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Abstract—One of the most important issues in the design of CNN accelerators pertains to the accelerator's ability to 

effectively leverage the available opportunities in the type and processing of input data, and the task of achieving this 

objective mostly lies with the dataflow. Equal channel size in the input feature map and filter of CNNs is one of these 

opportunities, which makes it desirable to design dataflow as Channel Dimension Stationary (CDS). On the other hand, 

the complexity of designing computations based on the Cartesian product (due to its all-to-all nature) is lower, especially 

in CDS dataflows. But, since the Cartesian product method causes the generation of useless products and, as a result, 

reduces performance and energy efficiency, there is less desire for this type of design. This paper presents a frame called 

FUCA for Cartesian product-based dataflows, which avoids operations leading to useless products. The analysis 

revealed that FUCA reduces runtime and energy consumption in the Cartesian product-based dataflow by 1.5x, 

potentially surpassing the sliding window-based dataflow. 

Keywords: useless product, zero-padding, Channel Dimension Stationary (CDS), Cartesian Product based Convolution (CPC), 

MAERI accelerator, frame 
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I. INTRODUCTION 

In today's applications, deep neural networks are 
frequently employed for processes such as machine 
vision, speech recognition, and classification [1-3]. 
Using the Convolution Neural Network (CNN) in 
various Artificial Intelligence (AI) applications, Deep 
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Learning has produced results with excellent accuracy 
[4] . However, these algorithms face challenges in real-
time applications due to the high volume of input 
parameters and computations required. Therefore, 
CNN’s hardware accelerators have emerged, and 
research to develop them continues [5]. 
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Dataflow is one of the crucial aspects in the design 
of accelerators, as it greatly influences the utilization of 
processing elements, performance, and energy 
efficiency [6]. In hardware accelerators that focus on 
exploiting opportunities such as data reuse (Eyriss [7]), 
sparsity (NullHop [8] and SCNN [9]), parallel 
computing (almost all accelerators), etc., most of this 
happens through dataflow optimization. 

In convolutional layers, an interesting characteristic 
is that the number of filter channels (C) is equal to the 
number of input feature map (ifmap) channels (Fig. 1). 
Crucially, the products obtained by multiplying one 
Channel Dimension Array (CDA) of ifmap by one 
CDA of filter all pertain to a single value of output 
feature map (ofmap) and must be gathered together. 
Therefore, the design of the accelerator's dataflow as 
the Channel Dimension Stationary(CDS) can 
significantly reduce implementation complexity [10]. 
In particular, this approach can also enhance the 
exploitation of the sparsity opportunity. For instance, 
by adopting the same technique and without adding 
hardware overhead, the MCPS [10] dataflow, which is 
based on CDS and focuses on exploiting sparsity, has 
been able to increase performance by 2.9x and energy 
efficiency by 2.11x at a sparsity of 70%. 

The computational method in convolution-based 
dataflows is the next issue. This can be either Sliding 
Windows based Convolution (SWC) or Cartesian 
Product based Convolution (CPC), depending on the 
main goal of the accelerator. For example, dataflow in 
MAERI [11] and Eyeriss [7] is based on SWC, while 
dataflow in SCNN [9] and MCPS [10] is based on CPC. 

Applying the CPC method in the dataflow, 
particularly in the CDS dataflow, due to the simpler 
algorithm (the nature of all to all), can reduce the 
complexity of the implementation. Rather, in CPC, 
there is a challenge of generating useless products that 
manifest as overheads in computation and data transfer, 
adversely affecting both energy efficiency and 
performance. Due to this issue, the SWC is now more 
often employed in accelerators than the CPC. 

In the current study, we concentrated on CPC-based 
dataflows for CNN accelerators and attempted to create 
a constraining frame called FUCA for this kind of 
computation, so as to avoid the transfer and processing 
of data leading to useless results. To evaluate the 
FUCA, we have chosen the MAERI [11] as the target 
accelerator. This accelerator is reconfigurable and can 
be configured based on various dataflows. With loop 
transformations and tiling, we have designed a CDS 
dataflow for MAERI that is based on CPC. Then, this 
designed dataflow was upgraded based on FUCA in 
several steps to prevent the generation of useless 
products and overheads . 

Due to the nature of computations in CPC-based 
dataflow, it is simple to ignore channels with any 
position on the ifmap plane. Therefore, FUCA does not 
send the channels produced by zero-padding for 
computations. Furthermore, because FUCA also avoids 
sending channels that lead to useless products, the 
volume of computations is significantly reduced 
compared to the case without FUCA. Tests 
demonstrated that the suggested frame significantly 

lowers runtime and energy consumption when it applies 
to CPC-based dataflows. Especially in layers that have 
high zero-padding, this is a multi-fold reduction. 

Compared to SWC-based dataflows, the 
computation volume of the proposed method is less 
when the number of zero-padding (ZP) > 0. This makes 
the performance and energy efficiency of the provided 
dataflow—which is CPC-based and enhanced by 
FUCA—better than the original MAERI dataflow 
(which is even improved by various techniques) in at 
least half of the cases. 

The proposed idea can be used to optimize various 
dataflows, particularly CDS dataflows that are based on 
CPC, to enhance performance and reduce energy 
consumption. 

