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Abstract—This research presents a novel portfolio optimization framework using deep reinforcement learning (DRL).
Traditional methods rely on static models or single-agent strategies, which struggle with market dynamics. We propose
a dynamic system to address this by selecting the best-performing DRL agent based on recent market conditions. The
framework evaluates five DRL agents, A2C, SAC, TD3, DDPG, and PPO, allocating portfolio weights based on short-
term performance. A selection mechanism identifies the top agent using cumulative returns over the prior ten days,
leveraging multiple agents' strengths. This adaptive approach embraces the philosophy that no single strategy
consistently outperforms in all market conditions, making flexibility and continuous learning essential for robust
portfolio management. Backtesting on Dow Jones data shows our method enhances cumulative returns and risk-
adjusted performance, achieving an 11.43% average annual return, 38.29% cumulative returns, and a 0.832 Sharpe
ratio, outperforming individual DRL agents.
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. INTRODUCTION

In the dynamic and constantly changing financial
markets, effective portfolio management remains
essential for investors seeking to maximize returns
while managing risks effectively. Conventional
portfolio optimization methods often rely on static
models, which may fall short of accommodating these
markets' fluid and unpredictable nature [1]. To address
this, sequence processing techniques such as linear
vectors offer a straightforward and efficient way to
handle financial datasets. These methods are
particularly suited for portfolio optimization tasks
requiring low computational complexity, providing a
practical approach to analyzing time-dependent
patterns in economic data, cryptocurrency, and
portfolio signals [2]. By leveraging vectorization and
sampling strategies, linear vectors facilitate extracting
meaningful temporal patterns essential for informed
decision-making [3].

As financial markets grow increasingly complex,
electronic  consulting systems are pivotal in
transforming intricate financial data into actionable
investment strategies. The rapid advancement of
technology has made it imperative for investors to adopt
sophisticated analytical tools to navigate modern
market challenges [4]. Among these tools, deep
reinforcement learning (DRL) has gained prominence
for its ability to adapt and learn in dynamic
environments. In financial applications, DRL enables
adaptive decision-making by continuously analyzing
historical trends and real-time market data, allowing
investors to respond proactively to market fluctuations
[5], [6]. In addition to finance, DRL has shown
significant promise in areas like fog computing,
optimizing task offloading between edge and cloud
devices for latency-sensitive applications [7], and
agricultural land use modeling, which helps simulate
climate change adaptation strategies [8].

Financial markets are highly volatile, with prices
influenced by economic events, investor sentiment, and
global trends. Market analysis primarily relies on two
approaches to navigate this complexity: technical
analysis, which focuses on historical price patterns and
indicators, and fundamental analysis, which
incorporates broader economic factors, such as news
sentiment and financial reports. This research primarily
adopts a technical analysis perspective to evaluate the
performance of the proposed multi-agent reinforcement
learning framework compared to common DRL-based
approaches (A2C [9], PPO [10], DDPG [11], TD3 [12],
SAC [13]). By concentrating on technical features, we
aim to assess how effectively the model adapts to
market fluctuations and enhances portfolio returns.
Policy-based DRL methods are particularly well-suited
for financial markets because they handle non-
stationarity and sequential dependencies in market data.
Unlike value-based methods, which struggle with
instability in dynamic environments, policy-based
approaches  optimize  decision-making directly,
ensuring more robust adaptation to market trends and
improving long-term performance.

Despite advancements in financial modeling,
portfolio optimization still faces significant challenges.
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Traditional techniques, such as the Max-Sharpe
method, rely on fixed statistical assumptions, making
them less effective in dynamic markets [14]. These
static models struggle with rapid fluctuations, limiting
their real-world applicability [15]. Similarly, many
DRL strategies use a single-agent framework, which
may underperform in varying market conditions since
no single strategy consistently excels across all
scenarios. Another key challenge is the lack of short-
term adaptability in DRL models, as they often
prioritize long-term rewards while failing to capture
short-term market trends essential for active portfolio
management. Without immediate responsiveness, these
models risk missing opportunities or failing to mitigate
short-term risks. Furthermore, the effectiveness of DRL
models compared to traditional portfolio optimization
methods, such as the Equal Weights Method and the
Max-Sharpe Model (Markowitz Model), remains
underexplored, making it difficult to fully assess their
advantages in real-world investment scenarios [1], [2].

To address these challenges, we propose a multi-
agent DRL framework that dynamically selects the
best-performing agent based on recent market
conditions. The key contributions of this work are as
follows:

e Anovel adaptive portfolio optimization framework
that evaluates and selects from multiple DRL
agents (A2C, SAC, TD3, DDPG, PPO) based on
short-term performance.

e A short-term agent selection mechanism that
dynamically chooses the top-performing model
over a ten-day window, improving responsiveness
to market fluctuations.

e Comprehensive benchmarking against traditional
portfolio models, including the Equal Weights
Method and the Max-Sharpe Method (Markowitz
Model), demonstrates the superiority of our
adaptive strategy.

e Extensive empirical evaluation using historical
Dow Jones data shows that our approach enhances
cumulative returns, risk-adjusted performance, and
profitability.

