performs better
than other dataflows, even topping MAERI's original
dataflow (MAERI-MDF). The results of CPDF-FUCA
and MAERI-MDF are nearly identical at ZP = 0, but
CPDF-FUCA has performed significantly better in
layers where ZP > 0.
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for(n=0; n < N; n++) {
for(x=0; x<X; x++) {
for(y=0; y<V; y++) {
Configure MAERI based on ifmap CDA[n,X,yl;
for(r=(x%d); r<R; ri=d) {
for(s=(y%d); s<S; s+=d) { tile
for(k=0; k<K; k=k+T K) {
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Configure MAERI based on ifmap CDA[n,x,y];
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Configure MAERI based on ifmap CDA[n,x,y];
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the pseudo-code of designed dataflow ((a),(c),(e) for C < MSpmper cases and (b),(d),(f) for C > MS,umper Cases). (a),(b) Cartesian

Product based DataFlow with no improvement (CPDF). (c),(d) Cartesian Product based DataFlow with the Ability to Ignore Zero-padding
Zeros (CPDF-AIZ). (e),(f) Improved Cartesian Product-based DataFlow with FUCA (CPDF-FUCA)

TABLE I. THE CUSTOM CONVOLUTION LAYERS DEFINED FOR
EVALUATING THE PROPOSED FRAME
Input Output Filter
LayerName STV CINIX |Y' | R]S | K |d]zp
Custom Layer-0 [27(27 |64 (111|117 [ 7 [128]2]| 0
Custom Layer-1|27|27 (64 |1[12[12]| 7 | 7 [128(2]| 1
Custom Layer-2 |27(27 |64 |1[13|13| 7 | 7 |128|2]| 2
Custom Layer-3 [27[27 |64 (1|14 |14 7 [ 7 |128]|2]| 3
Custom Layer-4 |27|27 |64 |1[15(15| 7 | 7 |128|2]| 4
Custom Layer-5[27[27 |64 (1|16|16| 7 | 7 |128]2]| 5
TABLE II. THE CHOSEN LAYERS FROM DIFFERENT ADVANCED
DNNS TO EVALUATE THE INFLUENCE OF FUCA
DNN-Name/ Input Output| Filter
LayerName X|Y|CNX|Y[R|S|K|d|ZP
DarkNet-19 [26]/
CONV13 14|14 (256|1|14|14 (3|3 |512|1| 1
ResNet18 [16]/
CONVAa-1 28(28(128|1(14|14|3|3|256(2| 1
ResNet50 [16]/
CONV4a-shortcut 28|28 (512|1|14|14 1|1 |1024/2| 0
DenseNet121 [17]/
Transition3(CONV) 14|14 1024/ 114|214 (1|1 |512|1| 0
'YOLO [19)/
Block2-CONV1 112 112 | 64 |1 (1121123 | 3 |192{1| 1
IAlexNet [27]/
CONV2 27(27|96|1(27|27|5|5 |256(1| 2
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Figure 8. Evaluation results of MAERI-MDF, CPDF, CPDF-AIZ,
and CPDF-FUCA dataflows on identical custom layers with
different zero-paddings. (a) Normalized runtime results. (b)
Normalized energy consumption results
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The correctness of the discussion in Section 111-B
can be observed by the comparison of the CPDF-FUCA
and CPDF-AIZ results. In Custom Layer-0 (where ZP
= 0), based on equation 2, the number of useless
products will be high. So, CPDF-FUCA has a lower
energy consumption and runtime in this layer compared
to CPDF-AIZ due to the prevention of useless product
generation!. But as the results of the next custom layers
show, because as ZP increases, the number of useless
products decreases, the results of these two dataflows
are closer to each other.

According to charts, the CPDF performs worse than
the other dataflows in all custom layers, but the CPDF-
AlZ does perform better than even the MAERI-MDF in
high ZPs. However, since the ZP of the convolution
layers of most DNNSs is between 0 and 2, it's safe to say
that the CPDF-AIZ's good efficiency in high ZPs
doesn't matter.

Evaluation results of the chosen DNN layers. The
normalized runtime results of CPDF-FUCA and
MAERI-MDF dataflows for chosen DNN layers (Table
2) are displayed in Fig. 9. As it is known, CPDF-FUCA
has a lower runtime than MAERI-MDF in all layers
except for Alexnet-CONV2, indicating that the proposed
method has performed better in these layers.