The key contributions of this work are the following: 

• The nature of all-to-all in CPC causes the generation 
of useless results. We offer a frame for CPC-based 
dataflows called FUCA, which avoids transferring and 
mapping data, leading to useless products. 

• In order to improve performance, we strengthen 
FUCA to prevent the processing of zeros resulting from 
zero-padding. 

• To evaluate the presented frame, we establish a CDS 
dataflow based on CPC for the MAERI accelerator. 
This dataflow enables the multiplication of all-to-all 
between ifmap and filter. 

• Our study demonstrates that employing FUCA in 
dataflows based on CPC can effectively decrease both 
runtime and energy consumption.  

The subsequent sections of this work are structured 
in the following manner. Section II presents a concise 
explanation of CNN accelerators and the MAERI 
architecture. Section III explores the CPC and how it 
generates useless products. The algorithm of the 
designed dataflow for the FUCA test is explained in 
Section IV. Section V provides a comprehensive 
description of the proposed frame and how it is applied 
to a CPC-based dataflow. Section VI includes 
evaluation measures, methodologies, and their 
corresponding results. Lastly, Section VII offers the 
conclusion. 

II. BACKGROUND 

To further comprehend the details, an introduction 
to the MAERI accelerator—the target accelerator in this 
work—is required. Thus, this section provides a 
summary of MAERI's architecture together with a brief 
overview of CNNs. 

A.  CNNs and CNN Accelerators 

Notably, modern CNNs demand billions of 
multiply-accumulate (MAC) operations [12]. Each 
CNN layer's large computational volume is the reason 
for this huge amount of computation. In addition, the 
number of layers in advanced CNNs is also 
continuously increasing to improve accuracy [7, 13, 
14]. For instance, by adding more layers, CNNs like 
GoogleNet [15], ResNet50 [16], DenseNet [17], and 
various versions of YOLO [18-21] have expanded the 
network. 
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CNNs generally include two main kinds of layers: 
convolutional layers and fully connected layers. 
Usually, the number of convolutional layers in CNNs is 
much higher. Thus, the majority of the work in CNNs 
is done by convolutional layers [22].  

Each convolutional layer in CNN performs 
computations by applying filters to ifmaps in order to 
extract features and generate ofmaps [7]. Ifmaps, 
ofmaps, and filters have several dimensions in each 
convolutional layer (typically four dimensions). The 
dimensions and computations of a convolutional layer 
are shown in Fig. 1. Also, Fig. 3 shows a simpler and 
more accurate example of convolution layer 
computations. 

While GPUs can be utilized for training CNNs, they 
are inefficient when used for inference in applications, 
particularly on energy-constrained mobile devices [8, 
9]. Thus, to deal with this issue, CNN accelerators have 
been developed to effectively process enormous data 
volumes while minimizing energy consumption and 
delay. These accelerators incorporate a large number of 
MAC units. For example, the google Tensor Processing 
Unit (TPU) [23] consists of 64K MACs. The energy 
management and parallelization of this large number of 
MACs, efficient data transfer management between 
MACs, effective delay management and energy 
consumption optimization across memory hierarchies, 
and adaptability to various types of layers are among 
the challenges that accelerators face, and work on them 
continues [12].  

The efficiency of a spatial accelerator is 
significantly influenced by its mapping and dataflow 
[24]. Hence, some reconfigurable accelerators are 
engineered to adapt to diverse dataflows, with the aim 
of enhancing both performance and energy efficiency 
across various CNNs. One of these accelerators is 
MAERI, which is the target accelerator in the current 
work. Its structure is described below. 

B. MAERI accelerator 

MAERI [11] is the name of the accelerator 
developed by Kwon et al. Its main goal is 
reconfigurability to support various dataflow patterns. 
This accelerator has targeted the connections and 
structure of the processing elements. The MAERI 
architecture is depicted in Fig. 2. 

Three networks—the Distribute Network (DN), 
Multiplier Network (MN), and Reduce Network 
(RN)—make MAERI's Network On Chip (NOC), as 
shown in Fig. 2. DN and RN networks are built based 
on tree topology, and the MN network has a linear 
topology. The role of the DN tree is to transfer the ifmap 
values and weights from the prefetch buffer to the MN. 
On the other hand, the RN is responsible for 
accumulating the MN products at several levels to 
generate the ofmap values or psums. The computed 
values of ofmap are first modified by activation units, 
such as Rectified Linear Units (ReLU), and 
subsequently stored back into the prefetch buffer. 

VN construction. The major characteristic of 
MAERI is the Virtual Neuron (VN) construction, which 

 
1 R, S, and C are the dimensions of a single filter, and VNsize is the 

number of MSes in each VN. 

involves the segmentation of MAERI's NOC and the 
setting of the MN, RN, and DN according to this 
division. Every VN, independently,  concurrently,  and  

 

Figure 1.  Convolutional layer dimensions and operations [7, 10, 

25] 

 

 

Figure 2.  The MAERI accelerator's architecture [11] 

 

parallelly with other VNs, executes the necessary MAC 
operations to generate a single ofmap value or psum. 