The structure of this paper is as follows: Section Il
reviews related work on portfolio optimization and
reinforcement learning. Section 1l outlines our
methodology, including data preprocessing, model
training, and the agent selection mechanism. Section IV
discusses the experimental results and system
performance evaluation. Section V offers an in-depth
discussion of the findings. Finally, Section VI
concludes the study and highlights potential directions
for future research.

Il.  RELATED WORKS

Recent advancements in portfolio management
have seen a surge in the application of innovative
reinforcement learning (RL) architectures. Various
studies have explored diverse RL-based methodologies
to address dynamic financial markets, optimize
portfolio allocation, and enhance risk-adjusted returns.
These works highlight the integration of reinforcement
learning with advanced techniques such as self-
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attention mechanisms, sentiment analysis, multi-agent
systems, and deep learning frameworks. A summary of
works from 2020 to 2025, illustrating significant
contributions in portfolio optimization, is presented in
Table I. Each study is categorized based on the year,
authors, methods, and key advantages.
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price prediction. Five RL algorithms, A2C, PPO,
DDPG, TD3, and SAC, have been utilized. Each
algorithm has strengths and limitations, demonstrating
varied performance under different market conditions.

The A2C and PPO agents, leveraging stochastic
policies and policy optimization, quickly adapt to
market changes and perform better in volatile and

TABLE I. SUMMARY OF RELATED WORKS IN PORTFOLIO J
MANAGEMENT. turbulent environments. On the other hand, DDPG and
Ve yNTIGreS Nt Aovancaes TD3 agents, e_mploylng neu_ra! networks in continuous
2021 | Betancourtand | Method integrating rew | Figh daily returns spaces, excel in gradually shifting markets and are more
Chen [16] ﬁg:;sgﬂtgj;“;m's"wgh el suitable for long-term and stable scenarios. The SAC
021 | Braearey | neua evork | Improved risk-adjused agent seeks more diverse policies, enabling it to make
[ i el robust decisions under uncertainty. By maximizing
. RL h Si ior Sh ti i 1 1
o | Ko | e | GNUOPY, SAC proves to be particularly effective in
al. [18] sentiment i _ compared to baselines uncertain conditions.
2 | GmSmend | i | St . .
: portfolio rebalancing : : As noted, due to the highly dynamic nature of the
2022 Kabbani and TD3 algorithm for High Sharpe ratio o
Duman [20] automating stock trading | achieved market and the structural differences between the
D t ni t I - - - - -
2023 | Zhaoetal [21] | gracient RL metho with Excellent performnce agents, it is unclear before trading which agent will
el afantion mectenism perform best for predicting prices at time t+1. Thus,
2023 Lietal. [22 framework for high- High returns with lower Selectlng a Slngle agel’lt at the tlme "t" IS Cha“englng,
e e tmnvency dita risk metrics and an incorrect choice can reduce cumulative returns.
Mult-agert sysemwith |~ To address this issue, two algorithms are proposed in
rend consistenc ective results in H .
el Maetal. [23] regularization fo¥ market Chinese Stock Market thIS paper-
status switching
Fuzzy vectors with Outperformed i
2023 Hao et al. [24] enser>r,1ble RL methods ben!:)hmarks over 11 1 Averagmg Approach (Proposed MethOd 1)
lied to SP100 stock: . . .
Costsensitive parols | oo m— In the first algorithm, the output of all agents is
200 | Zhangetal. [25] | Specn MR oftranscton and sk averaged. Specifically, each agent suggests a weight for
network each stock at time t+1, and the average of these weights
sz | Soleymaniang ek s Solved ettt ses is considered the final weight for t+1. The proposed
paquet [26] and CNN with g/ weight by each agent indicates the proportion of that
2020 W etal. [27] GRU-based adaptive Outperformed stock in the pOfthliO. If the final WE|ght equaIS the
Lot L e e weight at time "t" it implies that the stock should
2021 | Wuetal 28] | wih Sharpe rato-besed Improved retlms and remain unchanged in the portfolio (i.e., a "hold" action).
Multiple deep neural e S If the final weight increases, it indicates a purchase is
2021 | Cartaetal [29] | networks with areward- | 55 500 needed, with the purchase amount calculated based on
S L N i the weight increase. Conversely, if the final weight
S e selection sirategies. decreases, it suggests selling a portion of the stock, with
Modern portfolio theory i i i
2023 Jang and Seong with RL and Tucker Outperformed state-of- the amo_unt determmed by the W6|ght reductlon. The
[31] decomposition for the-art algorithms total weights of all stocks always sum to 1. Averaging
multimodal inputs B
e e Ev— the outputs of multiple agents reduces the error caused
2023 | Dayetal[s7) | Mo0€lincomporating cumulate et on by the poor performanc_e_qf asingle agent and I_everages
covariance i the predictive capabilities of each algorithm on
Nested RL method with Enhanced investor
2023 Yuetal. [33] weight random selez\{;on profits acrc:s\s/various Complex da‘ta'
strategy markets R
Multi-agent deep RL Improved portfolio 2. Main PI’OpOSEd Method
2024 Liand Hai [34] modeI_W|_th gecitona" management and risk
stock ndices and self tigati The second proposed algorithm selects a single
attention networks mitigation p p g | A | g
Superior performance, agent as the decision-maker for predicting stock
Model-free DRL handles high- R . e a .
2024 | Jiang etal. [35] framework for portfolio dimensional data, WelghtS at time t+1. This selection is based on market
selection ncludes transaction conditions at that moment. The process involves
w0z | Chenetal sl | miuthmean-variance | Outperforms buy.and- monitoring agents' historical performance over the past
e T | o e "n" days. In other words, the agent that achieved the
idden- Optimizes portfolios, highest cumulative return over the last "n" days is
. Evaluates hidden-layer P g y
Aritonang et al. & — identifies ideal . R R
25 | configurations nRL | completies for chosen to decide for time t+1. Selecting the top-
algorithms performing agent over the past "n" days ensures that
Enhances feature .. . a o :
2025 | Songetal [38] | RLWithdeterministic extraction, excels in decisions align with current market conditions. This
state transitions g;{‘;i‘;gﬁ:gmy_ approach is efficient for dynamically adapting to
RMS-Driven DRL for | je0ress Sient market changes. For instance, if the market transitions
2025 | Sattaretal [39] | optimized portiolio return in dynamic to a volatile or stable phase, a new agent suited to these
i markets conditions will be quickly selected. Additionally, this
method excludes underperforming agents from
.  METHODS influencing the final decision, preventing their negative