The greater runtime of the CPDF-FUCA in the
Alexnet-CONV2 compared to the MAERI-MDF has
been caused by a lack of work on mapping strategies in
the designed dataflow, which is outside the scope of this
paper. CPDF-FUCA utilizes only 75% of the MSes in
each cycle for the AlexNet layer, resulting in an
approximate utilization rate of 75%. Enhancing the
utilization rate of the designed dataflow through tiling
on various dimensions in future work will lead to a
reduction in runtime in layers similar to AlexNet.

Fig. 10 displays the normalized total energy
consumption results of the CPDF-FUCA and MAERI-
MDF dataflows for selected DNN layers. Each bar in
the one-layer chart displays the energy consumption
based on related dataflow, both total and separated in
different parts of MAERI. The red color indicates
energy consumption in the DN network, green in the
MN network, yellow in the RN network, blue in the
SPM (ScratchPad Memory, which is the same prefetch
buffer), and black in the DRAM.

As the charts show, in the layers of ResNet50,
ResNet18, and DenseNet121, the CPDF-FUCA
dataflow has lower energy consumption compared to
MAERI-MDF. However, in the remaining layers,
MAERI-MDF exhibits better energy consumption. If
we pay attention to the energy consumption of the parts
of MAERI separately in all charts, we find that the very
high energy consumption of CPDF-FUCA in DN and
SPM for DarkNet, Yolo, and Alexnet layers has caused
its total energy consumption to be higher for these
layers. High energy consumption based on the
presented dataflow in DN and SPM usually occurs
where R>1,5>1, and d < 2. The reason for this is that

! Note that the sole distinction between CPDF-FUCA and CPDF-
AlZ is that CPDF-FUCA prevents the generation of useless products,
whereas CPDF-AIZ does not.
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in MAERI-MDF, which is a WS dataflow based on
SWC, ifmap values are reused in two ways. First, in
each cycle, the values of a window from the ifmap plane
are multicast to VNs instead of unicast. Second, only a
portion of the new window of the ifmap is multicast to
MSes per cycle due to MAERI's store-and-forward
multicast capability. These two factors reduce DN
transmissions and the number of accesses to the
prefetch buffer during sequential cycles, leading to an
improvement in energy consumption in both the SPM
and DN. Efforts to reuse data in the presented dataflow
can result in improved energy in future works.
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Figure 9. Normalized runtime results of CPDF-FUCA and
MAERI-MDF dataflows for DNN layers of Table 2
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VII. CONCLUSION

This paper presents a frame called FUCA for CPC-
based dataflows with an all-to-all nature. FUCA
effectively eliminates the processing of data that leads
to useless results. This frame ensures that the number of
computations in CPC-based dataflows not only
becomes equivalent to the number of computations in
SWC-based dataflows, but at some layers, it becomes
even less due to the consideration of a policy for zero-
padding.

To evaluate the FUCA, we designed a CDS
dataflow based on CPC and implemented the FUCA on
it. The FUCA algorithm, placed in the middle of the
designed dataflow, prevents the transmission of filter
values that result in useless products. We assessed the
current work using the mRNA tool, which is a dataflow
and mapping analyzer for MAERI. Of course, we
upgraded this tool to support the suggested idea.

Our experiments were conducted on two sets of
layers. In the first set, all layers are custom and the
same, only differing in the number of zero-padding and,
naturally, the output dimensions. The second set
includes layers selected from various advanced DNNS.

The experiments on the first set indicated that
FUCA in CPC-based dataflows leads to an average
reduction of 39% in both energy consumption and
runtime. Based on these experiments, we even observed
that the CPC-based dataflow with FUCA outperforms
the SWC-based dataflow of MAERI when ZP > 0.
Also, when ZP is equal to zero, the performance of the
developed dataflow is nearly identical to that of
MAERI's dataflow. The findings from the experiments
conducted on the second set also demonstrated that, in
some instances, MAERI's dataflow performs better.
The use of techniques such as store-and-forward
multicast and data reuse in the dataflow and architecture
of MAERI is the reason for this. As part of future work,
one can try to incorporate such techniques into the
proposed dataflow to address this issue.
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