A simple example of VN construction. A simple 
convolution layer with the dimensions N = 1, X = 4, Y 
= 4, C = 2, R = 2, S = 3, K = 2, X' = 3, and Y' = 2 is 
shown in Fig. 3. Fig. 4 depicts the mapping of the same 
layer on MAERI, providing a clear visual 
representation of MAERI's primary mapping method, 
which is based on SWC. It also illustrates VN 
Construction. In this case, the mapping strategy is 

according to the VNsize = R  S  C 1 and the NOC has 
been set up in accordance. As shown, the MN has been 
divided into VNnumber VNs based on equation 1 [11]. The 
MSnumber represents all of the Multiplier Switches 
(MSes) in the MN. 
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       𝑉𝑁𝑛𝑢𝑚𝑏𝑒𝑟 = ⌊
𝑀𝑆𝑛𝑢𝑚𝑏𝑒𝑟

𝑉𝑁𝑠𝑖𝑧𝑒
⌋                                ()    

Since C is equal to 2, the VNsize has been determined 
to be 12, which is equal to the total number of weights 
of the one filter's planes. In this example, the dataflow 
is Weight Stationary (WS), which means that the 
weights are initially transferred to and kept in MSes. 
Subsequently, fresh ifmap values are inserted into 
MSes in each cycle. For example, following the 
depicted cycle, the next window values from the two 
ifmap channels (a2, a3, a4, a6, a7, a8, b2, b3, b4, b6, 
b7, b8) will be transmitted to MSes for computation. 

III. GENERATION OF USELESS PRODUCTS IN CPC 

The CPC-based convolution involves multiplying 
all possible combinations. This method is simple but 
generates useless products, resulting in computational 
and transmission overheads.  

A. The Side 

A portion of the ifmap plane is defined by the term 
"Side" in this paper. It is described as follows: "All 
multiplications of the ifmap values that are not on the 
Side are certainly useful, but multiplying some of the 
ifmap values on the Side may lead to useless products". 
In the CPC-based convolution operation, depending on 
the dimensions of the filter plane, one or more rounds 
of the ifmap plane edges are the Side. In Fig. 5(a), the 

filter plane is 2  2. This has caused one round of ifmap 
plane edges to be the Side. Increasing the size of the 
filter will result in a larger Side size. For example, in a 

convolution operation with 7  7 filter plane 
dimensions, six rounds from the ifmap plane edges are 
the Side.  Fig. 5(a) illustrates an example of CPC-based 
convolution. As seen, only 12 of the 32 products of 
ifmap values that are on the Side are useful. In this 
example, only the A5 is not on the Side, and all its 
products have become useful. 

B. The impact of zero-padding on the quantity of 

useless products 

The majority of convolution layers have zero-
padding. In these types of layers, if the CPC operation 
is modified to eliminate the computation of additional 
data caused by zero-padding, the number of useless 

products will be reduced. Fortunately, during CPC 
operations, it is simple to avoid computing ifmap values 
that result from zero-padding.  

Fig. 5(b) demonstrates the impact of ignoring added 
data by zero-padding. In this example, ZP is 1, and the 
multiplication of its values has been skipped. This has 
caused the number of useless products to be reduced to 
zero. 

When this approach is applied in CPC, the number 
of multiplications needed is often even lower than when 
the SWC method is used. For example, the SWC 
method requires 64 multiplications in the layer of Fig. 
5(b), whereas the CPC with the mentioned approach 
only requires 36 multiplications. 

Equation 2, where R = S; K = 1; C = 1; N = 1, 
determines the number of useless products in the CPC 
operation when zero-padding values are ignored. Fig. 1 
describes R, S, K, C, and N. X represents the width and 
height of the ifmap plane after removing the zero-
padding data. This equation clearly shows that as ZP 
increases, the number of useless products decreases. 

                                                                              (2) 

Useless𝑁𝑢𝑚𝑏𝑒𝑟 = 4 × (
(𝑅−𝑍𝑃)(𝑅−𝑍𝑃−1)

2
𝑅𝑋) −

4 ×

(
(𝑅−𝑍𝑃)(𝑅−𝑍𝑃−1)

2
)

2

                                                                             

                  

 

Figure 3.  The computations in a simple example of a convolutional 

layer 

 

Figure 4.    mapping over MAERI  and VN Construction ( mapping the example layer of Fig. 3 based on the main dataflow of MAERI )
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Figure 5.  An illustration of CPC operation. (a) CPC with full computations. (b) CPC with ignoring computations of added zeros by zero-

padding

IV. IMPLEMENTING A CDS DATAFLOW BASED ON 

CPC TO TEST THE PROPOSED FRAME 

To evaluate the proposed frame aimed at improving 
dataflows based on the Cartesian product, we have 
designed a new data flow for the MAERI architecture. 
To maintain simplicity and focus on the study's core 
theme, this data flow's chosen type is CDS. Because to 
implement the computations of CPC operation, 
exploiting channel features can significantly reduce 
design complexity. In the designed dataflow, we have 
taken advantage of two of these features. First, the 
number of filter channels (C) in convolutional layers is 
identical to the number of ifmap channels. Second, the 
psums produced by multiplying a Channel Dimension 
Array (CDA) of ifmap by a CDA of filter all belong to 
one ofmap value and need to be summed. Fig. 1 depicts 
this feature along with ifmap CDA and filter CDA. 

The designed dataflow is shown in Fig. 6. The 
description of this dataflow can be summarized as 

follows: The CPC operation is completed during 
processes whose number is equal to the number of 
Ifmap CDAs. Each process executes and finishes all 
computations relating to a single ifmap CDA. 