impact. The main proposed method will be further

In this research, two algorithms have been
independently designed to ensure optimal decision-
making for maximizing cumulative returns in stock

detailed, as illustrated in Figure 1.
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Figure 1. General Schema of the Proposed Consulting System.

A. Stock Data Preparation

The stock data is initially represented in dimensions
SxKx5, where S represents the number of samples,
each covering a moment t. K is the number of stocks,
and 5 illustrates various features of each stock,
including the opening price, closing price, highest price,
lowest price, and trading volume.

B. Stock Filtering

At this stage, the closing prices of stocks,
represented as SxKx1, are compressed using an
Autoencoder. During this step, K’ stocks with the
lowest volatility are selected. After applying this
compression, the output dimensions are reduced to
SxK'x1, where K’ is the number of selected stocks with
the lowest volatility.

C. Primitive Indicator Decision

At this stage, technical indicators are calculated for
each stock to analyze stock prices better. These
indicators include technical tools that help analysts
assess market trends and the current state of stocks. The
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indicators are Average True Range (ATR), Bollinger
Bands Width (BBW), On-Balance Volume (OBV),
Chaikin Money Flow (CMF), Moving Average
Convergence  Divergence  (MACD),  Average
Directional Index (ADX), Relative Strength Index
(RSI), Commodity Channel Index (CCI), Exponential
Moving Average (EMA), and Simple Moving Average
(SMA). After calculating these indicators, the data
dimensions are adjusted to SxKx10, where S is the
number of samples, K is the number of stocks, and 10
represents the number of calculated indicators. This
stage is an effective tool for a more precise analysis of
price trends and identifying market signals.

D. High-Level Indicator Decision Phase

After extracting the technical indicators, another
Autoencoder compresses them to reduce data
dimensions and increase model efficiency. Dimension
reduction allows the model to focus only on the main
and more relevant features instead of processing many
complex ones, thereby improving the accuracy and
efficiency of agent learning. After this compression, the
number of indicators is reduced from 10 to 4, and the
data dimensions become SxKx4.

E. Integration of Data and Indicator Decision

The processed and compressed technical indicators
and data from each section are integrated at this stage.
This process, called "Row Data and Indicators Data
Concatenation," combines various data, including stock
prices, compressed technical indicators, and selected
stocks, into a single dataset. This integration prepares
the data for use in reinforcement learning models,
enabling the model to utilize all features cohesively for
more accurate predictions. After this integration, the
output dimensions change to SxK'x9, where S is the
number of samples, K’ is the number of selected stocks,
and 9 represents the number of different features,
including stock prices and indicators for the stocks.

F. Data Splitting

Next, the data is divided into two parts: train and
test. 80% of the data is used for training, and the
remaining 20% is used for testing. This division is not
done randomly because the data is time-series and has
temporal dependencies. The data must be split
sequentially and chronologically to preserve these
dependencies and accurately simulate market trends.

G. Agent Policy Learning

DDPG, A2C, PPO, SAC, and TD3 are all Actor-
Critic-based algorithms that leverage state-action pairs
to learn optimal policies and Q-values. While DDPG
and TD3 are explicitly designed for continuous action
spaces, TD3 offers excellent stability by reducing
overestimation in Q-value calculations. SAC, also
tailored for constant domains, promotes exploration
through entropy maximization. On the other hand, A2C
and PPO are versatile and can be applied in discrete and
continuous spaces. A2C enhances learning through
Advantage estimation, whereas PPO ensures excellent
stability by constraining policy updates.

Regarding  On-Policy  versus  Off-Policy
approaches, A2C and PPO are On-Policy, relying
exclusively on data from the current policy. This
ensures higher stability but results in lower data
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efficiency. Conversely, DDPG, TD3, and SAC are Off-
Policy algorithms that utilize Replay Buffers, enabling
them to leverage past and recent data. This makes
learning in complex environments more efficient,
though implementation complexity increases.

Trajectories play a crucial role in these algorithms.
Trajectories consist of states, actions, rewards, and
following states generated by the agent's interaction
with the environment. In On-Policy algorithms like
A2C and PPO, trajectories are collected directly from
the agent's current policy, ensuring stable learning but
requiring frequent environmental sampling. However,
off-policy algorithms such as DDPG, TD3, and SAC
can store trajectories from previous policies in a Replay
Buffer, enhancing data efficiency and facilitating
learning in intricate environments.

Additionally, these algorithms adopt various
Backup Strategies for value updates. A2C and PPO
utilize Monte Carlo methods to accumulate total
rewards for a trajectory, whereas DDPG, TD3, and
SAC employ Bootstrapping, which estimates next-state
values to speed up and optimize learning. SAC
combines both methods to strike a balance between
stability and accuracy.

Training data is employed to teach agents within the
reinforcement learning model at this stage. This data
acts as the environment where agents interact. The
primary objective is for the agents to learn optimal
decision-making strategies to enhance portfolio
performance. Key reinforcement learning concepts,
State, Action, Reward Function, and Environment, are
defined as follows:

1) State

The state of the environment represents the
information available to agents at any moment for
decision-making. In this problem, the state comprises
features related to stock prices, technical indicators, and
processed data.

2) Action

The action represents the decision made by the
agent at each time step. Here, it refers to assigning
weights to each stock in the investment portfolio, where
these weights determine the percentage of capital
allocated to each stock. The action vector includes
weight values for all stocks in the portfolio.

3) Reward

When an agent takes an action, the environment
provides a reward indicating the agent's performance.
In this case, the reward corresponds to the profit or loss
from changes in portfolio weights. Higher profits yield
positive rewards, while losses result in negative
rewards. This function motivates agents to adopt
strategies that maximize cumulative returns in the
market.

4) Environment
The training data serves as a simulated environment
for agent learning. Agents can evaluate their actions,
observe performance results, and measure their impact
on the portfolio. The environment reflects real-world
stock market conditions, including prices, volatility,
and other features.
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The goal of training agents is to identify an optimal
policy that enables the agent to select the best possible
action for each state to maximize cumulative returns.
During training, agents observe the market state,
perform actions, and improve their policies based on
received feedback (rewards). This process iteratively
continues until agents develop strategies capable of
achieving optimal performance in dynamic and
complex market conditions.

H. Consulting System

After training agents and obtaining their respective
optimal policies, a Consulting System is used for
decision-making at time t+1. This system selects the
best-performing agent based on cumulative returns over
the past "n" days. The selection criterion is the
cumulative income each agent's policy generated
during the previous period. The agent with the highest
cumulative income is chosen for t+1. The selected
agent's proposed weights, representing the percentage
of investment in each stock, are used as the final
decision. These decisions determine which stocks
should be bought, sold, or held.

The selection and decision-making process is
applied iteratively on test data to calculate the system's
overall cumulative income. The Consulting System
aims to outperform the best individual agent by
achieving a final cumulative income that surpasses the
maximum cumulative income of any single agent. Once
this process is complete and satisfactory performance is
ensured, the Consulting System is deployed in real-
world market conditions. Utilizing trained agents, the
system provides recommendations for stock purchases,
sales, or holdings, ultimately optimizing investments
and maximizing cumulative income.

I. Hyperparameter Configuration

The selection and adjustment of hyperparameters
are critical to steering the learning mechanisms of
reinforcement learning agents, particularly in the
intricate domain of portfolio optimization. By fine-
tuning these parameters, the agents can better enhance
their decision-making processes. Tables Il and IlI
present the tailored hyperparameter setup for the
proposed method.

TABLE II. HYPERPARAMETERS USED FOR EACH DRL
AGENT.

Hyperparameter A2C PPO DDPG TD3 SAC
Learning Rate 0.001 0.001 0.001 0.001 0.001
Batch Size N/A 100 100 100 100
Buffer Size N/A N/A 50,000 | 50,000 | 50,000
Entro|
e 0.005 | 0.005 | N/A N/A | auto_0.1
Learning Starts N/A N/A N/A N/A 100
n_steps 5] 5] N/A N/A N/A
Total Timesteps 10,000 | 10,000 | 10,000 | 10,000 | 10,000

TABLE III. STOCK TRADING ENVIRONMENT PARAMETERS.
Parameter Value
hmax 500
initial_amount 1,000,000
transaction_cost_pct | 0.001
stock_dim 20
tech_indicator_dim 4

International Journal of Information & Communication Technology Research
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TABLE IV. PERFORMANCE METRICS AND THEIR MATHEMATICAL FORMULATIONS UTILIZED IN THE EVALUATION OF THE PROPOSED
PORTFOLIO OPTIMIZATION MODEL.
Metric Formula Description
1
Annual Return Annual Return = ( Endiatug )" _ 1) Measures the return achieved over one year.
Start Value.
Cumulative Returns Cumulative Returns = W(Z) Reflects the total return over the evaluation period.
Annual Volatility Annual Volatility = g X V252 (3) Indicates the standard deviation of returns over a year.
Avgz?jrr?sally Average Daily Returns = %Z?:l R; 4) The mean return achieved on a daily basis.