Initially, MAERI is configured based on the channel 
length (C), and VNs are established. Following the 
operation's commencement, each process begins with 
multicasting the current ifmap CDA to all VNs. 
Subsequently, in each following cycle, co-location 
CDAs of multiple filters are unicasted 1  to VNs for 
multiplication. Once all the filter CDAs are sent, the 
operation proceeds with the next process. 

Equation 3 provides a mathematical representation 
of the convolution layer's operation based on the 
designed dataflow. As it is known, psums are produced 
by multiplying and accumulating filter CDAs in the 
ifmap CDAs, and then co-location psums are added 
together to produce one ofmap value. 

 

 

 

Figure 6.  The designed CPC-based dataflow to test the FUCA (designed as CDS) 
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                                                                           (3) 
𝑝𝑠𝑢𝑚(𝑛, 𝑘, 𝑥 − 𝑟, 𝑦 − 𝑠)

= ∑ 𝑊(𝑘, 𝑐, 𝑟, 𝑠) × 𝐼(𝑛, 𝑐, 𝑥, 𝑦)

𝐶−1

𝑐=0

 

𝑂(𝑛, 𝑘, 𝑥′, 𝑦′)

= ∑ 𝑎𝑙𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑠𝑢𝑚𝑠 𝑤𝑖𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑛, 𝑘, 𝑥′, 𝑦′) 

0 ≤ 𝑛 < 𝑁, 0 ≤ 𝑘 < 𝐾, 0 ≤ 𝑥 < 𝑋, 
0 ≤ 𝑦 < 𝑌, 0 ≤ 𝑟 < 𝑅, 0 ≤ 𝑠 < 𝑆, 
0 ≤ 𝑥′ < 𝑋′, 𝑋′ = 𝑋 − 𝑅 + 1 
0 ≤ 𝑦′ < 𝑌′, 𝑌′ = 𝑌 − 𝑆 + 1 

Of course, in order to simplify the equation, the 
stride equal to 1 has been considered, and the ReLU 
function and the array of biases have not been applied. 
The parameters used in this equation are described in 
Fig. 1. 

V. THE PROPOSED FRAME (FUCA) 

This section describes the method of developing and 
implementing the proposed frame over the designed 
CPC-based dataflow. It begins by presenting the 
designed dataflow as pseudo-code and then proceeds 
with applying the FUCA in several steps. 

A. Pseudo-code of designed dataflow 

Fig. 7 shows the evolution of the main idea of the 
current work in three sequential segments . The pseudo-
codes of the designed dataflow without any prevention 
of unnecessary and inefficient computations are 
depicted in the first segment (Figures 7(a) and 7(b)). In 
the second segment (Figures 7(c) and 7(d)), the 
dataflow of the previous segment has been modified to 
prevent the computation of added zeros by zero-
padding. Lastly, the dataflow has been modified in the 
third segment (Figures 7(e) and 7(f)) such that, in 
addition to eliminating computations involving zero-
padding zeros, it also avoids computations resulting in 
useless products; in other words, the dataflow has been 
fully equipped with FUCA . 

The first segment of Fig. 7 only shows the pseudo-
codes of the designed dataflow, where the tiling and 
transformations applied over nested loops of the 
convolution layer to achieve the designed dataflow can 
be seen. As visible, the loops of dimensions K and C 
have moved to the lowest level. This is because the 
designed dataflow operates on a CPC basis, where all 
ifmap CDAs are multiplied by all filter CDAs. In the 
presented dataflow, tiling is applied only to dimensions 
K or C . In most layers, due to the limited number of 
MSes, it is not possible to complete the computations of 
all filter CDAs with the current ifmap CDA in a single 
cycle. Therefore, tiling is applied to dimension K so that 
a portion of the filter CDAs is sent to the MSes in each 
cycle. Also, it is possible for the channel length (C) in 
some layers to be longer than the number of MSes, in 
which case even the computation of one filter CDA 
cannot be completed in a single cycle. For these 
situations, tiling has been applied to dimension C. 
Fortunately, MAERI's reconfigurability allows us to 
apply tiling to the different dimensions. In pseudo-

 
1 The stride of convolution. 

codes 7(a), 7(c), and 7(e), tiling has been applied to the 
dimension K and is for layers in which C < MSnumber. 
Also, pseudo-codes 7(b), 7(d), and 7(f) are equivalent 
to Figures 7(a), 7(c), and 7(e), respectively, for layers 
in which C > MSnumber. In these pseudo-codes, tiling has 
been applied to dimension C. 

The red dotted part in Fig. 7(a) illustrates the 
computations of each cycle. As clear, during each cycle, 
computations occur out on one ifmap CDA and 
multiple CDAs from various filters. The dataflow's 
CPC-based structure has resulted in the offsets +r and 
+s being negative, and, together with d1, they have been 
transferred from I[n][c][x][y] to O[n][k][x][y].  

In the second segment of Fig. 7, we provided 
another dataflow to better demonstrate the impact of the 
FUCA. This dataflow performs similarly to pseudo-
codes 7(a) and 7(b), but it ignores computations of zero 
values resulting from zero-padding. This can be 
considered the first step in improving the CPC-based 
dataflow. Because preventing the transmission and 
computation of ineffective data will save energy and 
reduce runtime. Based on this, Figures 7(c) and 7(d) are 
improvements of pseudo-codes 7(a) and 7(b), 
respectively. 