a . E[Rp]-R . e 5 ™

Sharpe Ratio Sharpe Ratio = ElRy]—Ry (5) Evaluates risk-adjusted return relative to volatility.
D
Calmar Ratio Calmar Ratio = 2nmatReturn (6) Compares annual return to the maximum observed drawdown.
Max drawdown
Max Drawdown Max Drawdown = min, (%) () Captures the largest drop in value from a peak to a trough.
¢
. Je [1-F(x)ldx . ) . R )
Omega Ratio Omega Ratio = f&‘i 8) Measures gains relative to losses using the cumulative distribution function.
J_ 2 F(x)dx
Sortino Ratio Sortino Ratio = % ) Focuses on downside risk by considering negative returns only.
d
3

E|(Rp— e S A

Skew Skew = M (10) Quantifies the asymmetry of the return distribution.
4
Kurtosis Kurtosis = M (11) Indicates the "tailedness” or extreme values in the return distribution.
at
Tail Ratio Tail Ratio = —22rage of Tob 5% Returns (12) Compares the best 5% of returns to the worst 5%.
Average of Bottom 5% Returns . _ . __ .
Daily Value at Risk VaR, = —inf{x|F(x) = a} a3) Estimates the maximum potential Iolzflglver 24 hours at a specific confidence
Alpha a =R, —[Rr +B(Rm — Rf)] (14) Represents the excess return relative to a benchmark market index.

Beta B= % (15) Measures portfolio volatility relative to the market.

J. Aggregation and Evaluation

The aggregation and evaluation processes are
fundamental components of our proposed method,
ensuring that the combined reinforcement learning
agents perform effectively in portfolio asset allocation.
This section outlines the key steps involved in
integrating agent outputs and assessing their overall
performance.

1) Performance Metrics

We employed a range of performance metrics to
comprehensively assess the proposed method. These
metrics are summarized in Table IV. Each metric
provides unique insights into the model’s ability to
manage risk and optimize returns.

2) Comparative Analysis

The combined agent strategy is benchmarked
against individual agents and traditional portfolio
allocation methods. Integrating predictions from
multiple agents provides a significant advantage,
showcasing their collective value in improving
outcomes.

K. Time Complexity Analysis

Understanding the computational efficiency of RL
algorithms is crucial for evaluating their practical
applicability. Table V presents the overall time
complexity and the best-case and worst-case scenarios
for the DRL methods used in this research. The
complexity of each algorithm is influenced by factors
such as the total timesteps (T), state space dimension
(S), action space dimension (A), neural network layers
(L), and number of neurons per layer (N). Among these,
PPO exhibits the highest computational complexity due
to additional iterative updates per epoch (1), leading to
a worst-case complexity of 0(n*). The proposed
method executes five agents serially in a loop and has a
worst-case complexity of O(n*), similar to PPO.
However, when parallel processing is feasible, the
proposed method's complexity improves to 0(n?) in
the worst case and 0(n?) in the best case, making it

International Journal of Information & Communication Technology Research

more computationally efficient under optimized
conditions.
TABLE V. TIME COMPLEXITY OF THE PROPOSED METHOD.
" 3 . Best Worst
Algorithm Overall Time Complexity Case Case
A2C O(T X (S+A) X LXN? om?») | 0(n®
PPO O(I X T x (LN? + BD)) om3® | o
DDPG O(TX(L-n-D+B-(L-n*))) | 0m®» | on®
TD3 O(TX(L-n-D+B-(L-n*))) | 0m®» | on®
SAC O(TX(L-n-D+B-(L-n*))) | 0m®» | on®
Proposed Five agents executed serially in a
Method loop multiple times 0(m) 0"

IV. RESULTS

This section presents the outcomes of our
experiments, detailing the dataset characteristics and
analyzing the performance of individual RL agents
alongside a comparative assessment of various
strategies.

A. Dataset Overview

The dataset used in this research was acquired via
the FinRL library [40] using the Yahoo Finance API,
which provides free access to data on the Dow Jones
Industrial Average (DJIA). The DJIA encompasses 30
leading companies listed on U.S. stock exchanges.
From December 31, 2008, to March 30, 2024, the
dataset contains 4035 daily records for each stock.
These records include key attributes such as opening,
closing, highest and lowest prices, and trading volume.

B. Individual Agent Performance

Table VI summarizes the performance metrics for
each RL agent and the proposed method. Figure 2
highlights the backtest results on training data, where
all agents achieved cumulative income exceeding seven
times the initial value. While these figures are
unrealistic due to the overlap between training and
testing datasets, they provide a valuable benchmark for
comparing agent performance. Among the agents, TD3
demonstrated relatively superior performance in this
phase.
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TABLE VI. PERFORMANCE METRICS FOR DIFFERENT REINFORCEMENT LEARNING AGENTS AND PROPOSED METHODS ON THE DOW JONES
INDUSTRIAL AVERAGE DATASET (2009-2024).
Evaluation Metrics | A2C Model | PPO Model | DDPG Model | TD3 Model | SAC Model | Proposed Method 1 | Main Proposed Method
Annual return 0.10355 0.088963 0.109103 0.093883 0.104561 0.100179 0.114276
Cumulative returns 0.343403 0.2909 0.363759 0.308451 0.347093 0.331145 0.382903
Annual volatility 0.139666 0.139456 0.142429 0.147605 0.13928 0.140483 0.142167
Sharpe ratio 0.775404 0.680907 0.798369 0.681806 0.783763 0.749933 0.832301
Calmar ratio 0.580168 0.578662 0.610732 0.451763 0.59372 0.57494 0.693455
Stability 0.439511 0.521288 0.522191 0.253352 0.505337 0.459214 0.639741
Max drawdown -0.17848 -0.15374 -0.17864 -0.20781 -0.17611 -0.17424 -0.16479
Omega ratio 1.141502 1.122649 1.144586 1.122642 1.141947 1.135974 1.153198
Sortino ratio 1.117814 0.979952 1.146267 0.975362 1.122939 1.076073 1.20474
Skew -0.14533 -0.12615 -0.17648 -0.17439 -0.1918 -0.16957 -0.13656
Kurtosis 1.844322 1.724517 1.561056 1.654512 1.784828 1.747927 1.798994
Tail ratio 1.048237 1.024539 1.028713 1.077653 0.969984 0.999069 1.005422
Daily Value at risk -0.01717 -0.01719 -0.01749 -0.0182 -0.01711 -0.01728 -0.01744
Alpha 0 0 0 0 0 0 0
Beta 1 1 1 1 1 1 1
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Figure 2. Backtest on Train Data and Cumulative Return by RL Agents.