B.  The FUCA's foundation and applying it to CPC-

based dataflow 

As mentioned in the description of CPC (Section 
III), if an ifmap value located at position (n, x, y) 
relative to R and S is on the Side of the ifmap plane, 
multiplying that ifmap value by a number of weights 
will result in useless products. Here, we have articulated 
this issue in a formulaic manner. In a way, the result of 
multiplying an ifmap value at position (n, x, y) by a filter 
weight at position (r, s) will be useless if at least one of 
the following conditions is met (where the zero-padding 
zeros are ignored in the computations). 

( 𝑥 − 𝑟 + 𝑍𝑃 < 0 )                                              (4) 
( 𝑦 − 𝑠 + 𝑍𝑃 < 0 ) 

( 𝑥 − 𝑟 > 𝑋 − 𝑅 + 𝑍𝑃  )  
( 𝑦 − 𝑠 > 𝑌 − 𝑆 + 𝑍𝑃  ) 

In the convolution layer, if K = 1 and C = 1, 
multiplying the position (n, x, y) by the position (r, s) 
under the above conditions results in a single useless. 
However, K and C typically have values greater than 1, 
so multiplying those two positions instead of one leads 

to K  C useless products. This amount is certainly 
considerable and hurts performance and efficiency. 

In contrast, the advantage of CDS dataflow based 
on CPC is that the K and C loops have moved to the 
lowest level (Fig. 7(a)). As a result, only one ifmap 
plane position and one filter plane position are 
processed in each tile. Consequently, either all 
multiplications will be useless in a cycle or all will lead 
to useful products. Therefore, we can simply avoid the 
cycles that result in useless products. To do this, we 
could put the conditions of equation 4 into pseudo-code 
7(c) or 7(d) after the loops for dimensions R and S. So 
that a comparison between the position (r, s) of the filter 
and the position of the current ifmap CDA is performed 
first, and if one of the conditions is true, the sending and 
processing of all filter values with position (r,s) are 
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prevented. In this case, though, the issue is that the 
equation 4 comparisons will be executed a great 
number of times. Notably, if C > MSnumber (Fig. 7(d)), 
the frequency of these comparisons will also be 
increased. This issue, as the overhead, can negatively 
impact the runtime and the energy consumption.  

Therefore, we have converted the comparison 
operation into a constrained frame named FUCA (Fig. 
7(e) and Fig. 7(f)). The FUCA, at two higher levels of 
pseudo-code after the Y loop, establishes the frame for 
filter positions. With the assurance that none of its 
positions in computation with the current ifmap CDA 
would generate useless products. Thus, at the start of a 
process, when the current ifmap CDA is mapped to 
MSes, the FUCA sets the frame at the same time. Then, 
only the filter CDAs in the frame are sent to MSes for 
computations in subsequent cycles of the process. This 
strategy results in the number of comparisons being 
equivalent to the number of ifmap CDAs, which is 
significantly lower than in the preceding case. Figures 
7(e) and 7(f) depict the final pseudo-codes of the 
designed dataflow that improved with FUCA. 

VI. EVALUATION 

First, this section discusses the functionality of the 
selected tool to evaluate the FUCA. Then, it details the 
chosen layers and dataflows for the experiment. Finally, 
the merits and weaknesses of the suggested idea are 
analyzed by illustrating the results. 

A.  Analyzer tool 

We assessed the designed and enhanced dataflows 
using the mRNA tool (mapper for Reconfigurable 
Neural Accelerators) [25]. Based on the MAERI 
architecture, mRNA is an open-source tool for 
analyzing dataflow and mapping strategies at various 
layers and finding the best mappings. 

The mRNA first receives the parameters of the input 
layer (dimension sizes, stride, etc.) and accelerator 
resources (number of MSes, bandwidth, etc.) and then 
lists mapping strategies with the most potential for MS 
utilization . Next, it assesses each strategy listed and 
presents the results of all of them, including metrics like 
energy consumption, runtime, utilization, etc.  

The convolutional layer’s dataflow in mRNA is the 
same as the MAERI dataflow and is based on SWC. 
This dataflow is described in Section II-B. In reality, 
mRNA defines and evaluates different tilings on input 
layer dimensions as mapping strategies and then finds 
the optimal one from the set. Thus, the dataflow is 
constant across all mapping strategies, and only the 
values of the tiling parameters vary. For this reason and 
also because the purpose and focus of this work are to 
evaluate the dataflows, not different strategies, we have 
considered the average results of different strategies in 
a dataflow as the results of that dataflow. 

To support the designed and enhanced dataflows, we 
have upgraded the mRNA. We have included a 
parameter in the mRNA input file that, when set to 
"true", lets mRNA run the extended part and evaluate 
the input layer mapping according to the designed 
dataflow. 

B. Methodology 

To illustrate the impact of FUCA, four distinct 
dataflows, each with the names and characteristics 
listed below, have been taken into consideration for 
analysis and comparison. 

MAERI-MDF (MAERI’s Main DataFlow) [11, 25]. 
The basic MAERI’s dataflow for convolutional layers, 
which is based on SWC (described in Section II-B). The 
original dataflow in mRNA is likewise this one. 

CPDF (Cartesian Product based DataFlow). The 
presented CDS dataflow, which is based on CPC 
(described in Section IV and displayed as pseudo-code 
in Figures 7(a) and 7(b)). No improvements have been 
made to this dataflow. 

CPDF-AIZ (Cartesian Product based DataFlow 
with the Ability to Ignore Zero-padding Zeros). The 
same dataflow as CDPS, where only the transmission 
and computation of zeros resulting from zero-padding 
are prevented (displayed as pseudo-code in Figures 7(c) 
and 7(d)). 

CPDF-FUCA (Improved Cartesian Product-based 
DataFlow with FUCA). Improved final dataflow by 
FUCA, which not only prevents unnecessary 
computations caused by zero-padding but also avoids 
processing data with useless results (displayed as 
pseudo-code in Figures 7(e) and 7(f)). 

To better compare the mentioned dataflows and 
evaluate the influence of zero-padding, we defined a set 
of identical custom convolution layers with different 
numbers of zero-paddings and, consequently, different 
output dimensions. Table 1 presents the parameters for 
these layers. We also chose multiple convolutional 
layers from various advanced DNNs with varying 
strides and zero-paddings to assess the effectiveness of 
the proposed approach across different DNNs. These 
layers are displayed in Table 2. 

C. Results 

The findings from evaluating the impact of 
FUCA on CPC-based dataflow. The runtime and 
energy consumption of convolution layers in Table 1 
have been evaluated by the mRNA in four dataflows 
(MAERI-MDF, CPDF, CPDF-AIZ, and CPDF-
FUCA), and the results are shown in Fig. 8 as two 
charts. Figures 8(a) and 8(b) show the results of 
normalized runtime and normalized energy 
consumption, respectively. As can be observed, both in 
terms of runtime and energy consumption, the final 
presented dataflow (CPDF-FUCA) performs better 
than other dataflows, even topping MAERI's original 
dataflow (MAERI-MDF). The results of CPDF-FUCA 
and MAERI-MDF are nearly identical at ZP = 0, but 
CPDF-FUCA has performed significantly better in 
layers where ZP > 0. 
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Figure 7.  the pseudo-code of designed dataflow ((a),(c),(e) for C <  MSnumber cases and (b),(d),(f) for C > MSnumber cases). (a),(b) Cartesian 

Product based DataFlow with no improvement (CPDF). (c),(d) Cartesian Product based DataFlow with the Ability to Ignore Zero-padding 

Zeros (CPDF-AIZ). (e),(f) Improved Cartesian Product-based DataFlow with FUCA (CPDF-FUCA)

TABLE I.   THE CUSTOM CONVOLUTION LAYERS DEFINED FOR 

EVALUATING THE PROPOSED FRAME 

LayerName 
Input Output Filter 

X Y C N X’ Y’ R S K d ZP 

Custom Layer-0 27 27 64 1 11 11 7 7 128 2 0 

Custom Layer-1 27 27 64 1 12 12 7 7 128 2 1 

Custom Layer-2 27 27 64 1 13 13 7 7 128 2 2 

Custom Layer-3 27 27 64 1 14 14 7 7 128 2 3 

Custom Layer-4 27 27 64 1 15 15 7 7 128 2 4 

Custom Layer-5 27 27 64 1 16 16 7 7 128 2 5 

TABLE II.  THE CHOSEN LAYERS FROM DIFFERENT ADVANCED 

DNNS TO EVALUATE THE INFLUENCE OF FUCA 

DNN-Name/ 

LayerName 

Input Output Filter 

X Y C N X’ Y’ R S K d ZP 

DarkNet-19 [26]/ 

CONV13 
14 14 256 1 14 14 3 3 512 1 1 

ResNet18 [16]/ 

CONV4a-1 
28 28 128 1 14 14 3 3 256 2 1 

ResNet50 [16]/ 

CONV4a-shortcut 
28 28 512 1 14 14 1 1 1024 2 0 

DenseNet121 [17]/ 

Transition3(CONV) 
14 14 1024 1 14 14 1 1 512 1 0 

YOLO [19]/ 

Block2-CONV1 
112 112 64 1 112 112 3 3 192 1 1 

AlexNet [27]/ 

CONV2 
27 27 96 1 27 27 5 5 256 1 2 

 
(a) 

 
(b) 

Figure 8.  Evaluation results of MAERI-MDF, CPDF, CPDF-AIZ, 

and CPDF-FUCA dataflows on identical custom layers with 

different zero-paddings. (a) Normalized runtime results. (b) 

Normalized energy consumption results 

Remove ZeroPadding data from ifmap;  //Consequently,  X-=2*ZP and Y-=2*ZP 
for(n=0; n < N; n++) {
 for(x=0; x<X; x++) {
  for(y=0; y<Y; y++) {
   Configure MAERI based on ifmap CDA[n,x,y];
   rBegin=(x+ZP)%d;      sBegin=(x+ZP)%d;
   rEnd=R;               sEnd=S;
   if (x+ZP - R +1 <0)   rEnd=x+ZP+1;     
   if (y+ZP - S +1 <0)   sEnd=y+ZP+1; 
   if(x-ZP >X-R)         rBegin=R-(X-x)-ZP;
   if(y-ZP >Y-S)         sBegin=S-(Y-y)-ZP;
   for(r= rBegin; r<rEnd; r+=d) {
    for(s= sBegin; s<sEnd; s+=d) {     
     for(k=0; k<K; k=k+T_K) {  
      for(t_k=k;t_k<min(k+T_K,K);t_k++){                                                             
       for(c=0; c< C; c++){
        O[n][t_k][(x+ZP-r)/d][(y+ZP-s)/d] +=W[t_k][c][r][s]* I[n][c][x][y];
     }}
   }}}
}}}