Moreover, Figure 3 examines the backtesting
results on unseen data from 2021 to 2024, comparing
five RL agents, the proposed algorithm, and a strategy
averaging the weights of all agents. Although TD3
excelled during training, DDPG performed better
during testing. The weight-averaging algorithm
exhibited average performance, whereas the proposed
algorithm, which dynamically selects the best-
performing agent based on the previous 10 days,
outperformed all methods. It achieved a cumulative
profit of 38.29%, the highest among all strategies.

Figures 4 through 10 collectively highlight the
effectiveness and robustness of the proposed algorithm
in dynamic portfolio management. Figure 4 illustrates
daily portfolio weight adjustments, detailing buy, hold,
and sell actions, while Figure 5 provides a weekly
aggregation of these actions. Figure 6 demonstrates the
percentage usage of agents throughout each working
week, showcasing the dynamic adaptability of the
proposed approach. Table VII further details the usage
percentages of each agent over the 765-day backtest
period, showing that the proposed method utilized the
DDPG algorithm, the top-performing agent, 21.48% of
the time, and the PPO algorithm, the least effective,
12.21% of the time. Figure 7 showcases the percentage
of stock selections by the agents on testing data,
emphasizing the method's adaptability in leveraging
diverse strategies.

TABLE VII. USAGE PERCENTAGES OF EACH ALGORITHM.

[ Algorithm [ A2C | PPO [ DDPG | TD3 [ SAC |
| Usage Percent | 19.33% | 12.21% | 21.48% | 30.47% | 16.51% |

Figure 8 demonstrates the algorithm's capability to
deliver consistent returns through its monthly and
annual profit percentages on testing data. Finally,

Figure 9 compares the cumulative returns of the
proposed algorithm with the Dow Jones index, clearly
underscoring the superiority of the proposed method in
achieving higher profits and effectively managing risk
over the testing period.

C. Performance Evaluation Against Traditional
Portfolio Models

1) Equal Weights Method

In this approach, all assets in the portfolio are
assigned equal weights. It is one of the most
straightforward asset allocation strategies, as it does not
involve any optimization based on asset characteristics.
The main advantage of this method lies in its simplicity
and the fact that it does not require historical data to
estimate asset returns and risks. However, this approach
may not yield optimal performance, as assigning equal
weights to all assets can result in an inappropriate risk
profile portfolio.

2) Max-Sharpe Method (Markowitz Model)

The second approach is based on the Markowitz
model and aims to maximize the Sharpe ratio defined in
Equation 5 (Table 1V). Where E[R,] represents the
expected return of the portfolio, R, is the risk-free
return rate, and o, denotes the standard deviation of
the portfolio return, which serves as a measure of risk.

In this method, the optimal portfolio weights are
determined using training data. These weights are then
applied to test data to evaluate actual performance. The
optimization process involves calculating the mean
return and the covariance matrix of assets based on the
training dataset. Once the optimal weights are
determined, they are applied to the test dataset, and
cumulative returns are computed.
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Backtest based on the data from 2021-03-29 to 2024-03-28
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Figure 3. Backtest on Test Data and Cumulative Return by RL Agents and Proposed Methods.
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Figure 4. Daily Portfolio Weight Changes: 6 Example Stocks.
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Figure 5. Weekly Portfolio Weight Changes: 6 Example Stocks.
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Figure 6. The Percentage Usage of Agents Throughout Each Working Week.
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Figure 9. Comparison of Cumulative Returns of Proposed Methods and Dow Jones.

Figure 10 illustrates the asset weights assigned in
both methods. As observed, the Equal Weights method
distributes identical weights to all assets. In contrast,
the. In contrast, the Max-Sharpe method assigns
varying weights based on training data, adjusting
allocations according to the optimization process.

Table VIII presents the cumulative returns of the
proposed method compared to the Equal Weights and
Max-Sharpe strategies on test data from March 29,
2021, to March 28, 2024. The results indicate that the
proposed method significantly outperforms both
alternative approaches, achieving a cumulative return
of 38.2%, compared to 28.2% for the Max-Sharpe
model and 27.3% for the Equal Weights strategy.

Maximum Sharpe and Equal Weights Portfolios
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Figure 10. Asset Weights Allocation in Equal Weights and Max-

Sharpe Methods.
TABLE VIIl.  CUMULATIVE RETURNS OF DIFFERENT PORTFOLIO
STRATEGIES ON TEST DATA.
Method Cumulative Return
Equal Weights 27.3%
Max-Sharpe 28.2%
Proposed Method | 38.2%
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V. DIsSCUSSION

A. Effectiveness of a Dynamic Multi-Agent DRL
Approach

This paper highlights the substantial potential of
DRL in investment portfolio optimization. By
employing a framework that dynamically identifies and
selects the most effective DRL agent over short-term
intervals, the system can adapt swiftly to fluctuating
market conditions. This adaptability capitalizes on the
unique strengths of various DRL models in real-time,
which collectively contribute to improved portfolio
outcomes.

The choice of policy-based DRL methods in this
framework is motivated by their ability to address key
financial market challenges, particularly non-
stationarity and sequential dependencies in market data.
Unlike value-based approaches, which struggle with
instability due to violating the independent and
identically distributed (1.1.D.) assumption, policy-based
methods optimize decision-making directly, ensuring
smoother learning. This characteristic is particularly
crucial in dynamic and high-volatility markets, where
abrupt changes in asset prices require continuous
adaptation. By leveraging policy optimization
techniques, these methods enable more stable and
responsive trading strategies, improving overall
portfolio resilience.

This research enhances adaptability to shifting
market conditions by integrating multiple policy-based
DRL agents in a dynamic selection framework.
Switching between policy-based agents allows for a
more seamless transition between market regimes,
improving long-term stability and returns.
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Notably, the multi-agent DRL strategy employed
herein offers greater resilience and robustness than
relying on a single agent, as evidenced by enhanced
risk-adjusted performance metrics. Key indicators,
including higher Sharpe and Sortino ratios, underscore
the practical viability of this method, which achieves a
favorable balance between return generation and risk
mitigation. This makes the approach appealing for
investors pursuing growth and stability in volatile
markets.

This research utilized five DRL agents, A2C, PPO,
DDPG, TD3, and SAC, to optimize portfolio
allocations. Each algorithm excels under specific
financial conditions due to its distinctive attributes.
Table IX summarizes these advantages, demonstrating
how agents leverage their unique strengths to perform
effectively across diverse market environments. After
training and backtesting using historical data, the results
shown in Table X indicate the cumulative returns
achieved by each agent. The challenge lies in accurately
selecting the top-performing agent daily to maximize
overall portfolio returns.

TABLE IX. ADVANTAGES OF REINFORCEMENT LEARNING
ALGORITHMS FOR PORTFOLIO OPTIMIZATION.
Advantages Algorithms

Stable, cost-effective, faster, and works better A2C
with large batch sizes
Improve stability, less variance, simple to PPO
implement
Better at handling high-dimensional continuous
action spaces RREE
Improve network stability in complex D3
environments
Improve stability SAC
TABLE X. CUMULATIVE RETURNS BY MODEL (MARCH 29,
2021 — MARCH 28, 2024).
Model Cumulative Return (%)
PPO Model 29.0%
TD3 Model 30.8%
A2C Model 34.3%
SAC Model 34.7%
DDPG Model 36.3%

One solution implemented was a weighted average
approach, whereby all agents distributed the portfolio's
allocation daily. This method resulted in cumulative
returns between the best-performing agent (DDPG,
36.3%) and the lowest-performing agent (PPO, 29%),
yielding an intermediate result (Proposed Method 1,
33.1%). An alternative approach involved selecting the
agent with the best performance over the preceding 10
days for each working day. As Table Xl illustrates, this
Main Proposed Method significantly improved
cumulative returns, reaching 38.2%, surpassing both
the weighted average approach and the best individual
agent.

TABLE XI. CUMULATIVE RETURNS FOR PROPOSED METHOD 1
AND MAIN PROPOSED METHOD (MARCH 29, 2021 — MARCH 28,
2024).

Model Cumulative Return (%)
PPO Model 29.0%
TD3 Model 30.8%
Proposed Method 1 33.1%
A2C Model 34.3%
SAC Model 34.7%
DDPG Model 36.3%
Main Proposed Method 38.2%
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The Proposed Method 1 offers a balanced decision-
making approach using the average weight of all
factors. This method performs reasonably well with a
cumulative return of 0.33, a Sharpe ratio of 0.74, and a
Sortino ratio of 1.07, indicating a relative balance
between returns and risk. Additionally, with a
maximum drawdown of -0.17, it has managed to
control potential losses. However, due to the fixed
weighting, its flexibility in adapting to market changes
is limited. In this method, the Calmar ratio of 0.57 and
the Tail ratio of 0.99 suggest that compared to other
models, its performance is weaker when facing long-
term and low-volume risks, as seen in Table VI.