Remove ZeroPadding data from ifmap;  //Consequently,  X-=2*ZP and Y-=2*ZP 
for(n=0; n < N; n++) {
 for(x=0; x<X; x++) {
  for(y=0; y<Y; y++) {
   Configure MAERI based on ifmap CDA[n,x,y];
   rBegin=(x+ZP)%d;      sBegin=(x+ZP)%d;
   rEnd=R;               sEnd=S;
   if (x+ZP - R +1 <0)   rEnd=x+ZP+1;     
   if (y+ZP - S +1 <0)   sEnd=y+ZP+1; 
   if(x-ZP >X-R)         rBegin=R-(X-x)-ZP;
   if(y-ZP >Y-S)         sBegin=S-(Y-y)-ZP;
   for(c=0; c< C; c=c+T_C){ 
    for(r=rBegin; r<rEnd; r+=d) {
     for(s=sBegin; s<sEnd; s+=d) {     
      for(k=0; k<K; k++) { 
       for(t_c=c;t_c<min(c+T_C,C);t_c++){                                        
        O[n][k][(x+ZP-r)/d][(y+ZP-s)/d] +=W[k][t_c][r][s]* I[n][t_c][x][y];
       }
    }}}}
 }}}   

tile

tile

(e)
(f)

operations of each process
operations of each process

Forming the frame to avoid 
the generation of useless 

products

Remove ZeroPadding data from ifmap;  //Consequently,  X-=2*ZP and Y-=2*ZP 
for(n=0; n < N; n++) {
 for(x=0; x<X; x++) {
  for(y=0; y<Y; y++) {
   Configure MAERI based on ifmap CDA[n,x,y];
   for(r=(x+ZP)%d; r<R; r+=d) {
    for(s=(y+ZP)%d; s<S; s+=d) {     
     for(k=0; k<K; k=k+T_K) {  
      for(t_k=k;t_k<min(k+T_K,K);t_k++){                                                             
       for(c=0; c< C; c++){
        O[n][t_k][(x+ZP-r)/d][(y+ZP-s)/d] +=W[t_k][c][r][s]* I[n][c][x][y];
      }}
   }}}
}}}

Remove ZeroPadding data from ifmap;  //Consequently,  X-=2*ZP and Y-=2*ZP
for(n=0; n < N; n++) {
 for(x=0; x<X; x++) {
  for(y=0; y<Y; y++) { 
   Configure MAERI based on ifmap CDA[n,x,y];
   for(c=0; c< C; c=c+T_C){ 
    for(r=(x+ZP)%d; r<R; r+=d) {
     for(s=(y+ZP)%d; s<S; s+=d) {     
      for(k=0; k<K; k++) { 
       for(t_c=c;t_c<min(c+T_C,C);t_c++){                                        
        O[n][k][(x+ZP-r)/d][(y+ZP-s)/d] +=W[k][t_c][r][s]* I[n][t_c][x][y];
       }
   }}}}
}}}

tile
tile

(c) (d)

operations of each process operations of each process

Forming the frame to avoid 
the generation of useless 

products

for(n=0; n < N; n++) {
 for(x=0; x<X; x++) {
  for(y=0; y<Y; y++) {
   Configure MAERI based on ifmap CDA[n,x,y];
   for(r=(x%d); r<R; r+=d) {
    for(s=(y%d); s<S; s+=d) {     
     for(k=0; k<K; k=k+T_K) {  
      for(t_k=k;t_k<min(k+T_K,K);t_k++){                                                             
       for(c=0; c< C; c++){
        O[n][t_k][(x-r)/d][(y-s)/d] +=W[t_k][c][r][s]* I[n][c][x][y];
      }}
   }}}
}}}

for(n=0; n < N; n++) {
 for(x=0; x<X; x++) {
  for(y=0; y<Y; y++) { 
   Configure MAERI based on ifmap CDA[n,x,y];
   for(c=0; c< C; c=c+T_C){ 
    for(r=(x%d); r<R; r+=d) {
     for(s=(y%d); s<S; s+=d) {     
      for(k=0; k<K; k++) { 
       for(t_c=c;t_c<min(c+T_C,C);t_c++){                                        
        O[n][k][(x-r)/d][(y-s)/d] +=W[k][t_c][r][s]* I[n][t_c][x][y];
       }
   }}}}
}}}

tile
tile
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The correctness of the discussion in Section III-B 
can be observed by the comparison of the CPDF-FUCA 
and CPDF-AIZ results. In Custom Layer-0 (where ZP 
= 0), based on equation 2, the number of useless 
products will be high. So, CPDF-FUCA has a lower 
energy consumption and runtime in this layer compared 
to CPDF-AIZ due to the prevention of useless product 
generation1.  But as the results of the next custom layers 
show, because as ZP increases, the number of useless 
products decreases, the results of these two dataflows 
are closer to each other. 