By adjusting the weights of factors based on past
performance in each time step, the Main Proposed
Method shows greater adaptability to market
conditions. This method increases cumulative returns to
0.38 and exhibits a better risk-adjusted performance
with a Sharpe ratio of 0.83. Although some metrics,
such as the annual volatility of 0.14, the Calmar ratio of
0.69, and the Omega ratio of 1.13, are not significantly
different from other models, its ability to reduce
maximum drawdown to -0.16 and improve stability to
0.63 demonstrates a more effective use of market
opportunities. Furthermore, the Tail ratio of 1.00 and
the Sortino ratio of 1.20 show significant improvements
in reducing downside risks and increasing stability.
Additionally, the kurtosis of 1.79 and skew of -0.13
have adapted more favorably to market fluctuations and
managed potential risks more effectively, as seen in
Table VI.

The system's efficacy, demonstrated through
backtesting with Dow Jones data, indicates its potential
for broader application across various markets and asset
classes. However, additional research is required to
evaluate its performance under differing economic
conditions and ensure scalability for real-world
implementation. Future studies should consider
incorporating more advanced DRL agents and
exploring refined decision-making frameworks to
enhance portfolio optimization. These findings
underscore the importance of dynamic, adaptive
strategies in  modern portfolio management,
showcasing the benefits of leveraging multiple DRL
agents for superior investment performance.

B. Optimal Time Window for Market Adaptation

The A2C algorithm, due to its Actor-Critic
structure, performs better in markets with low volatility
or weak price trends. It effectively handles gradual and
continuous market changes, allowing for optimal
decision-making. In contrast, PPO, known for its
stability in policy updates, achieves the best results in
highly volatile and unpredictable markets. By
preventing drastic policy changes, PPO adapts well to
sudden market fluctuations. The DDPG algorithm,
which follows a deterministic policy, performs best in
trending markets where changes occur gradually
according to recognizable patterns. TD3, an improved
version of DDPG, excels in markets with clear trends
but significant noise. By employing two Critic
networks to minimize errors and noise, TD3 can make
more precise decisions under such conditions. Finally,
leveraging entropy to balance exploration and
exploitation, the SAC algorithm demonstrates superior
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performance in unstable and complex markets. SAC is
particularly effective in environments with sudden and
intricate fluctuations, offering high flexibility and
responsiveness.

Given the performance of these algorithms across
different market conditions, a 10-day time window was
selected for determining the optimal agent. Analyzing
cumulative returns over various time windows (5, 10,
15, 20, 25, and 30 days) revealed that the 10-day
window outperformed the others. The results are
summarized in Table XII.

TABLE XII.  CUMULATIVE RETURNS FOR DIFFERENT TIME
WINDOWS.
Days | Cumulative Return
5 1.34
10 1.38
15 1.30
20 1.34
25 1.31
30 1.27

As shown in Table XII, the 10-day window
achieved the highest cumulative return among all tested
periods. This result indicates its adaptability and
efficiency in both short-term and long-term market
conditions. In short-term markets characterized by
rapid fluctuations, the 10-day window enables the
model to react quickly to new conditions and make
optimal decisions, enhancing its resilience to extreme
volatility. This window effectively captures gradual
market trends in long-term markets, ensuring the model
remains consistently aligned with evolving conditions.

Ultimately, the findings suggest that the 10-day
time window provides superior performance in high-
volatility and trend-driven markets. This selection
enables the model to adapt efficiently across different
market environments, leading to more robust and
optimal decision-making.

C. Research Limitation

One limitation of this research is the exclusion of
legal and regulatory constraints, which vary based on
market conditions and financial regulations in different
countries. These factors primarily impact the
operational deployment of a trading strategy rather than
the development of the underlying reinforcement
learning framework. As this research focuses on
designing an adaptive decision-making model
applicable across various market environments,
regulatory  considerations were not explicitly
incorporated. Instead, such constraints are more
relevant to the practical implementation of the strategy
on specific trading platforms, where compliance with
market regulations is essential.

VI.  CONCLUSION AND FUTURE WORKS

This paper introduced a novel consulting system for
portfolio asset allocation that leveraged deep
reinforcement learning to enhance investment decision-
making. By integrating five distinct DRL agents (A2C,
PPO, DDPG, TD3, and SAC) and employing a short-
term agent selection mechanism based on cumulative
returns, the system dynamically adapted to shifting
market conditions and significantly improved portfolio
performance. Backtesting on historical Dow Jones
index data demonstrated that the approach achieved an
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11.43% average annual return, 38.29% cumulative
returns, and a Sharpe ratio of 0.832, outperforming
individual agents and conventional strategies.

Future enhancements to the proposed system
include incorporating additional financial indicators
and alternative data sources, such as sentiment analysis
from news and social media, to achieve more
comprehensive market insights. Expanding the system
to accommodate other asset classes, including bonds,
commaodities, and cryptocurrencies, would increase its
versatility. Evaluating the system's robustness and
adaptability in fuzzy environments characterized by
high uncertainty and market volatility presents another
valuable avenue for research. Additionally,
investigating the use of transfer learning to adapt
models trained on one market to other markets could
enhance cross-market generalization and improve
system effectiveness. Finally, developing strategies for
real-time implementation would enable the system to
operate efficiently in live trading environments,
bridging the gap between theoretical advancements and
practical applications.

DATA AND CODE AVAILABILITY

This research utilizes DJIA daily stock data from
Yahoo Finance (https://finance.yahoo.com), covering
open, high, low, and close prices and trading volumes
for 30 major U.S. companies. The source code and
dataset are publicly available at https://github.com/Ma
soudKargar/APO-MADRL-STA.
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