According to charts, the CPDF performs worse than 
the other dataflows in all custom layers, but the CPDF-
AIZ does perform better than even the MAERI-MDF in 
high ZPs. However, since the ZP of the convolution 
layers of most DNNs is between 0 and 2, it's safe to say 
that the CPDF-AIZ's good efficiency in high ZPs 
doesn't matter. 

Evaluation results of the chosen DNN layers. The 
normalized runtime results of CPDF-FUCA and 
MAERI-MDF dataflows for chosen DNN layers (Table 
2) are displayed in Fig. 9. As it is known, CPDF-FUCA 
has a lower runtime than MAERI-MDF in all layers 
except for Alexnet-CONV2, indicating that the proposed 
method has performed better in these layers.  

The greater runtime of the CPDF-FUCA in the 
Alexnet-CONV2 compared to the MAERI-MDF has 
been caused by a lack of work on mapping strategies in 
the designed dataflow, which is outside the scope of this 
paper. CPDF-FUCA utilizes only 75% of the MSes in 
each cycle for the AlexNet layer, resulting in an 
approximate utilization rate of 75%. Enhancing the 
utilization rate of the designed dataflow through tiling 
on various dimensions in future work will lead to a 
reduction in runtime in layers similar to AlexNet. 

Fig. 10 displays the normalized total energy 
consumption results of the CPDF-FUCA and MAERI-
MDF dataflows for selected DNN layers. Each bar in 
the one-layer chart displays the energy consumption 
based on related dataflow, both total and separated in 
different parts of MAERI. The red color indicates 
energy consumption in the DN network, green in the 
MN network, yellow in the RN network, blue in the 
SPM (ScratchPad Memory, which is the same prefetch 
buffer), and black in the DRAM . 

As the charts show, in the layers of ResNet50, 
ResNet18, and DenseNet121, the CPDF-FUCA 
dataflow has lower energy consumption compared to 
MAERI-MDF. However, in the remaining layers, 
MAERI-MDF exhibits better energy consumption. If 
we pay attention to the energy consumption of the parts 
of MAERI separately in all charts, we find that the very 
high energy consumption of CPDF-FUCA in DN and 
SPM for DarkNet, Yolo, and Alexnet layers has caused 
its total energy consumption to be higher for these 
layers. High energy consumption based on the 
presented dataflow in DN and SPM usually occurs 
where R > 1, S > 1, and d < 2. The reason for this is that 

 
1 Note that the sole distinction between CPDF-FUCA and CPDF-

AIZ is that CPDF-FUCA prevents the generation of useless products, 

whereas CPDF-AIZ does not. 

in MAERI-MDF, which is a WS dataflow based on  
SWC, ifmap values are reused in two ways. First, in 
each cycle, the values of a window from the ifmap plane 
are multicast to VNs instead of unicast. Second, only a 
portion of the new window of the ifmap is multicast to 
MSes per cycle due to MAERI's store-and-forward 
multicast capability. These two factors reduce DN 
transmissions and the number of accesses to the 
prefetch buffer during sequential cycles, leading to an 
improvement in energy consumption in both the SPM 
and DN. Efforts to reuse data in the presented dataflow 
can result in improved energy in future works. 

 

Figure 9.  Normalized runtime results of CPDF-FUCA and 

MAERI-MDF dataflows for DNN layers of Table 2 

 

Figure 10.  Normalized energy consumption results of CPDF-FUCA 

and MAERI-MDF dataflows for DNN layers of Table 2 
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VII. CONCLUSION 

This paper presents a frame called FUCA for CPC-
based dataflows with an all-to-all nature. FUCA 
effectively eliminates the processing of data that leads 
to useless results. This frame ensures that the number of 
computations in CPC-based dataflows not only 
becomes equivalent to the number of computations in 
SWC-based dataflows, but at some layers, it becomes 
even less due to the consideration of a policy for zero-
padding. 

To evaluate the FUCA, we designed a CDS 
dataflow based on CPC and implemented the FUCA on 
it. The FUCA algorithm, placed in the middle of the 
designed dataflow, prevents the transmission of filter 
values that result in useless products. We assessed the 
current work using the mRNA tool, which is a dataflow 
and mapping analyzer for MAERI. Of course, we 
upgraded this tool to support the suggested idea. 

Our experiments were conducted on two sets of 
layers. In the first set, all layers are custom and the 
same, only differing in the number of zero-padding and, 
naturally, the output dimensions. The second set 
includes layers selected from various advanced DNNs. 

 The experiments on the first set indicated that 
FUCA in CPC-based dataflows leads to an average 
reduction of 39% in both energy consumption and 
runtime. Based on these experiments, we even observed 
that the CPC-based dataflow with FUCA outperforms 
the SWC-based dataflow of MAERI when ZP > 0. 
Also, when ZP is equal to zero, the performance of the 
developed dataflow is nearly identical to that of 
MAERI's dataflow. The findings from the experiments 
conducted on the second set also demonstrated that, in 
some instances, MAERI's dataflow performs better. 
The use of techniques such as store-and-forward 
multicast and data reuse in the dataflow and architecture 
of MAERI is the reason for this. As part of future work, 
one can try to incorporate such techniques into the 
proposed dataflow to address this issue. 
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